/
IEEE TRANSACTIONS ON SIGNAL PROCESSING VOL IEEE TRANSACTIONS ON SIGNAL PROCESSING VOL

IEEE TRANSACTIONS ON SIGNAL PROCESSING VOL - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
394 views
Uploaded On 2015-01-15

IEEE TRANSACTIONS ON SIGNAL PROCESSING VOL - PPT Presentation

50 NO 2 FEBRUARY 2002 A Tutorial on Particle Filters for Online NonlinearNonGaussian Bayesian Tracking M Sanjeev Arulampalam Simon Maskell Neil Gordon and Tim Clapp Abstract Increasingly for many application areas it is becoming important to include ID: 31513

FEBRUARY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON SIGNAL PROCESSING V..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERSWebegininSectionIIwithadescriptionofthenonlineartrackingproblemanditsoptimalBayesiansolution.Whencertainconstraintshold,thisoptimalsolutionistractable.TheKalmanfilterandgrid-basedfilter,whichisdescribedinSectionIII,aretwosuchsolutions.Often,theoptimalsolutionisintractable.ThemethodsoutlinedinSectionIVtakeseveraldifferentapproximationstrategiestotheoptimalsolution.TheseapproachesincludetheextendedKalmanfilter,approximategrid-basedfilters,andparticlefilters.Finally,inSectionVI,weuseasimplescalarexampletoillustratesomepointsabouttheapproachesdiscusseduptothispointandthendrawconclusionsinSectionVII.Thispaperisatutorial;therefore,tofacilitateeasyimplementation,the“pseudo-code”foralgorithmshasbeenincludedatrelevantpoints.II.NAYESIANRACKINGTodefinetheproblemoftracking,considertheevolutionofthestatesequence ofatargetgivenby (1)where isapossiblynonlinearfunctionofthestate , isani.i.d.processnoisese- aredimensionsofthestateandprocessnoisevectors,respectively,and isthesetofnaturalnumbers.Theobjectiveoftrackingistorecursivelyestimate frommea- (2)where isapossiblynonlinearfunc- isani.i.d.measurementnoisesequence, aredimensionsofthemeasurementandmeasure-mentnoisevectors,respectively.Inparticular,weseekfilteredestimatesof basedonthesetofallavailablemeasurements , uptotime FromaBayesianperspective,thetrackingproblemistore-cursivelycalculatesomedegreeofbeliefinthestate attime ,takingdifferentvalues,giventhedata uptotime .Thus,itisrequiredtoconstructthepdf .Itisassumedthattheinitialpdf ofthestatevector,whichisalsoknownastheprior,isavailable( beingthesetofnomeasure-ments).Then,inprinciple,thepdf maybeobtained,recursively,intwostages:predictionandupdate.Supposethattherequiredpdf attime isavailable.Thepredictionstageinvolvesusingthesystemmodel(1)toobtainthepriorpdfofthestateattime viatheChapman–Kolmogorovequation Notethatin(3),usehasbeenmadeofthefactthat , as(1)describesaMarkovprocessoforderone.Theprobabilisticmodelofthestateevolution isdefinedbythesystemequation(1)andtheknownstatisticsof Attimestep ,ameasurement becomesavailable,andthismaybeusedtoupdatetheprior(updatestage)viaBayes’rule wherethenormalizingconstant dependsonthelikelihoodfunction definedbythemeasurementmodel(2)andtheknownstatisticsof .Intheupdatestage(4),themeasurement isusedtomodifythepriordensitytoobtaintherequiredposteriordensityofthecurrentstate.Therecurrencerelations(3)and(4)formthebasisfortheoptimalBayesiansolution.Thisrecursivepropagationoftheposteriordensityisonlyaconceptualsolutioninthatingeneral,itcannotbedeterminedanalytically.Solutionsdoexistinare-strictivesetofcases,includingtheKalmanfilterandgrid-basedfiltersdescribedinthenextsection.Wealsodescribehow,whentheanalyticsolutionisintractable,extendedKalmanfilters,ap-proximategrid-basedfilters,andparticlefiltersapproximatetheoptimalBayesiansolution.III.OA.KalmanFilterTheKalmanfilterassumesthattheposteriordensityateverytimestepisGaussianand,hence,parameterizedbyameanandcovariance. isGaussian,itcanbeprovedthat isalsoGaussian,providedthatcertainassumptionshold[21]: and aredrawnfromGaussiandistributionsofknownparameters. isknownandisalinearfunctionof and .• isaknownlinearfunctionof and Thatis,(1)and(2)canberewrittenas (6) (7) and areknownmatricesdefiningthelinearfunctions.Thecovariancesof and are,respectively, and .Here,weconsiderthecasewhen and havezeromeanandarestatisticallyindependent.Notethatthesystemandmeasurementmatrices and ,aswellasnoiseparameters and ,areallowedtobetimevariant.TheKalmanfilteralgorithm,whichwasderivedusing(3)and(4),canthenbeviewedasthefollowingrecursiverelationship: (8) (9) Forclarity,theoptimalBayesiansolutionsolvestheproblemofrecursivelycalculatingtheexactposteriordensity.Anoptimalalgorithmisamethodfordeducingthissolution. IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002 (11) (12) (13) andwhere isaGaussiandensitywithargument ,mean ,andcovariance ,and (15) arethecovarianceoftheinnovationterm ,andtheKalmangain,respectively.Intheaboveequations,thetrans-poseofamatrix isdenotedby Thisistheoptimalsolutiontothetrackingproblem—ifthe(highlyrestrictive)assumptionshold.TheimplicationisthatnoalgorithmcaneverdobetterthanaKalmanfilterinthislinearGaussianenvironment.Itshouldbenotedthatitispossibletoderivethesameresultsusingaleastsquares(LS)argument[22].Allthedistributionsarethendescribedbytheirmeansandco-variances,andthealgorithmremainsunaltered,butarenotcon-strainedtobeGaussian.Assumingthemeansandcovariancestobeunbiasedandconsistent,thefilterthenoptimallyderivesthemeanandcovarianceoftheposterior.However,thisposte-riorisnotnecessarilyGaussian,andtherefore,ifoptimalityistheabilityofanalgorithmtocalculatetheposterior,thefilteristhennotcertaintobeoptimal.Similarly,ifsmoothedestimatesofthestatesarerequired,thatis,estimatesof ,where thentheKalmansmootheristheoptimalestimatorof Thisholdsif isfixed(fixed-lagsmoothing,ifabatchofdataareconsideredand fixed-intervalsmoothing),orifthestateataparticulartimeisofinterest isfixed(fixed-point).Theproblemofcalculatingsmootheddensitiesisofinterestbecausethedensitiesattime arethenconditionalnotonlyonmeasurementsuptoandincludingtimeindex butalsoonfuturemeasurements.Sincethereismoreinformationonwhichtobasetheestimation,thesesmootheddensitiesaretypicallytighterthanthefiltereddensities.Althoughthisistrue,thereisanalgorithmicissuethatshouldbehighlightedhere.Itispossibletoformulateabackward-timeKalmanfilterthatrecursesthroughthedatasequencefromthefinaldatatothefirstandthencombinestheestimatesfromtheforwardandbackwardpassestoobtainoverallsmoothedes-timates[20].Adifferentformulationimplicitlycalculatesthebackward-timestateestimatesandcovariances,recursivelyesti-matingthesmoothedquantities[38].Bothtechniquesarepronetohavingtocalculatematrixinversesthatdonotnecessarilyexist.Instead,itispreferabletopropagatedifferentquantitiesusinganinformationfilterwhencarryingoutthebackward-timerecursion[4].,thentheproblemreducestotheestimationof jz ereduptothispoint.B.Grid-BasedMethodsGrid-basedmethodsprovidetheoptimalrecursionofthefil-tereddensity ifthestatespaceisdiscreteandconsistsofafinitenumberofstates.Supposethestatespaceattime consistsofdiscretestates , .Foreachstate ,lettheconditionalprobabilityofthatstate,givenmea-surementsuptotime bedenotedby ,thatis, .Then,theposteriorpdf canbewrittenas (17)where istheDiracdeltameasure.Substitutionof(17)into(3)and(4)yieldsthepredictionandupdateequations,respec-tively (18) (19)where (20) Theaboveassumesthat and areknownbutdoesnotconstraintheparticularformofthesediscretedensi-ties.Again,thisistheoptimalsolutioniftheassumptionsmadeIV.SInmanysituationsofinterest,theassumptionsmadeabovedonothold.TheKalmanfilterandgrid-basedmethodscannot,therefore,beusedasdescribed—approximationsarenecessary.Inthissection,weconsiderthreeapproximatenonlinearBayesianfilters:a)extendedKalmanfilter(EKF);b)approximategrid-basedmethods;c)particlefilters.A.ExtendedKalmanFilterIf(1)and(2)cannotberewrittenintheformof(6)and(7)becausethefunctionsarenonlinear,thenalocallinearizationoftheequationsmaybeasufficientdescriptionofthenonlinearity.TheEKFisbasedonthisapproximation. isapprox-imatedbyaGaussian (22) (23) (24) ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERS (25) (26) (27) andwherenow, and arenonlinearfunctions,and and arelocallinearizationsofthesenonlinearfunctions(i.e., (29) (30) (31) TheEKFasdescribedaboveutilizesthefirstterminaTaylorexpansionofthenonlinearfunction.AhigherorderEKFthatretainsfurthertermsintheTaylorexpansionexists,butthead-ditionalcomplexityhasprohibiteditswidespreaduse.Recently,theunscentedtransformhasbeenusedinanEKFframework[23],[42],[43].Theresultingfilter,whichisknownasthe“unscentedKalmanfilter,”considersasetofpointsthataredeterministicallyselectedfromtheGaussianapproximation .Thesepointsareallpropagatedthroughthetruenonlinearity,andtheparametersoftheGaussianapproximationarethenre-estimated.Forsomeproblems,thisfilterhasbeenshowntogivebetterperformancethanastandardEKFsinceitbetterapproximatesthenonlinearity;theparametersoftheGaussianapproximationareimproved.However,theEKFalwaysapproximates beGaussian.Ifthetruedensityisnon-Gaussian(e.g.,ifitisbimodalorheavilyskewed),thenaGaussiancanneverdescribeitwell.Insuchcases,approximategrid-basedfiltersandparticlefilterswillyieldanimprovementinperformanceincomparisontothatofanEKF[1].B.ApproximateGrid-BasedMethodsIfthestatespaceiscontinuousbutcanbedecomposedinto “cells,” : ,thenagrid-basedmethodcanbeusedtoapproximatetheposteriordensity.Specifically,supposetheapproximationtotheposteriorpdfat isgiven Then,thepredictionandupdateequationscanbewrittenas (34) (35)where (36) (37)Here, denotesthecenterofthe thcellattimeindex Theintegralsin(36)and(37)ariseduetothefactthatthegrid , ,representregionsofcontinuousstatespace,andthus,theprobabilitiesmustbeintegratedovertheseregions.Inpractice,tosimplifycomputation,afurtherapprox-imationismadeintheevaluationof .Specifically,theseweightsarecomputedatthecenterofthe“cell”corresponding (38) Thegridmustbesufficientlydensetogetagoodapproxi-mationtothecontinuousstatespace.Asthedimensionalityofthestatespaceincreases,thecomputationalcostoftheapproachthereforeincreasesdramatically.Ifthestatespaceisnotfiniteinextent,thenusingagrid-basedapproachnecessitatessometrun-cationofthestatespace.Anotherdisadvantageofgrid-basedmethodsisthatthestatespacemustbepredefinedand,there-fore,cannotbepartitionedunevenlytogivegreaterresolutioninhighprobabilitydensityregions,unlesspriorknowledgeisHiddenMarkovmodel(HMM)filters[30],[35],[36],[39]areanapplicationofsuchapproximategrid-basedmethodsinafixed-intervalsmoothingcontextandhavebeenusedexten-sivelyinspeechprocessing.InHMM-basedtracking,acommonapproachistousetheViterbialgorithm[18]tocalculatetheaposterioriestimateofthepaththroughthetrellis,thatis,thesequenceofdiscretestatesthatmaximizestheprob-abilityofthestatesequencegiventhedata.Anotherapproach,duetoBaum–Welch[35],istocalculatetheprobabilityofeachdiscretestateateachtimeepochgiventheentiredatasequence.V.PARTICLEILTERINGA.SequentialImportanceSampling(SIS)AlgorithmThesequentialimportancesampling(SIS)algorithmisaMonteCarlo(MC)methodthatformsthebasisformostsequentialMCfiltersdevelopedoverthepastdecades;see[13],TheViterbiandBaum–Welchalgorithmsarefrequentlyappliedwhenthestatespaceisapproximatedtobediscrete.Thealgorithmsareoptimalifandonlyiftheunderlyingstatespaceistrulydiscreteinnature. IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002[14].ThissequentialMC(SMC)approachisknownvariouslyasbootstrapfiltering[17],thecondensationalgorithm[29],particlefiltering[6],interactingparticleapproximations[10],[11],andsurvivalofthefittest[24].Itisatechniqueforimple-mentingarecursiveBayesianfilterbyMCsimulations.Thekeyideaistorepresenttherequiredposteriordensityfunctionbyasetofrandomsampleswithassociatedweightsandtocomputeestimatesbasedonthesesamplesandweights.Asthenumberofsamplesbecomesverylarge,thisMCcharacterizationbecomesanequivalentrepresentationtotheusualfunctionaldescriptionoftheposteriorpdf,andtheSISfilterapproachestheoptimalBayesianestimate.Inordertodevelopthedetailsofthealgorithm,let denotearandommeasurethatcharacterizestheposteriorpdf ,where , isasetofsupportpointswithassociatedweights , and , isthesetofallstatesuptotime .Theweightsarenormalizedsuchthat .Then,theposteriordensityat canbeapproximatedas Wethereforehaveadiscreteweightedapproximationtothetrueposterior, .Theweightsarechosenusingtheprincipleofimportancesampling[3],[12].Thisprinciplereliesonthefollowing.Suppose isaprobabilitydensityfromwhichitisdifficulttodrawsamplesbutforwhich beevaluated[aswellas uptoproportionality].Inaddition, , besamplesthatareeasilygener-atedfromaproposal calledanimportancedensity.Then,aweightedapproximationtothedensity isgivenby (41)where isthenormalizedweightofthe thparticle.Therefore,ifthesamples weredrawnfromanimpor-tancedensity ,thentheweightsin(40)aredefinedby(42)tobe Returningtothesequentialcase,ateachiteration,onecouldhavesamplesconstitutinganapproximationto andwanttoapproximate withanewsetofsamples.Iftheimportancedensityischosentofactorizesuchthat thenonecanobtainsamples byaugmentingeachoftheexistingsamples thenewstate , .Toderivetheweightupdateequation, isfirstexpressedintermsof , ,and .Notethat(4)canbederivedbyintegrating(45) (45) Bysubstituting(44)and(46)into(43),theweightupdateequationcanthenbeshowntobe Furthermore,if , , ,thentheimportancedensitybecomesonlydependenton and .Thisisparticularlyusefulinthecommoncasewhenonlyafilteredestimateof isrequiredateachtimestep.Fromthispointon,wewillassumesuchacase,exceptwhenexplicitlystatedotherwise.Insuchscenarios,only needbestored;therefore,onecandiscardthepath andhistoryofobservations .Themodifiedweightisthen andtheposteriorfiltereddensity canbeapproxi-matedas wheretheweightsaredefinedin(48).Itcanbeshownthatas ,theapproximation(49)approachesthetrueposterior TheSISalgorithmthusconsistsofrecursivepropagationoftheweightsandsupportpointsaseachmeasurementisreceivedsequentially.Apseudo-codedescriptionofthisalgorithmisgivenbyalgorithm1. Algorithm1:SISParticleFilter SIS FOR —Draw , —Assigntheparticleaweight, accordingto(48) ENDFOR 1)DegeneracyProblem:AcommonproblemwiththeSISparticlefilteristhedegeneracyphenomenon,whereafterafewiterations,allbutoneparticlewillhavenegligibleweight.Ithas ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERSbeenshown[12]thatthevarianceoftheimportanceweightscanonlyincreaseovertime,andthus,itisimpossibletoavoidthedegeneracyphenomenon.Thisdegeneracyimpliesthatalargecomputationaleffortisdevotedtoupdatingparticleswhosecon-tributiontotheapproximationto isalmostzero.Asuitablemeasureofdegeneracyofthealgorithmistheeffectivesamplesize introducedin[3]and[28]anddefinedas Var where , isreferredtoasthe“trueweight.”Thiscannotbeevaluatedexactly,butanestimate of canbeobtainedby (51)where isthenormalizedweightobtainedusing(47).Notice ,andsmall indicatesseveredegeneracy.Clearly,thedegeneracyproblemisanundesirableeffectinpar-ticlefilters.Thebruteforceapproachtoreducingitseffectistouseaverylarge .Thisisoftenimpractical;therefore,werelyontwoothermethods:a)goodchoiceofimportancedensityandb)useofresampling.Thesearedescribednext.2)GoodChoiceofImportanceDensity:Thefirstmethodin-volveschoosingtheimportancedensity tomin-imizeVar sothat ismaximized.Theoptimalimpor-tancedensityfunctionthatminimizesthevarianceofthetrue conditionedon and hasbeenshown[12]tobe Substitutionof(52)into(48)yields Thischoiceofimportancedensityisoptimalsinceforagiven , takesthesamevalue,whateversampleisdrawnfrom , .Hence,conditionalon ,Var Thisisthevarianceofthedifferent resultingfromdifferent Thisoptimalimportancedensitysuffersfromtwomajordrawbacks.Itrequirestheabilitytosamplefrom andtoevaluatetheintegraloverthenewstate.Inthegeneralcase,itmaynotbestraightforwardtodoeitherofthesethings.Therearetwocaseswhenuseoftheoptimalimportancedensityispossible.Thefirstcaseiswhen isamemberofafiniteset.Insuchcases,theintegralin(53)becomesasum,andsampling ispossible.Anexampleofanapplication isamemberofafinitesetisaJump–Markovlinearsystemfortrackingmaneuveringtargets[15],wherebythedis-cretemodalstate(definingthemaneuverindex)istrackedusingaparticlefilter,and(conditionedonthemaneuverindex)thecontinuousbasestateistrackedusingaKalmanfilter.Analyticevaluationispossibleforasecondclassofmodelsforwhich isGaussian[12],[9].Thiscanoccurifthedynamicsarenonlinearandthemeasurementslinear.Suchasystemisgivenby (54) (55)where (56) (57)and : isanonlinearfunction, isanobservationmatrix,and and aremutuallyindependenti.i.d.Gaussiansequenceswith and .Defining (58) oneobtains (60)and Formanyothermodels,suchanalyticevaluationsarenotpossible.However,itispossibletoconstructsuboptimalapproximationstotheoptimalimportancedensitybyusinglocallinearizationtechniques[12].SuchlinearizationsuseanimportancedensitythatisaGaussianapproximationto .AnotherapproachistoestimateaGaussianap-proximationto usingtheunscentedtransform[40].Theauthors’opinionisthattheadditionalcomputationalcostofusingsuchanimportancedensityisoftenmorethanoffsetbyareductioninthenumberofsamplesrequiredtoachieveacertainlevelofperformance.Finally,itisoftenconvenienttochoosetheimportanceden-sitytobetheprior Substitutionof(62)into(48)thenyields Thiswouldseemtobethemostcommonchoiceofimpor-tancedensitysinceitisintuitiveandsimpletoimplement.How-ever,thereareaplethoraofotherdensitiesthatcanbeused,andasillustratedbySectionVI,thechoiceisthecrucialdesignstepinthedesignofaparticlefilter.3)Resampling:Thesecondmethodbywhichtheeffectsofdegeneracycanbereducedistouseresamplingwheneverasig-nificantdegeneracyisobserved(i.e.,when fallsbelowsomethreshold ).Thebasicideaofresamplingistoelimi-nateparticlesthathavesmallweightsandtoconcentrateonpar-ticleswithlargeweights.Theresamplingstepinvolvesgener-atinganewset byresampling(withreplacement) timesfromanapproximatediscreterepresentationof givenby sothat .Theresultingsampleisinfactani.i.d.samplefromthediscretedensity(64);therefore,the IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002weightsarenowresetto .Itispossibletoimple-mentthisresamplingprocedurein operationsbysam- ordereduniformsusinganalgorithmbasedonorderstatistics[6],[37].Notethatotherefficient(intermsofreducedMCvariation)resamplingschemes,suchasstratifiedsamplingandresidualsampling[28],maybeappliedasalternativestothisalgorithm.Systematicresampling[25]istheschemepreferredbytheauthors[sinceitissimpletoimplement,takes time,andminimizestheMCvariation],anditsoperationisde-scribedinAlgorithm2,where istheuniformdistributionontheinterval (inclusiveofthelimits).Foreachresam-pledparticle ,thisresamplingalgorithmalsostorestheindexofitsparent,whichisdenotedby .Thismayappearunneces-saryhere(andis),butitprovesusefulinSectionV-B2.AgenericparticlefilteristhenasdescribedbyAlgorithm3.Althoughtheresamplingstepreducestheeffectsofthede-generacyproblem,itintroducesotherpracticalproblems.First,itlimitstheopportunitytoparallelizesincealltheparticlesmustbecombined.Second,theparticlesthathavehighweights arestatisticallyselectedmanytimes.Thisleadstoalossofdi-versityamongtheparticlesastheresultantsamplewillcontainmanyrepeatedpoints.Thisproblem,whichisknownasimpoverishment,issevereinthecaseofsmallprocessnoise.Infact,forthecaseofverysmallprocessnoise,allparticleswillcollapsetoasinglepointwithinafewiterations.sincethediversityofthepathsoftheparticlesisreduced,anysmoothedestimatesbasedontheparticles’pathsdegenerate.Schemesexisttocounteractthiseffect.Oneapproachconsidersthestatesfortheparticlestobepredeterminedbytheforwardfilterandthenobtainsthesmoothedestimatesbyrecalculatingtheparticles’weightsviaarecursionfromthefinaltothefirsttimestep[16].AnotherapproachistouseMCMC[5]. Algorithm2:ResamplingAlgorithm , RESAMPLE InitializetheCDF: FOR —ConstructCDF: ENDFOR StartatthebottomoftheCDF: Drawastartingpoint: FOR —MovealongtheCDF: —WHILE —ENDWHILE—Assignsample: —Assignweight: —Assignparent: ENDFOR Iftheprocessnoiseiszero,thenusingaparticlefilterisnotentirelyap-propriate.Particlefilteringisamethodwellsuitedtotheestimationofdynamicstates.Ifstaticstates,whichcanberegardedasparameters,needtobeestimatedthenalternativeapproachesarenecessary[7],[27].Sincetheparticlesactuallyrepresentpathsthroughthestatespace,bystoringthetrajectorytakenbyeachparticle,fixed-lagandfixed-pointsmoothedesti-matesofthestatecanbeobtained[4]. Algorithm3:GenericParticleFilter PF , FOR —Draw —Assigntheparticleaweight, accordingto(48) ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Calculate using(51) IF —Resampleusingalgorithm2: RESAMPLE ENDIF Therehavebeensomesystematictechniquesproposedrecentlytosolvetheproblemofsampleimpoverishment.Onesuchtechniqueistheresample-movealgorithm[19],whichisnotbedescribedindetailinthispaper.Althoughthistechniquedrawsconceptuallyonthesametechnologiesofimportancesampling-resamplingandMCMCsampling,itavoidssampleimpoverishment.Itdoesthisinarigorousmannerthatensurestheparticlesasymtoticallyapproximatesamplesfromtheposteriorand,therefore,isthemethodofchoiceoftheauthors.Analternativesolutiontothesameproblemisregularization[31],whichisdiscussedinSectionV-B3.Thisapproachisfrequentlyfoundtoimproveperformance,despitealessrigorousderivationandisincludedhereinpreferencetotheresample-movealgorithmsinceitsuseissowidespread.4)TechniquesforCircumventingtheUseofaSuboptimalIm-portanceDensity:Itisoftenthecasethatagoodimportancedensityisnotavailable.Forexample,iftheprior usedastheimportancedensityandisamuchbroaderdistribu-tionthanthelikelihood ,thenonlyafewparticleswillhaveahighweight.Methodsexistforencouragingtheparticlestobeintherightplace;theuseofbridgingdensities[8]andprogressivecorrection[33]bothintroduceintermediatedistri-butionsbetweenthepriorandlikelihood.Theparticlesarethenreweightedaccordingtotheseintermediatedistributionsandre-sampled.This“herds”theparticlesintotherightpartofthestateAnotherapproachknownaspartitionedsampling[29]isusefulifthelikelihoodisverypeakedbutcanbefactorizedintoanumberofbroaderdistributions.Typically,thisoccursbecauseeachofthepartitioneddistributionsarefunctionsofsome(notall)ofthestates.Bytreatingeachofthesepartitioneddistributionsinturnandresamplingonthebasisofeachsuchpartitioneddistribution,theparticlesareagainherdedtowardthepeakedlikelihood.B.OtherRelatedParticleFiltersThesequentialimportancesamplingalgorithmpresentedinSectionV-Aformsthebasisformostparticlefiltersthathave ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERSbeendevelopedsofar.ThevariousversionsofparticlefiltersproposedintheliteraturecanberegardedasspecialcasesofthisgeneralSISalgorithm.ThesespecialcasescanbederivedfromtheSISalgorithmbyanappropriatechoiceofimportancesamplingdensityand/ormodificationoftheresamplingstep.Below,wepresentthreeparticlefiltersproposedintheliteratureandshowhowthesemaybederivedfromtheSISalgorithm.Theparticlefiltersconsideredarei)samplingimportanceresampling(SIR)filter;ii)auxiliarysamplingimportanceresampling(ASIR)filter;iii)regularizedparticlefilter(RPF).1)SamplingImportanceResamplingFilter:TheSIRfilterproposedin[17]isanMCmethodthatcanbeappliedtorecur-siveBayesianfilteringproblems.TheassumptionsrequiredtousetheSIRfilterareveryweak.Thestatedynamicsandmea-surementfunctions and in(1)and(2),respec-tively,needtobeknown,anditisrequiredtobeabletosamplerealizationsfromtheprocessnoisedistributionof fromtheprior.Finally,thelikelihoodfunction tobeavailableforpointwiseevaluation(atleastuptopropor-tionality).TheSIRalgorithmcanbeeasilyderivedfromtheSISalgorithmbyanappropriatechoiceofi)theimportanceden-sity,where ischosentobethepriordensity ,andii)theresamplingstep,whichistobeappliedateverytimeindex.Theabovechoiceofimportancedensityimpliesthatweneedsamplesfrom .Asample canbegeneratedbyfirstgeneratingaprocessnoisesample andsetting , ,where isthepdfof .Forthisparticularchoiceofimportancedensity,itisevidentthattheweightsaregivenby However,notingthatresamplingisappliedateverytimeindex,wehave ;therefore Theweightsgivenbytheproportionalityin(66)arenormalizedbeforetheresamplingstage.AniterationofthealgorithmisthendescribedbyAlgorithm4.AstheimportancesamplingdensityfortheSIRfilterisinde-pendentofmeasurement ,thestatespaceisexploredwithoutanyknowledgeoftheobservations.Therefore,thisfiltercanbeinefficientandissensitivetooutliers.Furthermore,asresam-plingisappliedateveryiteration,thiscanresultinrapidlossofdiversityinparticles.However,theSIRmethoddoeshavetheadvantagethattheimportanceweightsareeasilyevaluatedandthattheimportancedensitycanbeeasilysampled. Algorithm4:SIRParticleFilter SIR FOR —Draw —Calculate ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Resampleusingalgorithm2: RESAMPLE , 2)AuxiliarySamplingImportanceResamplingFilter:ASIRfilterwasintroducedbyPittandShephard[34]asavariantofthestandardSIRfilter.ThisfiltercanbederivedfromtheSISframeworkbyintroducinganimportancedensity whichsamplesthepair ,where referstotheindexoftheparticleat ByapplyingBayes’rule,aproportionalitycanbederivedfor as TheASIRfilteroperatesbyobtainingasamplefromthejoint andthenomittingtheindices inthepair toproduceasample fromthemarginalized .Theimportancedensityusedtodrawthe isdefinedtosatisfytheproportionality (68)where issomecharacterizationof ,given .Thiscouldbethemean,inwhichcase, orasample .Bywriting anddefining itfollowsfrom(68)that Thesample isthenassignedaweightpropor-tionaltotheratiooftheright-handsideof(67)to(68) ThealgorithmthenbecomesthatdescribedbyAlgorithm5. Algorithm5:AuxiliaryParticleFilter APF FOR —Calculate —Calculate . ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Resampleusingalgorithm2: RESAMPLE FOR —Draw asintheSIRfilter.—Assignweight using(72) IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002 ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Althoughunnecessary,theoriginalASIRfilterasproposedin[34]consistedofonemorestep,namely,aresamplingstage,toproduceani.i.d.sample withequalweights.ComparedwiththeSIRfilter,theadvantageoftheASIRfilteristhatitnaturallygeneratespointsfromthesampleat which,conditionedonthecurrentmeasurement,aremostlikelytobeclosetothetruestate.ASIRcanbeviewedasresamplingattheprevioustimestep,basedonsomepointestimates thatcharacterize .Iftheprocessnoiseissmallsothat iswellcharacterizedby ,thenASIRisoftennotsosensitivetooutliersasSIR,andtheweights aremoreeven.However,iftheprocessnoiseislarge,asinglepointdoesnot well,andASIRresamplesbasedonapoorapproximationof .Insuchscenarios,theuseofASIRthendegradesperformance.3)RegularizedParticleFilter:RecallthatresamplingwassuggestedinSectionV-B1asamethodtoreducethedegen-eracyproblem,whichisprevalentinparticlefilters.However,itwaspointedoutthatresamplinginturnintroducedotherprob-lemsand,inparticular,theproblemoflossofdiversityamongtheparticles.Thisarisesduetothefactthatintheresamplingstage,samplesaredrawnfromadiscretedistributionratherthanacontinuousone.Ifthisproblemisnotaddressedproperly,itmayleadto“particlecollapse,”whichisaseverecaseofsampleimpoverishmentwhereall particlesoccupythesamepointinthestatespace,givingapoorrepresentationoftheposteriordensity.Amodifiedparticlefilterknownastheregularizedpar-ticlefilter(RPF)wasproposed[31]asapotentialsolutiontotheaboveproblem.TheRPFisidenticaltotheSIRfilter,exceptfortheresam-plingstage.TheRPFresamplesfromacontinuousapproxima-tionoftheposteriordensity ,whereastheSIRresam-plesfromthediscreteapproximation(64).Specifically,intheRPF,samplesaredrawnfromtheapproximation (73)where istherescaledKerneldensity , istheKernelband-width(ascalarparameter), isthedimensionofthestatevector ,and , arenormalizedweights.TheKerneldensityisasymmetricprobabilitydensityfunctionsuch TheKernel andbandwidth arechosentominimizethemeanintegratedsquareerror(MISE)betweenthetrueposteriordensityandthecorrespondingregularizedempiricalrepresenta-tionin(73),whichisdefinedas (75)where denotestheapproximationto givenbytheright-handsideof(73).Inthespecialcaseofallthesampleshavingthesameweight,theoptimalchoiceofthekernelistheEpanechnikovkernel[31] if otherwise(76)where isthevolumeoftheunithyperspherein .Fur-thermore,whentheunderlyingdensityisGaussianwithaunitcovariancematrix,theoptimalchoiceforthebandwidthis[31] (77) (78) Algorithm6:RegularizedParticleFilter RPF FOR —Draw —Assigntheparticleaweight, accordingto(48) ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Calculate using(51) IF —Calculatetheempiricalcovariance of , —Compute suchthat —Resampleusingalgorithm2: RESAMPLE , —FOR Draw fromtheEpanechnikov —ENDFOR ENDIF Alhoughtheresultsof(76)and(77)and(78)areoptimalonlyinthespecialcaseofequallyweightedparticlesandunderlyingGaussiandensity,theseresultscanstillbeusedinthegeneralcasetoobtainasuboptimalfilter.OneiterationoftheRPFisde-scribedbyAlgorithm6.TheRPFonlydiffersfromthegenericparticlefilterdescribedbyAlgorithm3asaresultoftheaddi-tionoftheregularizationstepswhenconductingtheresampling.NotealsothatthecalculationoftheempiricalcovariancematrixAsobservedbyoneoftheanonymousreviewers,itisworthnotingthattheuseoftheKernelapproximationbecomeincreasinglylessappropriateasthedimensionalityofthestateincreases. ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERSTABLEIABLEOFTHEECTIONSOFTHERTICLEIGURESTHATELATETOTHERMSEVVERAGED100MCR iscarriedoutpriortotheresamplingandisthereforeafunc-tionofboththe and .Thisisdonesincetheaccuracyofanyestimateofafunctionofthedistributioncanonlydecreaseasaresultoftheresampling.Ifquantitiessuchasthemeanandcovarianceofthesamplesaretobeoutput,thentheseshouldbecalculatedpriortoresampling.Byfollowingtheaboveprocedure,wegenerateani.i.d.randomsample drawnfrom(73).Intermsofcomplexity,theRPFiscomparablewithSIRsinceitonlyrequires additionalgenerationsfromthekernel ateachtimestep.TheRPFhasthetheoreticdisadvantagethatthesamplesarenolongerguaranteedtoasymtoticallyapprox-imatethosefromtheposterior.Inpracticalscenarios,theRPFperformanceisbetterthantheSIRincaseswheresampleim-poverishmentissevere,forexample,whentheprocessnoiseisVI.EHere,weconsiderthefollowingsetofequationsasanillus-trativeexample: (79) orequivalently (81) (82)where andwhere and arezeromeanGaussianrandomvariableswithvariances and ,respectively.Weuse and .Thisexamplehasbeenanalyzedbeforeinmanypublications[5],[17],[25].WeconsidertheperformanceofthealgorithmsdetailedinTableI.Inordertoqualitativelygaugeperformanceanddis-cussresultingissues,weconsideroneexemplarrun.Inordertoquantifyperformance,weusethetraditionalmeasureofper-formance:theRootMeanSquaredError(RMSE).Itshouldbenotedthatthismeasureofperformanceisnotexceptionallymeaningfulforthismultimodalproblem.However,ithasbeenusedextensivelyintheliteratureandisincludedhereforthatreasonandbecauseitfacilitatesquantitativecomparison.Forreference,thetruestatesfortheexemplarrunareshowninFig.1andthemeasurementsinFig.2. Fig.1.Figureofthetruevaluesofthestate asafunctionoffortheexemplarrun. Fig.2.Figureofthemeasurements ofthestates showninFig.1forthesameexemplarrun.Theapproximategrid-basedmethoduses50stateswithcen-tersequallyspacedon .Alltheparticlefiltershave50particlesandemployresamplingateverytimestep( Theauxiliaryparticlefilteruses .Theregu-larizedparticlefilterusesthekernelandbandwidthdescribedinSectionV-B3.Tovisualizethedensitiesinferredbytheapproximategrid-basedandparticlefilters,thetotalprobabilitymassatanytimeineachof50equallyspacedregionson isshownasimagesinFigs.5–9.Atanygiventime(andinanyverticalslicethroughtheimage),darkerregionsrepresenthigherprobabilitythanlighterregions.Agraduatedscalerelatingintensitytoprob-abilitymassinapixelisshownnexttoeachimage.A.EKFTheEKFslocallinearizationandGaussianapproxima-tionarenotasufficientdescriptionofthenonlinearandnon-Gaussiannatureoftheexample.OncetheEKFcannotadequatelyapproximatethebimodalnatureoftheunderlying IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002 Fig.3.EvolutionoftheEKFsmeanestimateofthestate. Fig.4.EvolutionoftheupperandlowerpositionsofthestateasestimatedbytheEKF(dotted)withthetruestatealsoshown(solid).posterior,theGaussianapproximationfails—theEKFispronetoeitherchoosingthe“wrong”modeorjustsittingontheaveragebetweenthemodes.Asaresultofthisinabilitytoadequatelyapproximatethedensity,thelinearizationapproxi-mationbecomespoor.ThiscanbeseenfromFig.3.Themeanofthefilterisrarelyclosetothetruestate.WerethedensitytobeGaussian,onewouldexpectthestatetobewithintwostandarddeviationsofthemeanapproximately95%ofthetime.FromFig.4,itisev-identthattherearetimeswhenthedistributionissufficientlybroadtocapturethetruestateinthisregionbutthattherearealsotimeswhenthefilterbecomeshighlyoverconfidentofabi-asedestimateofthestate.TheimplicationofthisisthatitisverydifficulttodetectinconsistentEKFerrorsautomaticallyonline.TheRMSEmeasureindicatesthattheEKFistheleastaccu-rateofthealgorithmsatapproximatingtheposterior.Theap-proximationsmadebytheEKFareinappropriateinthisex- Fig.5.Imagerepresentingevolutionofprobabilitydensityforapproximategrid-basedfilter.B.ApproximateGrid-BasedFilterThisexampleislowdimensional,andtherefore,onewouldexpectthatanapproximategrid-basedapproachwouldperformwell.Fig.5showsthisisindeedthecase.Thegrid-basedap-proximationisabletomodelthemultimodalityoftheproblem.Usingtheapproximategrid-basedfilterratherthananEKFyieldsamarkedreductioninRMSerrors.Aparticlefilterwith particlesconducts operationsperiteration,whereasanapproximategrid-basedfiltercarriesout operationswith cells.ItisthereforesurprisingthattheRMSerrorsfortheapproximategridarelargerthanthoseoftheparticlefilter.Theauthorssuspectthatthisisanartifactofthegridbeingfixed;theresolutionofthealgorithmispredefined,andthefixedposi-tionofthegridpointsmeansthatthegridpointsnear 25con-tributesignificantlytotheerrorwhenthetruestateisfarfromthesevalues.C.SIRParticleFilterUsingthepriordistributionastheimportancedensityisinsomesenseregardedasastandardSIRparticlefilterand,there-fore,isanappropriateparticlefilteralgorithmwithwhichtobegin.AscanbeseenfromFig.6,theSIRparticlefiltergivesdisappointingresultswiththelownumberofparticlesusedhere.Thespeckledappearanceofthefigureisaresultofsamplingalownumberofparticlesfromthe(broad)prior.Itisanartifactresultingfromtheinadequateamountofsampling.TheRMSEmetricshowsamarginalimprovementovertheapproximategrid-basedfilter.Toachievesmallererrors,onecouldsimplyincreasethenumberofparticles,buthere,wewillnowinvestigatetheeffectofusingthealternativeparticlefilteralgorithmsdescribeduptothispoint.D.AuxiliaryParticleFilterOnewaytoreduceerrorsmightbethattheproposedpar-ticlepositionsarechosenbadly.Onemightthereforethinkthatchoosingtheproposedparticlesinamoreintelligentmannerwouldyieldbetterresults.Anauxiliaryparticlefilterwouldthen ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERS Fig.6.ImagerepresentingevolutionofprobabilitydensityforSIRparticlefilter. Fig.7.Imagerepresentingevolutionofprobabilitydensityforauxiliaryparticlefilter.seemtobeanappropriatecandidatereplacementalgorithmforSIR.Here,wehave asasamplefrom AsshownbyFig.7,forthisexample,theauxiliaryparticlefilterperformswell.ThereisarguablylessspeckleinFig.7thaninFig.6,andtheprobabilitymassappearstobebetterconcentratedaroundthetruestate.However,onemightthinkthisproblemisnotverywellsuitedtoanauxiliaryparticlefiltersincethepriorisoftenmuchbroaderthanthelikelihood.Whenthepriorisbroad,thoseparticleswithanoiserealizationthathappenstohaveahighlikelihoodareresampledmanytimes.ThereisnoguaranteethatothersamplesfromthepriorwillalsolieinthesameregionofthestatespacesinceonlyasinglepointisbeingusedtocharacterizethefiltereddensityforeachTheRMSerrorsareslightlyreducedfromthoseforSIR. Fig.8.Imagerepresentingevolutionofprobabilitydensityforregularizedparticlefilter.E.RegularizedParticleFilterUsingtheregularizedparticlefilterresultsinasmoothingoftheapproximationtotheposterior.ThisisapparentfromFig.8.Thespeckleisreducedandthepeaksbroadenedwhencomparedwiththepreviousparticlefilters’images.TheregularizedparticlefiltergivesverysimilarRMSerrorstotheSIRparticlefilter.Theregularizationdoesnotresultinasignificantreductioninerrorsforthisdataset.F.“Likelihood”ParticleFilterAlltheaforementionedparticlefilterssharethepriorasapro-posaldensity.Forthisexample,muchofthetime,thelikelihoodisfartighterthantheprior.Asaresult,theposterioriscloserinsimilaritytothelikelihoodthantotheprior.Theimportancedensityisanapproximationtotheposterior.Therefore,usingabetterapproximationbasedonthelikelihood,ratherthantheprior,canbeexpectedtoimproveperformance.Fig.9showsthattheuseofsuchanimportancedensity(seetheAppendixfordetails)yieldsareductioninspeckleandthatthepeaksofthedensityarecloseronaveragetothetruestatethanforanyoftheotherparticlefilters.TheRMSerrorsaresimilartothosefortheAuxiliaryparticlefilter.G.CrucialStepintheApplicationofaParticleFilterTheRMSerrorsindicatethatinhighlynonlinearenviron-ments,anonlinearfiltersuchasanapproximategrid-basedfilterorparticlefilteroffersanimprovementinperformanceoveranEKF.Thisimprovementresultsfromapproximatingthedensityratherthanthemodels.Whenusingaparticlefilter,onecanoftenexpectandfre-quentlyachieveanimprovementinperformancebyusingfarmoreparticlesoralternativelybyemployingregularizationorusinganauxiliaryparticlefilter.Forthisexample,aslightim-provementinRMSerrorsispossiblebyusinganimportancedensityotherthan .Theauthorsassertthatanim-portancedensitytunedtoaparticularproblemwillyieldanap-propriatetradeoffbetweenthenumberofparticlesandthecom- IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002 Fig.9.Imagerepresentingevolutionofprobabilitydensityfor“likelihood”particlefilter.putationalexpensenecessaryforeachparticle,givingthebestqualitativeperformancewithaffordablecomputationaleffort.Thecrucialpointtoconveyisthatalltherefinementsoftheparticlefilterassumethatthechoiceofimportancedensityhasalreadybeenmade.Choosingtheimportancedensitytobewellsuitedtoagivenapplicationrequirescarefulthought.Thechoicemadeiscrucial.VII.CForaparticularproblem,iftheassumptionsoftheKalmanfilterorgrid-basedfiltershold,thennootheralgorithmcanout-performthem.However,inavarietyofrealscenarios,theas-sumptionsdonothold,andapproximatetechniquesmustbeem-ployed.TheEKFapproximatesthemodelsusedforthedynamicsandmeasurementprocessinordertobeabletoapproximatetheprobabilitydensitybyaGaussian.Approximategrid-basedfil-tersapproximatethecontinuousstatespaceasasetofdiscreteregions.Thisnecessitatesthepredefinitionoftheseregionsandbecomesprohibitivelycomputationallyexpensivewhendealingwithhigh-dimensionalstatespaces[3].Particlefilteringapprox-imatesthedensitydirectlyasafinitenumberofsamples.Anumberofdifferenttypesofparticlefilterexist,andsomehavebeenshowntooutperformotherswhenusedforparticularap-plications.However,whendesigningaparticlefilterforapar-ticularapplication,itisthechoiceofimportancedensitythatisMPORTANCEENSITYFORARTICLEILTERThisAppendixdescribestheimportancedensityforthe“like-lihood”particlefilter,whichisintendedtoillustratethecrucialnatureofthechoiceofimportancedensityinaparticlefilter.Thisimportancedensityisnotintendedtobegenericallyappli-cablebuttobeonechosentoworkwellforthespecificproblemandparametersdescribedinSectionVI.Tokeepthenotationsimple,throughoutthisAppendix, .Forauniformprioron ,thedensity canbewrittenbyBayes’ruleas Wecanthensample [samples arerepeat-edlydrawnfrom untiloneisdrawnsuch ,i.e.,onesuchthat ].Then, canbechosentobeapairofdeltafunctions Thiscanthenbeusedtoforma“Likelihood”basedimpor-tancedensitythatsamples conditionalon andindepen-dentlyfrom Theweightofthesamplecanbecalculatedaccordingto(47) (87) (88) Now, , and areconstant;there-fore,theydisappear,leaving Now,theratioof to needscarefulconsid-eration.Althoughthevaluesof and beinitiallythoughttobeproportional,theyareprobabilityden-sitiesdefinedwithrespecttoadifferentmeasure(i.e.,adif-ferentparameterizationofthespace).Since integratestounityover while integratestounityover theratiooftheprobabilitydensitiesisthenproportionaltotheinverseoftheratioofthelengths, and .Theratioof to isthedeterminantoftheJacobianofthetransformationfrom to Anexpressionfortheweightisthenforthcoming: TheparticlefilterthatresultsfromthissamplingprocedureisgiveninAlgorithm7.Therefore,ratherthandrawsamplesfromthestateevolu-tiondistributionandthenweightthemaccordingtotheirlikeli-hood,samplesaredrawnfromthelikelihoodandthenassignedweightsonthebasisofthestateevolutiondistribution. ARULAMPALAMetal.:TUTORIALONPARTICLEFILTERS Algorithm7:“Likelihood”ParticleFilter LPF FOR —REPEAT Draw —UNTIL —IF —ELSE —ENDIF ENDFOR Calculatetotalweight: SUM FOR —Normalize: ENDFOR Calculate using(51) IF —Resampleusingalgorithm2: RESAMPLE ENDIF CKNOWLEDGMENTTheauthorswouldliketothanktheanonymousreviewersandtheeditorsofthisSpecialIssuefortheirmanyhelpfulsug-gestions,whichhavegreatlyimprovedthepresentationofthispaper.Theauthorswouldalsoliketothankvariousfundingsourceswhohavecontributedtothisresearch.N.GordonwouldliketothankQinetiQLtd.[1]S.ArulampalamandB.Ristic,“ComparisonoftheparticlefilterwithrangeparameterizedandmodifiedpolarEKF’sforangle-onlytracking,”Proc.SPIE,vol.4048,pp.288–299,2000.[2]Y.Bar-ShalomandX.R.Li,Multitarget–MultisensorTracking:Princi-plesandTechniques.Urbana,IL:YBS,1995.[3]N.Bergman,“RecursiveBayesianestimation:Navigationandtrackingapplications,”Ph.D.dissertation,LinköpingUniv.,Linköping,Sweden,[4]N.Bergman,A.Doucet,andN.Gordon,“OptimalestimationandCramer–Raoboundsforpartialnon-Gaussianstatespacemodels,”Inst.Statist.Math.,vol.53,no.1,pp.97–112,2001.[5]B.P.Carlin,N.G.Polson,andD.S.Stoffer,“AMonteCarloapproachtononnormalandnonlinearstate-spacemodeling,”J.Amer.Statist.Assoc.vol.87,no.418,pp.493–500,1992.[6]J.Carpenter,P.Clifford,andP.Fearnhead,“Improvedparticlefilterfornonlinearproblems,”Proc.Inst.Elect.Eng.,Radar,Sonar,Navig.,1999.[7]T.Clapp,“Statisticalmethodsfortheprocessingofcommunicationsdata,”Ph.D.dissertation,Dept.Eng.,Univ.Cambridge,Cambridge,U.K.,2000.[8]T.ClappandS.Godsill,“ImprovementstrategiesforMonteCarlopar-ticlefilters,”inSequentialMonteCarloMethodsinPractice,A.Doucet,J.F.G.deFreitas,andN.J.Gordon,Eds.NewYork:Springer-Verlag,[9]P.DelMoral,“Measurevaluedprocessesandinteractingparticlesys-tems.Applicationtononlinearfilteringproblems,”Ann.Appl.Probab.vol.8,no.2,pp.438–495,1998.[10]D.Crisan,P.DelMoral,andT.J.Lyons,“Non-linearfilteringusingbranchingandinteractingparticlesystems,”MarkovProcessesRelatedFields,vol.5,no.3,pp.293–319,1999.[11]P.DelMoral,“Non-linearfiltering:Interactingparticlesolution,”MarkovProcessesRelatedFields,vol.2,no.4,pp.555–580.[12]A.Doucet,“OnsequentialMonteCarlomethodsforBayesianfiltering,”Dept.Eng.,Univ.Cambridge,UK,Tech.Rep.,1998.[13]A.Doucet,J.F.G.deFreitas,andN.J.Gordon,“AnintroductiontosequentialMonteCarlomethods,”inSequentialMonteCarloMethodsinPractice,A.Doucet,J.F.G.deFreitas,andN.J.Gordon,Eds.NewYork:Springer-Verlag,2001.[14]A.Doucet,S.Godsill,andC.Andrieu,“OnsequentialMonteCarlosam-plingmethodsforBayesianfiltering,”Statist.Comput.,vol.10,no.3,pp.[15]A.Doucet,N.Gordon,andV.Krishnamurthy,“ParticlefiltersforstateestimationofjumpMarkovlinearsystems,”IEEETrans.SignalPro-,vol.49,pp.613–624,Mar.2001.[16]S.Godsill,A.Doucet,andM.West,“MethodologyforMonteCarlosmoothingwithapplicationtotime-varyingautoregressions,”inProc.Int.Symp.FrontiersTimeSeriesModeling,2000.[17]N.Gordon,D.Salmond,andA.F.M.Smith,“Novelapproachtonon-linearandnon-GaussianBayesianstateestimation,”Proc.Inst.Elect.Eng.,F,vol.140,pp.107–113,1993.[18]G.D.Forney,“TheViterbialgorithm,”Proc.IEEE,vol.61,pp.268–278,Mar.1973.[19]W.R.GilksandC.Berzuini,“Followingamovingtarget—MonteCarloinferencefordynamicBayesianmodels,”J.R.Statist.Soc.B,vol.63,pp.127–146,2001.[20]R.E.Helmick,D.Blair,andS.A.Hoffman,“Fixed-intervalsmoothingforMarkovianswitchingsystems,”IEEETrans.Inform.Theory,vol.41,pp.1845–1855,Nov.1995.[21]Y.C.HoandR.C.K.Lee,“ABayesianapproachtoproblemsinsto-chasticestimationandcontrol,”IEEETrans.Automat.Contr.,vol.AC-9,pp.333–339,1964.[22]A.H.Jazwinski,StochasticProcessesandFilteringTheory.NewYork:Academic,1970.[23]S.Julier,“Askewedapproachtofiltering,”Proc.SPIE,vol.3373,pp.271–282,1998.[24]K.Kanazawa,D.Koller,andS.J.Russell,“Stochasticsimulational-gorithmsfordynamicprobabilisticnetworks,”inProc.EleventhAnnu.Conf.UncertaintyAI,1995,pp.346–351.[25]G.Kitagawa,“MonteCarlofilterandsmootherfornon-Gaussiannon-linearstatespacemodels,”J.Comput.Graph.Statist.,vol.5,no.1,pp.1–25,1996.[26]G.KitagawaandW.Gersch,SmoothnessPriorsAnalysisofTimeSe-.NewYork:Springer-Verlag,1996.[27]J.LiuandM.West,“Combinedparameterandstateestimationinsim-ulation-basedfiltering,”inSequentialMonteCarloMethodsinPrac-,A.Doucet,J.F.G.deFreitas,andN.J.Gordon,Eds.NewYork:Springer-Verlag,2001.[28]J.S.LiuandR.Chen,“SequentialMonteCarlomethodsfordynamicalJ.Amer.Statist.Assoc.,vol.93,pp.1032–1044,1998.[29]J.MacCormickandA.Blake,“Aprobabilisticexclusionprinciplefortrackingmultipleobjects,”inProc.Int.Conf.Comput.Vision,1999,pp.[30]F.MartinerieandP.Forster,“DataassociationandtrackingusinghiddenMarkovmodelsanddynamicprogramming,”inProc.Conf.ICASSP[31]C.Musso,N.Oudjane,andF.LeGland,“Improvingregularisedparticlefilters,”inSequentialMonteCarloMethodsinPractice,A.Doucet,J.F.G.deFreitas,andN.J.Gordon,Eds.NewYork:Springer-Verlag,[32]M.OrtonandA.Marrs,“Particlefiltersfortrackingwithout-of-se-quencemeasurements,”IEEETrans.Aerosp.Electron.Syst.,submittedforpublication.[33]N.OudjaneandC.Musso,“Progressivecorrectionforregularizedpar-ticlefilters,”inProc.3rdInt.Conf.Inform.Fusion,2000.[34]M.PittandN.Shephard,“Filteringviasimulation:Auxiliaryparticlefilters,”J.Amer.Statist.Assoc.,vol.94,no.446,pp.590–599,1999.[35]L.R.Rabiner,“AtutorialonhiddenMarkovmodelsandselectedappli-cationsinspeechrecognition,”Proc.IEEE,vol.77,no.2,pp.257–285,Feb.1989.[36]L.R.RabinerandB.H.Juang,“AnintroductiontohiddenMarkovIEEEAcoust.,Speech,SignalProcessingMag.,pp.4–16,Jan.[37]B.Ripley,StochasticSimulation.NewYork:Wiley,1987.[38]R.H.ShumwayandD.S.Stoffer,“AnapproachtotimeseriessmoothingandforecastingusingtheEMalgorithm,”J.TimeSeriesAnal.,vol.3,no.4,pp.253–264,1982.[39]R.L.StreitandR.F.Barrett,“FrequencylinetrackingusinghiddenMarkovmodels,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.38,pp.586–598,Apr.1990. IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002[40]R.vanderMerwe,A.Doucet,J.F.G.deFreitas,andE.Wan,“Theunscentedparticlefilter,”Adv.NeuralInform.Process.Syst.,Dec.2000.[41]M.WestandJ.Harrison,“Bayesianforecastinganddynamicmodels,”SpringerSeriesinStatistics,2nded.NewYork:Springer-Verlag,[42]E.A.WanandR.VanderMerwe,“TheunscentedKalmanfilterfornonlinearestimation,”inProc.Symp.AdaptiveSyst.SignalProcess.,Commun.Contr.,LakeLouise,AB,Canada,Oct.2000. ,“TheunscentedKalmanfilter,”inKalmanFilteringandNeuralNetworks.NewYork:Wiley,2001,ch.7,tobepublished. M.SanjeevArulampalamreceivedtheB.Sc.degreeinmathematicalsciencesandtheB.E.degreewithfirst-classhonorsinelectricalandelectronicengineeringfromtheUniversityofAdelaide,Adelaide,Australia,in1991and1992,respectively.In1993,hewonaTelstraPostgraduateFellowshipawardandreceivedthePh.D.degreeinelectricalandelectronicengineeringattheUniversityofMelbourne,Parkville,Australia,in1997.Hisdoctoraldissertationwas“PerformanceanalysisofhiddenMarkovmodelbasedtrackingalgorithms.”In1992,hejoinedthestaffofComputerSciencesofAustralia(CSA),whereheworkedasaSoftwareEngineerintheSafetyCriticalSoftwareSystemsGroup.In1998,hejoinedtheDefenceScienceandTechnologyOrganization(DSTO),Canberra,Australia,asaResearchScientistintheSurveillanceSystemsDivision,wherehecarriedoutresearchinmanyaspectsofairbornetargettrackingwithaparticularemphasisontrackinginthepresenceofdeceptionjamming.Hisresearchinterestsincludeestimationtheory,targettracking,andsequentialMonteCarlomethods.Dr.ArulampalamwontheAnglo–Australianpostdoctoralfellowship,awardedbytheRoyalAcademyofEngineering,London,in1998. SimonMaskellreceivedtheB.A.degreeinengi-neeringandtheM.Eng.degreeinelectronicandinformationsciencesfromCambridgeUniversityEngineeringDepartment(CUED),Cambridge,U.K.,bothin1999.HecurrentlypursuingthePh.D.degreeatCUED.HeiswiththePatternandInformationProcessingGroup,QinetiQLtd.,Malvern,U.K.HisresearchinterestedincludeBayesianinference,signalprocessing,tracking,anddatafusion,withparticularemphasisontheapplicationofparticlefilters.Mr.MaskellwasawardedaRoyalCommissionfortheExhibitionof1851IndustrialFellowshipin2001. NeilGordonreceivedtheB.Sc.degreeinmath-ematicsandphysicsfromNottinghamUniversity,Nottingham,U.K.,in1988andthePh.D.degreeinstatisticsfromImperialCollege,UniversityofLondon,London,U.K.,in1993.HeiscurrentlywiththePatternandInformationProcessingGroup,QinetiQLtd.,Malvern,U.K.HisresearchinterestsincludeBayesianestimationandsequentialMonteCarlomethods(a.k.a.particlefilters)withaparticularemphasisontargettrackingandmissileguidance.Hehasco-edited,withA.DoucetandJ.F.G.deFreitas,SequentialMonteCarloMethodsinPractice(NewYork:Springer-Verlag). TimClappreceivedtheB.A.,M.Eng.,andPh.D.de-greesfromtheSignalProcessingandCommunica-tionsGroup,CambridgeUniversityEngineeringDe-partment,Cambridge,U.K.Hisresearchinterestsincludeblindequalization,MarkovchainMonteCarlotechniques,andparticlefilters.Heiscurrentlyinvolvedwithtelecommuni-cationssatellitesystemdesignforthePayloadPro-cessorGroup,AstriumLtd.,Stevenage,U.K. IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002ATutorialonParticleFiltersforOnlineNonlinear/Non-GaussianBayesianTrackingM.SanjeevArulampalam,SimonMaskell,NeilGordon,andTimClappIncreasingly,formanyapplicationareas,itisbecomingimportanttoincludeelementsofnonlinearityandnon-Gaussianityinordertomodelaccuratelytheunderlyingdynamicsofaphysicalsystem.Moreover,itistypicallycrucialtoprocessdataon-lineasitarrives,bothfromthepointofviewofstoragecostsaswellasforrapidadaptationtochangingsignalcharacteristics.Inthispaper,wereviewbothoptimalandsuboptimalBayesianalgorithmsfornonlinear/non-Gaussian