/
Roots of Polynomials Com S  Notes YanBin Jia Sep   A direct corollary of the fundamental Roots of Polynomials Com S  Notes YanBin Jia Sep   A direct corollary of the fundamental

Roots of Polynomials Com S Notes YanBin Jia Sep A direct corollary of the fundamental - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
606 views
Uploaded On 2014-12-12

Roots of Polynomials Com S Notes YanBin Jia Sep A direct corollary of the fundamental - PPT Presentation

r are all of its complex roots We will look at how to 64257nd roots or zeros of polynomials in one variable The solution of multivariate polynomials can often be transformed into a problem that requires the solution of singlevariate polynomials 1 R ID: 22799

are all

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Roots of Polynomials Com S Notes YanBin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

RootsofPolynomials(ComS477/577Notes)Yan-BinJiaSep22,2020Adirectcorollaryofthefundamentaltheoremofalgebra[9,p.247]isthatp(x)canbefactorizedoverthecomplexdomainintoaproductn(x1)(x2)(xn),wherenistheleadingcoecientand1;r2;:::;rnareallofitsncomplexroots.Wewilllookathowto ndroots,orzeros,ofpolynomialsinonevariable.Intheory,root ndingformulti-variatepolynomialscanbetransformedintothatforsingle-variatepolynomials.1RootsofLowOrderPolynomialsWewillstartwiththeclosed-formformulasforrootsofpolynomialsofdegreeuptofour.Forpolynomialsofdegreesmorethanfour,nogeneralformulasfortheirrootsexist.Root ndingwillhavetoresorttonumericalmethodsdiscussedlater.1.1QuadraticsAquadraticequationax2+bx+c=0;a=0;hastworoots:x=p 24ac 2:Ifthecoecientsa;b;carereal,itfollowsthatif24ac�0therootsarerealandunequal;if24ac=0therootsarerealandequal;if24ac0therootsareimaginary.1.2CubicsThecubicequationx3+px2+qx+=0canbereducedbythesubstitutionx=yp 31 tothenormalformy3+ay+=0;(1)where=1 3(3qp2);=1 27(2p39pq+27):Equation(1)hasthreeroots:y1=A+B;y2=1 2(A+B)+ip 3 2(AB);y3=1 2(A+B)ip 3 2(AB);wherei2=1andA=3s 2+r 2 4+3 27;B=3s 2r 2 4+3 27:Thethreerootscanbeveri edbelow:(yy1)(yy2)(yy3)=(yAB)y2+(A+B)y+A2AB+B2=y33ABy(A+B)(A2AB+B2)=y33AByA3B3=y3+ay+b:Supposep;q;rarereal(andhenceandarereal).Threecasesexist:b2 4+a3 27�0:Thereareonerealrooty=y1andtwoconjugateimaginaryroots.b2 4+a3 27=0:Therearethreerealyrootsofwhichatleasttwoareequal:2p a 3;p a 3;p a 3ifb�0,2p a 3;p a 3;p a 3ifb0,0;0;0if=0.b2 4+a3 270:Therearethreerealandunequalroots:yk=2r 3cos 3+2k 3;k=0;1;2;wherecos=8�&#x-2.9;领:q b2=4 a3=27ifb�0;q b2=4 a3=27ifb0.Everyrootykthusobtainedcorrespondstoarootxk=ykp=3oftheoriginalcubicequation.2 1.3QuarticsThequarticequationx4+px3+qx2+rx+s=0canbereducedtotheformy4+ay2+by+c=0(2)bythesubstitutionx=yp 4;where=q3p2 8;=+p3 8pq 2;c=s3p4 256+p2q 16pr 4:Thequartic(2)canbefactorizedundersomecondition.Theequationthatmustbesolvedtomakeitfactorizableiscalledtheresolventcubic:z3qz2+(pr4s)z+(4qs2p2s)=0:Letz1bearealrootoftheabovecubic.Thenthefourrootsoftheoriginalquarticarex1=p 4+1 2(+D);x2=p 4+1 2(D);x3=p 41 2(E);x4=p 41 2(+E);where=r 1 4p2q+z1;D=8�&#x-300;:q 3 4p222q+1 4(4pq8p3)1if=0,q 3 4p22q+2p z214sif=0,E=8�&#x-300;:q 3 4p222q1 4(4pq8p3)1if=0;q 3 4p22q2p z214sif=0.Formoredetailssee[1]or[10].3 2RootCountingConsiderapolynomialofdegreen:p(x)=nxn+n1xn1++1x+0;an=0.Thefundamentaltheoremofalgebrastatesthatphasnrealorcomplexroots,countingmultiplic-ities.Ifthecoecients0;a1;:::;anareallreal,thenthecomplexrootsoccurinconjugatepairs,thatis,intheformcdi,wherec;d2Randi2=1.Ifthecoecientsarecomplex,thecomplexrootsneednotberelated.UsingDescartes'rulesofsign,wecancountthenumberofrealpositivezerosthatp(x)has.Morespeci cally,letbethenumberofvariationsinthesignofthecoecientsn;an1;:::;a0(ignoringcoecientsthatarezero).Letnpbethenumberofrealpositivezeros.Then(i)np,(ii)npisaneveninteger.Anegativezeroofp(x),ifexists,isapositivezeroofp(x).Thenumberofrealnegativezerosofp(x)isrelatedtothenumberofsignchangesinthecoecientsofp(x).Example1.Considerthepolynomialp(x)=x4+2x2x1.Thenv=1,sonpiseither0or1byrule(i).Butbyrule(ii)vnpmustbeeven.Hencenp=1.Nowlookatp(x)=x4+2x2+x1.Again,thecoecientshaveonevariationinsign,sop(x)hasonepositivezero.Inotherwords,p(x)hasonenegativezero.Tosummarize,simplybylookingatthecoecients,weconcludethatp(x)hasonepositiverealroot,onenegativerealroot,andtwocomplexrootsasaconjugatepairDescartes'ruleofsignstillleavesanuncertaintyastotheexactnumberofrealzerosofapolynomialwithrealcoecients.Anexacttestwasgivenin1829bySturm,whoshowedhowtocounttherealrootswithinanygivenrangeofvalues.Letf(x)bearealpolynomial.Denoteitbyf0(x)anditsderivativef0(x)byf1(x).ProceedasinEuclid'salgorithmto ndf0(x)=q1(x)f1(x)f2(x);f1(x)=q2(x)f2(x)f3(x);...fk2(x)=qk1(x)fk1(x)fk(x);fk1(x)=qk(x)fk(x);wheredeg(fi(x))deg(fi1(x)),for1ik.ThesignsoftheremaindersarenegatedfromthoseintheEuclidalgorithm.Notethatthedivisorfkthatyieldszeroremainderisagreatestcommondivisoroff(x)andf0(x).Thesequencef0;f1;:::;fkiscalledaSturmsequenceforthepolynomialf.Theorem1(Sturm'sTheorem)Thenumberofdistinctrealzerosofapolynomialf(x)withrealcoecientsin(a;b)isequaltotheexcessofthenumberofchangesofsigninthesequencef0();:::;fk1();fk()overthenumberofchangesofsigninthesequencef0();:::;fk1();fk().4 Infact,wecanmultiplyfbyapositiveconstant,orafactorinvolvingx,providedthatthefactorremainspositivethroughout(a;b),andthemodi edfunctioncanbeusedforcomputingallfurthertermsfiofthesequence.Example2.UseSturm'stheoremtoisolatetherealrootsofx5+5x420x210x+2=0We rstcomputetheSturmfunctions:f0(x)=x5+5x420x210x+2f1(x)=x4+4x38x2f2(x)=x3+3x21f3(x)=3x2+7x+1f4(x)=17x+11f5(x)=1Bysettingx=101,weseethatthereare3negativerootsand2positiveroots.Allrootsliebetween10and10,infact,between5and5.Wethentryallintegralvaluesbetween5and5.Thefollowingtablerecordsthework: 1 10 5 4 3 2 1 0 1 2 5 10 1 f0 + + + + + + f1 + + + + + + + + f2 + + + + + + + f3 + + + + + + + + + + + f4 + + + + + + f5 + + + + + + + + + + + + + var. 5 5 5 5 4 3 3 2 1 0 0 0 0Thus,thereisarootin(43),arootin(32),arootin(10),arootin(01),andarootin(12).3MoreBoundsonRootsItisknownthatp(x)musthaveatleastoneroot,realorcomplex,insidethecircleofradius1abouttheoriginofthecomplexplane,where1=min(n 0 1 ;ns 0 n ):(3)Inthecase1=0,wehave a0 a1 =1and1=nr a0 an .Meanwhile,ifwelet2=1+max0kn1 k n ;(4)thenallzerosofp(x)mustlieinsidethecircleofradius2abouttheorigin.5 Theorem2(Cauchy'sTheorem)Givenapolynomialp(x)=nxn+n1xn1++0,n=0,de nethepolynomialsP(x)=jnjxn+jn1jxn1++j1jxj0j;Q(x)=jnjxnjn1jxn1j0j:ByDescartes'rules,P(x)hasexactlyonerealpositivezero1andQ(x)hasexactlyonerealpositivezero2.Thenallzeroszofp(x)lieintheannularregion1jzj2:(5)Example3.Letp(x)=x537x4+74x3108x2+108x68.Applyingbound(3),weknowthatatleastonezeroofpisinsidethecirclexj1,where1=min(568 1085r 68 1)=minf314815146724g=146724Applyingbound(4),allzeroslieinsidethecirclexj2,where2=1+maxf377410810868g=118LetustrytoapplyCauchy'stheorem.First,wehavethatP(x)=x537x474x3108x2108x68Q(x)=x5+37x4+74x3+108x2+108x68whosepositivezerosarer1=063r2=56Thereforeallzerosofp(x)lieintheregion063jxj56Howdoesoneusetheaboverootbounds?Usethemasheuristicstogiveusawayoflocalizingthepossiblezerosofapolynomial.Bylocalizingthezeros,wecanguidetheinitialguessesofournumericalroot nders.4De\rationThee ortofroot ndingcanbesigni cantlyreducedbytheuseofde\ration.Onceyouhavefoundarootofapolynomialp(x),considernextthede\ratedpolynomialq(x)whichsatis esp(x)=(x)q(x):Therootsofqareexactlytheremainingrootsofp(x).Becausethedegreedecreases,thee ortof ndingtheremainingrootsdecreases.Moreimportantly,withde\rationwecanavoidtheblunder6 ofhavingouriterativemethodconvergetwicetothesamerootinsteadofseparatelytotwodi erentroots.Wecanobtainq(x)byevaluatingp(x)atx=usingHornerscheme.Recalltheintermediatequantities0;:::;bnfromtheevaluation,wheren=n,andi1=i1+rbi,fori=n;:::;1.Weknowthatp(x)=0+(x)(nxn1++2x+1):(6)Since0=p()=0,weobtainq(x)=nxn1++2x+1:(7)De\rationcanalsobecarriedoutbysyntheticdivisionofp(x)byq(x)whichactsonthearrayofpolynomialcoecients.Itmust,however,beutilizedwithcare.Becauseeachrootisknownwithonly niteaccuracy,errorscanbuildupintherootsasthepolynomialsarede\rated.Theorderinwhichrootsarefoundcana ectthestabilityofthede\ratedcoecients.Forexample,supposethenewpolynomialcoecientsarecomputedinthedecreasingorderofthecorrespondingpowersofx.Themethodisstableiftherootofsmallestabsolutevalueisdividedoutateachstage.Rootsofde\ratedpolynomialsarereallyjust\goodsuggestions"oftherootsofp.Oftenweneedtousetheoriginalpolynomialp(x)topolishtherootsintheend.5Newton'sMethodThe rstmethodweintroduceonpolynomialroot ndingisNewton'smethod.Supposewehaveanestimatexkofarootatiterationstepk.Newton'smethodyieldstheestimateatstepk+1:xk+1=xkp(xk) p0(xk):(8)Recallthatwecanevaluatep(t)andp0(t)togetherecientlyusingHornerscheme,generatingintermediatequantitiesn;bn1;:::;b0=p(t)(andthusthepolynomialq(x)in(7)).Equations(6)and(7)arecombinedintop(x)=p(t)+(xt)q(x);(9)whichimpliesp0(t)=q(t).Iftisactuallyarootofp(x),itfollowsfromequation(9)thatq(x)=p(x) xtisalreadythede\ratedpolynomial,whichcanbeviewedasabyproductoftheNewton'smethod.To ndazeroofp(x),Newton'smethodtakesaninitialguessx0ofarootanditeratesaccordingto(8)untilsometerminationconditionissatis ed,forinstance,untilp(xi)orjxi+1xijiscloseenoughtozero.OnesituationthatNewton'smethoddoesnotworkwelliswhenthepolynomialp(x)hasadoubleroot,thatis,whenp(x)=(x)2h(x):Inthiscasep(x)sharesafactorwithitsderivativewhichisoftheformp0(x)=2(x)h(x)+(x)2h0(x):7 Asxapproaches,bothpandp0approachzero.InapplyingNewton'smethod,machineimprecisionwilldominateevaluationofthetermp(x) p0(x)asxtendsto.Inthiscaseonetinynumberisdividedbyoneverysmallnumber.Onecanavoidthedouble-rootproblembyseekingquadraticfactorsdirectlyinde\ration.Thisisalsousefulwhenlookingforapairofcomplexconjugaterootsofapolynomialwithrealcoecients.Forhigherorderroots,onecandetecttheirpossibilitiestosomeextentandapplyspecialtechniquestoeither ndorruleoutthem.Polynomialsareoftensensitivetovariationsintheircoecients.Consequently,afterseveralde\rations,theremainingrootsmaybeveryinaccurate.Onesolutionistopolishtherootsus-ingaveryaccuratemethod,onceapproximationstotheserootshavebeenfoundfromde\ratedpolynomials.Newton'smethodisgenerallygoodforpolishingbothrealandcomplexroots.6Muller'sMethodNewton'smethodisalocalmethod,thatis,itmayfailtoconvergeiftheinitialestimateistoofarfromaroot.Nowweintroduceaglobalroot ndingtechnique.Aftertherootsarefound,wecanpolishthemaswedesire(oftenusingNewton'smethod).Muller'smethodcan ndanynumberofzeros,realorcomplex,oftenwithglobalconvergence.Sinceitisalsoapplicabletofunctionsotherthanpolynomials,weherepresentitfor ndingazeroofageneralfunctionf(x),notnecessarilyapolynomial.Themethodmakesuseofquadraticinterpolation.Supposethethreepriorestimatesofazerooff(x)inthecurrentiterationarethepointsxk2;xk1;xk.Tocomputethenextestimatewewillconstructthepolynomialofdegree2thatinterpolatesf(x)atxk2;xk1;xk,then ndoneofitsroots.WebeginwiththeinterpolatingpolynomialintheNewtonformp(x)=f(xk)+f[xk1;xk](xxk)+f[xk2;xk1;xk](xxk)(xxk1);wheref[xk1;xk]andf[xk2;xk1;xk]aredivideddi erencesde nedbelow:f[xk1;xk]=f(xk1)f(xk) xk1xk;f[xk2;xk1;xk]=f[xk2;xk1]f[xk1;xk] xk2xk=f(xk2)f(xk1) xk2xk1f(xk1)f(xk) xk1xk xk2xk:Usingtheequality(xxk)(xxk1)=(xxk)2+(xxk)(xkxk1);wecanrewritep(x)asp(x)=f(xk)+(xxk)+(xxk)2;where=f[xk2;xk1;xk];=f[xk1;xk]+f[xk2;xk1;xk](xkxk1)8 Nowletp(x)=0andsolveforxasthenextapproximationxk+1=xk2f(xk) p 24af(xk):Intheabovewechoosetheformofzerosofthequadraticax2+bx+ctobex=2c p 24acinsteadofx=p 24ac 2fornumericalstability.Thisismainlybecausec=f(xk)getsverysmallneararootoff.Alsofornumericalstability,the`'signinthedenominatorp 24ac,ischosensoastomaximizethemagnitudeofthedenominator.Notethatcomplexestimatesareintroducedautomaticallyduetothesquare-rootoperation.Algorithm1 ndsallroots,withorwithoutmultiplicities,ofapolynomialthathasonlyrealco-ecients,bycombiningMuller'smethodwithde\rationandrootpolishing(usingNewton'smethod).De\rationmaystopwhenthedegreeofthepolynomialreducestofourorthree,andclosed-formrootsinSections1.2and1.3canbecomputed.Example2.Findtherootsofp(x)=x3x1usingMuller'smethod.Foreachroottheiterationstartwithinitialguessesx2=1;x1=15,andx0=20.Weterminatetheiterationatstepiwhenxixi1j5105Themethodestimatesthe rstroottober1=1324718withanaccuracyabout34107 ixip(xi) 21.0111.50.87502.0511.333330.03703721.3244700010531.32471814410641.3247187151013Next,weworkwiththede\ratedpolynomialq(x)=p(x)=(xr1)and ndthesecondroottober2=066236+056228iwithanaccuracyof22105ixiq(xi) 106623697+05622605i2135510512105i2066235898+05622795i1011Thethirdrootmustbeaconjugateofthesecondroot.Sowehaver3=066236056228iLetusdoamorecompleteexample.Example3.Findtherootsofthepolynomialp(x)=x4+2x2x1Earlierbycheckingthesignchangesinthecoecientsequenceweknewthatp(x)hasonepositiveroot,onenegativeroot,andonepairofcomplexconjugateroots.9 Algorithm1Muller'smethod Input:p(x)=nxn+1x+0,wherei2Rfor0inandn=0Output:itsroots0;r1;:::;rn1ifdeg(p)4thenusetheclosedformsgiveninSection1elsep0(x) p(x)l 0whiledeg(pl)5doonerootofplmustlieinsidethecircleofradius1in(3)inSection3generatethreerootestimateswithinthecircle.useMuller'smethodto ndonerootlofpl(x)iflisrealthenpl+1(x) pl=(xl)(applyHornerschemeforde\ration)l l+1whilepl(l1)=0(amultipleroot)dol l1pl+1(x) pl=(xl)l l+1endwhileelsel=l+iblanditscomplexconjugate l=liblaretworootspl+2(x) pl=((xl)(x l))=pl=(x22lx+2l+2l)l l+2whilepl(l2)=0dol l2l+1 l1pl+2(x) pl=(x22lx+2l+2l)l l+2endwhileendifendwhile ndtherootsofpl(withdegreesatmostfour)usingtheclosedformsinSection1.2or1.3.polishalltheroots0;:::;rn1usingNewton'smethodonp(x)endif 10 Nowletuslookattheboundheuristics:=min(na0 a1ns a0 an)=minf41g=1Thusthereisatleastonezeroinsidethecomplexcircleofradiusoneabouttheorigin.Furthermore,allzerosofp(x)lieinsidethecircleofradiusr=1+max0kn1 ak an =1+maxf1120g=3Oursearchforzeroneedonlyfocusonthecomplexdiskofradius3.ForeachrootwestartMuller'smethodwiththeinitialguessesx0=1 2;x1=0;x2=1 2andterminatethesearchoncexi5105roots#iterationsaccuracy 0.8251098524107048181564141060171647+1576686i25110601716471576686iNotethatthetwocomplexrootsliebetweenthecircleofradius1andthecircleofradius3.De\rationswereusedinseekingthesecondandthethirdroots.Weshouldnextpolishthefourrootestimatesusingtheoriginalpolynomialp(x),whichcanbedoneautomaticallywithinMuller'smethod.References[1]M.AbramowitzandI.A.Stegun.HandbookofMathematicalFunctions:withFormulas,Graphs,andMathematicalTables.NewYork:Dover,pp.17-18,1972.[2]R.S.Burington.HandbookofMathematicalTablesandFormulas.McGraw-Hill,Inc.,5thedition,1973.[3]S.D.ConteandCarldeBoor.ElementaryNumericalAnalysis.McGraw-Hill,Inc.,2ndedition,1972.[4]M.Erdmann.Lecturenotesfor16-811MathematicalFundamentalsforRobotics.TheRoboticsInstitute,CarnegieMellonUniversity,1998.[5]C.C.MacDu ee.TheoryofEquations.JohnWiley&Sons,Inc.,NewYork,1954.[6]W.H.Press,etal.NumericalRecipesinC++:TheArtofScienti cComputing.CambridgeUniversityPress,2ndedition,2002.11 [7]J.StoerandR.Bulirsch.IntroductiontoNumericalAnalysis.Springer-VerlagNewYork,Inc.,2ndedition,1993.[8]H.W.Turnbull.TheoryofEquations,5thedition.OliverandBoydLtd.,Edinburgh,1952.[9]B.L.vanderWaerden.Algebra,VolumeI.Springer-VerlagNewYork,Inc.,1991.[10]WolframMathWorld.http://mathworld.wolfram.com/QuarticEquation.html.12