/
Mining Advertiserspecic User Behavior Using Adfactors Nikolay Archak New York University Mining Advertiserspecic User Behavior Using Adfactors Nikolay Archak New York University

Mining Advertiserspecic User Behavior Using Adfactors Nikolay Archak New York University - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
495 views
Uploaded On 2015-01-29

Mining Advertiserspecic User Behavior Using Adfactors Nikolay Archak New York University - PPT Presentation

Stern School of Business 44 West 4th Street Suite 8185 New York NY 10012 narchaksternnyuedu Vahab S Mirrokni Google Research 76 9th Ave New York NY 10011 mirroknigooglecom S Muthukrishnan Google Research 76 9th Ave New York NY 10011 muthugooglecom A ID: 34752

Stern School Business

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Mining Advertiserspecic User Behavior Us..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

theonlinesalesaftertheinitialexposuretoanonlinead,aswellasliftinotherimportantonlinebehaviors,suchasthebrandsitevisitationandthetrademarksearches.Theadvertisersseektounderstandtheimpactoftheiradnotjustontheimmediateclickorconversion,butthelikelihoodoftheeventualconversioninthelongtermandotherlongterme ects.Userstakespeci ctrajectoriesintermsofthesearchqueriestheyposeandthewebsitestheybrowse,andthisa ectsthesequenceofadstheysee;con-versely,thesequenceofadstheyseea ectstheirsearchandbrowsingbehavior.Thisinterdependenceresultsinstruc-turalpatternsinusers'behavior;advertisersneednewtoolsandconceptsbeyondsimpleaggregates(liketheCTRandtheCR)tounderstandthem.Whatarethesystematicwaystohelptheadvertisersrea-sonaboutstructuralcorrelationsinthedata?Inthispaper,wetakeanadvertiser-centricdataminingapproach.Westartwithdatathatisdirectlypertinenttotheadvertiser'scampaign,thatis,usertrajectoriesthatinvolvedadsfromthecampaignofthatadvertiser,includingadimpressions,clicksandconversions.Suchdatacanusuallybereportedtotheadvertiser,provideditisaggregatedandanonymizedappropriately.Next,webuildadataminingframeworkthatcanhelpadvertisersidentifystructuralpatternsinthisdata.Ourcontributionsareasfollows.Weproposeagraphicalmodelbasedapproach.Weformulategraphsfromthedatacalledadgraphstocap-tureco-occurrencesofeventsadjacenttoeachotherinusers'trajectories.Then,weintroduceavarietyofad-factors,whereeveryadfactorisascoringrulefornodesintheadgraph:thesearedesignedtocaptureimpactofadnodesoneventualconversion.Forexample,weintroduceadfactorsbasedonrandomwalks,that,foreveryevent,calculatethelongtermprobabilitythatacertainrandomwalkinvolvingthateventwouldeven-tuallyleadtoconversion.Ourpaperpresentshighlyef- cientalgorithmsforconstructingadgraphsandcom-putingalladfactorsweintroduce.AllalgorithmswereimplementedusingMapReduce[11]parallelprogram-mingmodel.Usingdatafromthesponsoredsearchcampaignsofeightdi erentadvertisers,westudyvariousadgraphsandadfactors.Wevalidatetheadgraphmodelsbyshowingtheirstatistical ttothedata.Also,weshowinterestingempiricalpropertiesoftheadfactorsthatprovideinsightsintouserbehaviorwithrespecttobrandvsnon-brandads.Moreover,weshowvariousnaturaldataminingqueriesonadgraphsandadfactorsthatmaybeofindependentinteresttoadvertisers.Finally,usingadfactors,weshowhowtoecientlyprunetheadgraphtolocalizeanddepictthein uenceofanypar-ticularadbyitssmallneighborhoodintheadgraph.Ourapproachworksbytransformingthedatasetofusers'trajectoriesintographs.Thisisachievedbypoolingdatafromdi erentusers.Asaresult,adgraphsloseinformationaboutspeci cusersortheirtrajectories,andonlyencodeaggregateinformation.Also,becauseofthewayadgraphspooldataonlybasedonadjacentevents,theyencodecertainindependenceassumptionaboutuserbehavioroverpathsofmultipleedges.Wecarefullystudystatistical tofadgraphmodelstothedatatoensurethatthisassumptionisreason-able.Poolingthiswayalsoresultsinsigni cantcompression.Forlargeadvertisersinsponsoredsearch,thenumberofdif-ferentqueriestheadvertisercanbematchedwithisoftenintensofthousands,andthenumberofviewinguserscanbeinmillions.Incontrast,adgraphshavemoremanageablesizes.Ourapproachgeneralizestodi erentsettings.Whileinthispaperweapplyittostudyuserconversionsinthespon-soredsearchdata,itcanequallybeusedtostudytrajectoriesinsponsoredsearchthatleadtoclicksonly,orconversionswhenbothsponsoredsearchandcontent-baseddisplayaddataisavailable,etc.2.RELATEDWORKThereareempiricalstudiesshowingthatthesponsoredsearchadvertising,aswellasthedisplayadvertising,canhaveasigni cantnumberoftheindirecte ectssuchasbuildingthebrandawarenessandliftinthecross-channelconversions[18,20].Thepriorresearchattemptedtomea-sureimpactofanadontheuserconversionbythenumberofindependentpathsfromtheadtotheconversionevent[5].Ourworkhereisasubstantialgeneralizationofthepriorresearch,asweapplymoreadvancedPageRank-basedmea-suresforanalyzingpathwaystotheuserconversionand,moreimportantly,introduceagenericadgraph/adfactorbasedframeworkforreasoningaboutthestructuralpropertiesoftheusers'behaviors.Miningpatternsintheuserbehaviorisnotanovelidea.Marketbasketanalysisusingassociationrulemining[2]isapopulartoolusedbyretailerstodiscoveractionablebusinessintelligencefromuserleveltransactiondata.Userbehaviordatahasnumerousapplications,including,butnotlimitedto,improvingthewebsearchranking[1],frauddetection[12]andpersonalizationoftheusersearchexperience[25].Inthispaper,weminetheuserbehaviorfromtheperspectiveofanadvertiserrunningasponsoredsearchcampaign.Thereareseveralstandardminingtechniquesthatcanbeappliedtotheuser-leveladvertisingdatasuchasminingforthefrequentitemsets[2]orthefrequentepisodesinse-quencesofuseractions[22].However,thesedonotcapturethestructuralcorrelationsinthedatasuchastheimpactofmultiplepathsbetweeneventsthatourworkcaptures.Adif-ferentapproachthatattemptstocapturestructuralcorrela-tionsisminingthefrequentsubstructuresingraphdata[16].Duetodatapoolinginourgraphconstruction,patternsthatweidentifymayormaynothavehighsupport,becausesomepatternsmaycombinebehaviorofmultipleusers.Also,wearenotinterestedsimplyinfrequentpatternsbutinpatternsthatindicateahighlikelihoodofthedesignatedaction:userconversion.Further,ourapproachofusingthesteadystateprobabilitiesofdi erentrandomwalkstocapturestructuralcorrelationsdi ersfromthepriorgraphminingtechniques.Thisapproachiswidelyusedinotherareasincludingwebsearch[24,4],personalizedvideorecommendations[6]andusersignaturesincommunicationgraphs[9].Ourresearchiscloselyrelatedtotheproblemofmodelingusersearchsessions,forwhichawidenumberofsolutionshavebeenproposedintheliterature,includingadvancedla-tentstatemodelssuchasvl-HMM[7]andMarkovmodelsthattakeintoaccounttransitiontimebetweenuser'sac-tions[14].Weintentionallyrefrainedfromusingcomplexgenerativemodelsfortheunderlyingdataduetoseveralreasons.At rst,generativemodelsoftenrequireindivid-ualusersessionsfortraining,while,duetoprivacyreasons, 5.4VisitForcomparisonpurposes,wede nethevisitadfactorwhichrepresentstherandomwalk(norestart)visitprobabilityofanodefromthe\begin"node.Thisadfactorisnotrelatedtotheconversionnodebutsimplycapturesthelikelihoodoftheeventhappeninginauserconversionpath.Formally,theadfactorisde nedasarowvectorhit(b;)solvinghit(b;)=hit(b;)^M+eb:SimilartoPropositon1,onecanshowthatlim !0@ppr (b;) @ =hit(b;):5.5MarginalIncrease(Passthrough)WeintroducetheMI (j)adfactor,whichrepresentsthemarginalincreaseintheprobabilityofhittingconversionfromthe\begin"nodebifweincreasetheweightofalledgesoutgoingfromthenodejby",allocatedinproportiontothecurrentedgeweights.We rstcomputeMI (j)inthecon-textofPersonalizedPageRankwitharestartprobability .Let@ppr (b;c) @wjibethemarginalin uenceofanedgeweightwjionthePPRofthe\begin"nodefortheconversionnode.TheadfactorMI (j)canbeproxiedbythefollowingsum-mation(notethatsensitivitywithrespecttoeachoutgoingedgeisweightedproportionallytothecurrentedgeweight).MI (j)=Xiwji@ppr (b;c) @wji;We rstobservethat,inthesettingofrandomwalkswithrestart ,@ppr (b;c) @wijcanbecomputedbyusingthefollowingProposition:Proposition2.Themarginalin uenceofanedgeweightonthePPRofthesinkcwithrestartatthesourcenodebisgivenbyaproductofthePPRofthestartnodeoftheedge(i)withrestartatthesourcenodebandthePPRofthesinknodecwithrestartattheendnodeoftheedge(j):@ppr (b;c) @wij=1� ppr (b;i)ppr (j;c):Usingthisproposition,wederiveasimpleclosed-formfor-mulaforMI (j).Proposition3.Themarginale ectofincreasingtheweightoftheoutgoingedgesofanodej,MI (j),isequalto:MI (j)=ppr (b;j)ppr (j;c) :(1)Theproofsarelefttotheappendix.Anadvantageofthisclosed-formformulaisthatitletsusapplyfastalgorithmsforcomputingtheMI adfactor.Theabovepropositionalsoimpliesthat,as tendstozero,theMIadfactorcanbecomputedasfollows:Proposition4.Themarginale ectofincreasingtheweightoftheoutgoingedgesfromanodejonthehittingprobabilityofconversion,MI(j),isequalto:MI(j)=lim !0MI (j) =hit(b;j)hit(j;c):(2)Table3:Correlationmatrixforadfactors. =0:05 PPREv.Conv.LastAdVisitPass PPR1.00000.97330.7285-0.06570.1321 Ev.Conv.0.97331.00000.7064-0.06140.1370 LastAd0.72850.70641.0000-0.05420.0991 Visit-0.0657-0.0614-0.05421.00000.8006 Pass0.13210.13700.09910.80061.0000 TheaboveobservationimpliesthattheMIadfactoristhesameasthepassthroughadfactorwhichisthechangeinhit(b;c)ifweremovethenodejfromthegraphandredirectallincomingedgestothisnodetothe\null"node,orformally,Pass(i)=hit(b;i)hit(i;c):Wecallthecorrespondingadfactorthe\passthrough"orPassadfactor,sinceitcapturesthevalueofrandomwalkspassingthroughtheevaluatednode.5.6TheRemovalEffectInthispart,weintroducetheadfactorRE(i)foreachnodeiwhichisde nedasthechangeintheprobabilityofhittingconversionstartingfromthe\begin"nodebifwere-movenodeifromthegraph.Intuitively,thisadfactorcap-turesthechangeintheprobabilityofreachingconversionifweremoveanodei,ortheincomingedgesofnodei.Simi-lartotheMI adfactor,wede netheRE adfactorinthecontextofarandomwalkwithrestartprobability asRE (i)=Xjwji@ppr (b;c) @wji;UsingProposition2,wecanderiveasimilarclosed-formformulaforRE(i)whichisshowntobeequaltoPass(i).Proposition5.TheRE andREadfactorscanbecom-putedasfollows:RE (i)=ppr (b;i)ppr (i;c) :(3)RE(i)=lim !0RE (i) =hit(b;i)hit(i;c):(4)Theproofsarelefttotheappendix.ThePassadfactorisaproxyforbothMIandREadfactors,i.e.,MI(i)=RE(i)=Pass(i).Asaresult,weonlyreportempiricalresultsforthepassthrough(Pass)adfactor,andthiswillimplythesameresultsfortheMIandREadfactors.5.7EfcientAlgorithmsComputationaleciencyiscrucialforsuccessfulapplica-tionofanydataminingalgorithmtotherealworldadvertis-ingdata.Fortunately,alladfactorsintroducedintheprevi-ousSectioncanbeecientlycomputedonlargescalegraphsusingparallelmachines.ThekeyistheobservationthatthePageRankcontributionvectors(cprppr(;c))canbee-cientlycomputedusingalocalalgorithmwhichadaptivelyexaminesonlyasmallportionoftheinputgraphnearaspec-i edvertex[4].Wehaveimplementedthealgorithmof[4]inthedistributedcomputingenvironmentofMapReduce[11]usingthePregelframework[21].InthePregelframework,everynodeinthegraphcanperformitslocalcomputationandthenodesinteractwitheachotherbyaperiodicex-changeofmessages.Thecprcomputationcanbeachievedbyasimplelocalalgorithm(Algorithm1),inwhicheverynodehasstateconsistingoftwovariables:thecurrentlyac-cumulatedcprandtheresidualvalueobtainedfromother Figure3:ROCcurveforbrandpredictionforclicks(top)andimpressions(bottom) Figure4:ROCcurveforclickpredictionforbrandqueries(top)andnonbrandqueries(bottom)Figure4showsthatforbrandqueriestheLastAdadfac-torandthePPRadfactorareexcellentsignalsoftheclickattribute;fornon-brandqueriestheypredictwellforrecallofuptoapproximately0.6,afterwhichtheprecision-recallcurvebecomes at(untiltheeventualjumpto(1.0,1.0)).Thisweirdbehaviorcanbeattributedtothefactthat,inourdataset,weobserveanumberofraregeneric(non-brandspeci c)queries,forwhichclickontheaddoesnotleadtoanyconversion.Weemphasizethatsuchqueriesarerare,thereforeusingthePassadfactor ltersthemoutandthePassadfactorshowsexcellentpredictivepowerforthenon-brandqueriesinFigure4.Next,wecomparethePPRandtheLastAdadfactorsbyusingadi erencebetweentheadrankinbothmodelsasapredictorforbrand/non-brand,click/impressionand Figure5:ROCcurvefor(PPRrank-lastadrank)predictor Figure6:PPRbehaviorasafunctionofdistancetoconversion Figure7:ROCcurveforbrandpredictionbydi er-entmodelsbroad/exactattributes.ResultsinFigure5suggestthatthedi erenceisagoodpredictorofthebrandattribute;manualinspectionshowsthatthisisbecausethePPRad-factorranksbrandnodesevenhigherthantheLastAdad-factor.Ontheotherhand,theROCcurvesforclickandphrase(broad)/exactmatchpredictionareclosetodiagonalsuggestingthatthereisnosystematicdi erenceinrankingsofclicks/impressionsandbroad/exactmatchnodesbybothmethods.Next,weplotthePPRbehaviorasafunctionofthedis-tancetoconversioninFigure6.The gurewasconstructedusingthedatafromthe\BackwardMarkov"model,inwhicheveryuserqueryisrepresentedbymultiplenodesinthegraph,dependingonitsdistancefromtheconversionnode.Thus,foreveryqueryq,onecancalculatelog(ppr(qatdistanced;c))�log(ppr(qatdistance1;c))9:Figure6showsaverageoftheseresultsfordi erentgroups.NotethatforclicksthePPRvaluesatdistancetwoandmorefromconversionaresigni cantlysmallerthanthePPRval-uesatdistanceone,suggestingthatiftheuserclicksontheadanddoesnotconvertimmediately,thelikelihoodtocon-vertinthefuturegoesdown.Consistentwithourpriorob-servations,thePPRbehaviorforbrandandnon-brandclicksissimilar.Ontheotherhand,fornon-brandimpressionsthePPRgrows(oratleastdoesn'tdecrease)withdistancetoconversion,indicatingthatexposuretotheadvertiseradonnon-brandqueriescanhavealong-termpositivecorrelationwiththelikelihoodoftheusertoconvert.Forbrandim-pressions,thePPRdecreaseswithdistancetoconversion,althoughnotasstronglyasforclicks,againsuggestingthat,iftheusersearchesforabrandanddoesnotconvertsoonenough,thelikelihoodofconvertinginthefuturegoesdown.Finally,Figure7investigateshowdi erentgraphstruc-turesa ecttherelationshipbetweenthePPRadfactorandthebrandattributeofthenode.Weconsiderthreemodels:\SimpleMarkov",\BackwardMarkov"and\RSMarkov1". 9Thelogrepresentationwasprimarilychosentoreducesen-sitivitytooutliers. For\SimpleMarkov"modelwesimplyplottheROCcurveusingthePPRadfactorasapredictorforbrand.For\Back-wardMarkov"modelweusetheobservation(fromFigure6)thatthePPRofbrandnodesdecayswithdistancefromcon-versionwhilethePPRofnonbrandnodesgrowswithdis-tancefromconversion,thusweuse10Xd=2(log(ppr(qatdistanced;c))�log(ppr(qatdistance1;c)))asthepredictor.Forthe\RSMarkov1"model,wewouldexpectsimilarbehaviortoholdandthePPRofthebrandnodesinthe\search"state(beforetheuserclickedonanyads)tobelowerthanthatinthe\interested"state(aftertheuserclickedonsomead),whilethePPRofthenonbrandnodesinthe\interested"statetobehigherthanthatisthe\search"state;thus,weconstructthepredictoraslog(ppr(qinsearchstate;c))�log(ppr(qininterestedstate;c)):Figure7showsthatthe\RSMarkov1"modelhasthebestpredictivepowerforthebrandattribute,con rmingthein-tuitionthatuserclickshavedi erentvalueinbrandandnon-brandcontexts.7.DATAMININGTOOLSProducingintuitiveandconcisereportsfromhugeamountsofdataisthedesiredgoalforadvertisers.Inthissection,wediscussvariousdataminingtoolsthatcanbedevelopedusingouradfactorsde nedonthegraphmodelsintroducedinthepaper.Identifyingthetopkadswiththelargestadfactor.Thesimplesttypeofreportonecanthinkofisidentifyingthetopkadswiththelargestadfactorsinaparticulargraphmodel.Thevalueofsuchreportdependsontheparticularadfactorandtheunderlyinggraphmodelused.Forinstance,inSection6,weshowthatthePPRadfactor(inthe\SimpleMarkov"graph)hashighbutnotperfectcorrelationwiththebrandattributeoftheadimpression.IdentifyingthetopkimpressionswiththePPRadfactorcanthusbeinterpretedasidentifyingthetopkimpressions(userqueries)withthehighest\branding"impact:manyoftheseuserquerieswillinfacthavetheadvertisernameorthebrandnameinthem,butsomewillnotandthuscanbethoughtofas\shadowbrands".Duetoprivacyissues,wecannotshowanactualexampleofsuchoutput.AnotherinterestingexampleofthetopkoutputisthetopkimpressionsforthePassadfactor;theycanbethoughtofasthetopkuserqueriesassociatedwiththelargestrevenuetotheadvertiserifonetakesintoaccountthelong-termcorrelationsinthegraph.Interest-ingly,fromFigure3,weknowthattheseareuncorrelatedwiththebrandattribute.Identifyingadswithsigni cantlong-terme ectsnottakenintoaccountbytheLastAdmodel.AdvertiserstraditionallyrelyontheLastAdreports(click-throughandconversionrates)toevaluateade ectiveness.Analternativereportwesuggestwouldbetolookforadsthatarerankedhigherwithadfactorstakingintoaccountthelong-termcorrelations(likePPR)thanwiththeLastAdadfactor.Onesuchcriteriaforrankingisthedi erencebe-tweenthePPRadfactornoderankandtheLastAdadfactornoderank(propertiesofthiscriteriaareshowninFigure5).AnothercriteriaistolookforimpressionsthateitherhavethePPRgrowingwiththedistancefromconversion(\Back-wardMarkov"model)orhavethePPRinthe\search"statehigherthaninthe\interested"state(\RSMarkov1"model).AsFigure7shows,thesecondapproachismorebiasedto-wardsthebrandimpressionsthanthe rstone.Identifyingthetopkadswiththemaximummarginalincrease(MI)adfactor.Apopularadvertisingobjectiveistomaximizetheexpectednumberofuserconversionsgivenacertainbudgetconstraint.Inarandomwalkmodel,wecanrestateitasmaximizingtheprobabilityofhittingtheconversionnodestartingfromthe\begin"node.Aheuristicwaytoidentifythevaluablenodestoinvestonistoexamineasmallincreaseonthebidofaquery(orkeyword)whichwillhavethemaximumef-fectontheprobabilityofhittingtheconversionnode.Thissmallincreaseonthebidresultsinasmallincreaseintheweightofincomingedgesforthisquery.Thus,inordertoidentifyqueriesforwhichtheincreaseintheirbidresultsinthemaximummarginalincreaseintheprobabilityofhittingconversion,wecanlookforthetopkadswiththemaximumMIadfactor,andtheadvertisermayconsiderincreasingthebidforquerieswithlargeMI.10ExplainingtheadfactorvalueTheadfactorassignedtoanyparticularnodeinthegraph,mustbeeasilyexplainedbyalocalstructurearoundthisnode.Forinstance,forthePPR(PageRankcontribution)adfactorofanodeu,onecanalwaysconsiderthetop-mneighbornodesthroughwhichtheexplainednodeucon-tributesthelargestfractionofthePageRanktothecon-versionnode.Formally,letubethepermutationofallneighborsofthenodeuthatarrangestheminthedecreas-ingorderofwuvppr (v;c).Wede neu(m)asthesetofthe rstmnodesinthepermutation.Thesenodescanbethoughtofasthemostlikelynextactionsoftheuseraftertheexplainedaction,assumingthattheuserisgoingtoconvert.ItisstraightforwardtoextendthepushbackAlgorithm1tokeeptrackofthetopmcontributorsforeverynode,thusonecanecientlygeneratecorrespondingreports.Thereportsarebestrepresentedasgraphplots,constructedstartingataseednodesandgoinguptoadistancedinagraphofthetop-mneighborsofeverynode.Duetoprivacyreasonsaswellasthespacelimit,weomitanexampleofsuchplot.8.CONCLUSIONSOnlineadvertisershaveaccesstoaggregatestatisticssuchastheclickthroughrate,theconversionrateortheliftoftheiradcampaigns,butseektounderstandmoresophisti-catedcorrelationsinusers'trajectoriesofadsseenandusers'actions.Hereweintroduceanalternativedataminingtech-niqueforaggregatinguser-leveladvertisingdata.Wede nevariousadgraphstomodelthedatapertinenttothead-vertiserandproposeseveraladfactorsbasedonstationaryprobabilitiesofsuitablerandomwalkstoquantifytheim-pactofadevents.Weshowanecdotalevidenceforadfactorsanddescribetheirpotentialdataminingapplications.Ourresearchintroducesnovelprimitivesforminingadvertiser-speci cdataforade ects.Adfactorswede nearesuccinct,easytocomputeandcapturemanystructuralpropertiesof 10Weemphasizethatthisisonlyaheuristic.Anypracticalbiddingstrategyshouldalsotakeintoaccountthecurrentbiddinglandscape(howmuchdotheadvertiserandthecom-petitorsbid)foraparticularkeyword.