/
THE KOLMOGOROVRIESZ COMPACTNESS THEOREM H THE KOLMOGOROVRIESZ COMPACTNESS THEOREM H

THE KOLMOGOROVRIESZ COMPACTNESS THEOREM H - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
512 views
Uploaded On 2015-05-18

THE KOLMOGOROVRIESZ COMPACTNESS THEOREM H - PPT Presentation

HANCHEOLSEN AND HELGE HOLDEN Abstract We show that the Arzel57568Ascoli theorem and Kolmogorov com pactness theorem both are consequences of a simple lemma on compactness in metric spaces Their relation to Hellys theorem is discussed The paper cont ID: 69321

HANCHEOLSEN AND HELGE HOLDEN

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THE KOLMOGOROVRIESZ COMPACTNESS THEOREM ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2HANCHE-OLSENANDHOLDENHereisthekeylemmaformanycompactnessresults(inthislemmaanditsproof,everymetricisnamedd):Lemma1.LetXbeametricspace.Assumethat,forevery"�0,thereexistssome�0,ametricspaceW,andamapping:X!Wsothat[X]istotallybounded,andwheneverx;y2Xaresuchthatd�(x);(y),thend(x;y)".ThenXistotallybounded.Proof.Forany"&#x-278;0,pick,Wandasinthestatementofthelemma.Since[X]istotallybounded,thereexistsanite-coverfV1;:::;Vngof[X].Thenitimmediatelyfollowsfromtheassumptionsthatf�1(V1);:::;�1(Vn)gisan"-coverofX.ThusXistotallybounded.Lemma1embodiesthemainargumentinthestandardproofoftheclassicalArzelàAscolitheorem,aswenowdemonstrate.Theorem2(ArzelàAscoli).Let beacompacttopologicalspace.ThenasubsetofC( )istotallyboundedinthesupremumnormif,andonlyif,(i)itispointwisebounded,and(ii)itisequicontinuous.Recallthedenitionofequicontinuity:Condition(ii)meansthatforeveryx2 andevery"&#x-278;0thereisaneighborhoodVofxsothatjf(y)�f(x)j"forally2Vandallfinthegivensetoffunctions.Proof.AssumeFC( )ispointwiseboundedandequicontinuous.Let"&#x-367;0.CombiningtheequicontinuityofFandcompactnessof ,wecanndanitesetofpointsx1;:::;xn2 withneighborhoodsV1;:::;Vncoveringallof sothatjf(x)�f(xj)j"wheneverf2Fandx2Vj.Dene:F!Rnby(f)=�f(x1);:::;f(xn):BythepointwiseboundednessofF,theimage[F]isbounded,andhencetotallybounded,inRn.Furthermore,iff;g2Fwithk(f)�(g)k1",thensinceanyx2 belongstosomeVj,jf(x)�g(x)jjf(x)�f(xj)j+jf(xj)�g(xj)j+jg(xj)�g(x)j3";andsokf�gk13".ByLemma1,Fistotallybounded.Fortheconverse,assumethatFisatotallyboundedsubsetofC( ).Theexistenceofanite"-coverforF,forany",clearlyimpliesthebound-ednessofF,thusestablishingtheuniformboundednessandhencealsopointwiseboundednessofF.Toproveequicontinuity,letx2 and"&#x]TJ/;༹ ; .96;& T; 10;&#x.516;&#x 0 T; [0;0begiven.Pickan"-coverfU1;:::;UngofF,andchosegj2Ujforj=1;:::;n.PickaneighborhoodVjofxsothatjgj(y)�gj(x)j"whenevery2Vj,forj=1;:::;n.LetV=V1\\Vm.Iff2Ujthenkf�gjk1",andsowheny2V,jf(y)�f(x)jjf(y)�gj(y)j+jgj(y)�gj(x)j+jgj(x)�f(x)j3";whichprovesequicontinuity.Remark3.ThistheoremwasrstprovedbyAscoli[3]forequi-LipschitzfunctionsandextendedbyArzelà[2]toageneralfamilyofequicontinuousfunctions.See[4,p.203]. THEKOLMOGOROVRIESZCOMPACTNESSTHEOREM3Wepresentthefollowingtheorem,rstprovedbyFréchet[12]forthecasep=2,asawarm-upexercise,astheproofisshortandnicelyexposessomekeyideasfortheproofofTheorem5.Theorem4.Asubsetoflp,where1p1,istotallyboundedif,andonlyif,(i)itispointwisebounded,and(ii)forevery"&#x]TJ/;གྷ ; .96;& T; 18;&#x.296;&#x 0 T; [0;0thereissomensothat,foreveryxinthegivensubset,Xk&#x]TJ/;གྷ ; .96;& T; 18;&#x.296;&#x 0 T; [0;njxkjp"p:Proof.AssumethatFlpsatisesthetwoconditions.Given"&#x-278;0,picknasinthesecondcondition,anddeneamapping:F!Rnby(x)=(x1;:::;xn):BythepointwiseboundednessofF,theimage(F)istotallybounded.Ifx;y2Fwithj(x)�(y)jp=�Pnk=1jxk�ykjp1=p",thenkx�ykpnXk=1jxk�ykjp1=p+Xk&#x-278;njxk�ykjp1=p"+2"=3":ByLemma1,Fistotallybounded.Wewillleaveprovingtheconverseasanexercisetothereader.ThetechniquesfromtheproofofTheorem2areeasilyadapted.SeealsotheproofofTheorem5.3.TheKolmogorovRiesztheoremTheorem5(KolmogorovRiesz).Let1p1.AsubsetFofLp(Rn)istotallyboundedif,andonlyif,(i)Fisbounded,(ii)forevery"&#x]TJ/;གྷ ; .96;& T; 18;&#x.296;&#x 0 T; [0;0thereissomeRsothat,foreveryf2F,Zjxj&#x]TJ/;གྷ ; .96;& T; 18;&#x.296;&#x 0 T; [0;Rjf(x)jpdx"p;(iii)forevery"&#x-278;0thereissome&#x-278;0sothat,foreveryf2Fandy2Rnwithjyj,ZRnjf(x+y)�f(x)jpdx"p:Proof.AssumethatFLp(Rn)satisesthethreeconditions.First,given"&#x-278;0,pickRasinthesecondcondition,andasinthethirdcondition.LetQbeanopencubecenteredattheoriginsothatjyj1 2whenevery2Q.LetQ1;:::;QNbemutuallynon-overlappingtranslatesofQsothattheclosureofSiQicontainstheballwithradiusRcenteredattheorigin.LetPbetheprojectionmapofLp(Rn)ontothelinearspanofthecharacteristicfunctionsofthecubesQigivenbyPf(x)=8:1 jQijZQif(z)dz;x2Qi;i=1;:::;N;0otherwise:From(ii)andthedenitionofPfwend,forf2F,kf�Pfkpp"p+NXi=1ZQijf(x)�Pf(x)jpdx="p+NXi=1ZQi 1 jQijZQi�f(x)�f(z)dz pdx: 6HANCHE-OLSENANDHOLDENProof.NotethatprecompactnessofFinLploc( )isequivalenttoprecompactnessofFK=ffK:f2FgforeverycompactK .Corollary9.AsubsetFWp;k(Rn)istotallyboundedif,andonlyif,thefol-lowingholds:(i)Fisbounded,i.e.,thereissomeMsothatZjD f(x)jpdxM;f2F;j jk:(ii)Forevery"&#x-278;0thereissomeRsothatZjxj&#x-278;RjD f(x)jpdx"p;f2F;j jk:(iii)Forevery"&#x-277;0thereissome&#x-277;0sothatZRnjD f(x+y)�D f(x)jpdx"p;f2F;j jk;jyj:Proof.NotethatFistotallyboundedinWp;k(Rn)ifandonlyifD [F]=fD f:f2FgistotallyboundedinLp(Rn)foreverymulti-index withj jk.4.AbitofhistoryIn1931,Kolmogorov[18]provedtherstresultinthisdirection.ItcharacterizescompactnessinLp(Rn)for1p1,inthecasewhereallfunctionsaresupportedinacommonboundedset.Condition(iii)ofTheorem5isreplacedbytheuniformconvergenceinLpnormofsphericalmeansofeachfunctionintheclasstothefunctionitself.(Clearly,ourCondition(ii)isautomaticinthiscase.)Justayearlater,Tamarkin[26]expandedthisresulttothecaseofunboundedsupportsbyaddingCondition(ii)ofTheorem5.In1933,Tulajkov[29]expandedtheKolmogorovTamarkinresulttothecasep=1.Inthesameyear,andprobablyindependently,Riesz[23]provedtheresultfor1p1,essentiallyintheformofourTheorem5.ThuswefeelsomewhatjustiedinusingthenamesKolmogorovandRieszinreferringtothetheorem,thoughweareperhapsbeingabitunfairtoTamarkinandTulajkovindoingso.Thecompactnesstheoremhasalsoseengeneralizationsinotherdirections.Hanson[15]provedanecessaryandsucientconditionforcompactnessofafamilyofmeasurablefunctionsonaboundedmeasurableset,withrespecttocon-vergenceinmeasure.(Herethemeasurablefunctionsformametricspaceinwhichthedistancebetweentwofunctionsistheinmumofall"&#x]TJ/;གྷ ; .96;& T; 21;&#x.726;&#x 0 T; [0;0sothatthetwofunctionsdierbyatmost"exceptonasetofmeasure".)Fréchet[13]replacedConditions(i)and(ii)ofTheorem5withasinglecondition(equisummability),andgeneralizedthetheoremtoarbitrarypositivep.Phillips[22,Thm3.7]provedanecessaryandsucientconditionforcompactnessinLponageneralmeasurespace(1p1),andindeedinanyBanachspace,whichishoweversomewhatlesssuitedtoapplicationstoPDEs.Nevertheless,oursuciencyproofforTheorem5isbasedonPhillips'criterion.(Itismorecommon,albeitmoreinvolved,tousemolliersintheproof.)Weil[31](seealso[9,p.269])extendedtheresulttoLp(G)whereGisacompactgroup.Tsuji[28]consideredthecaseofLp(Rd)with0p1,andTakahashi[25]studiedthesameprobleminOrliczspaces.AcharacterizationofcompactsubsetsofLp([0;T];B)(BaBanachspace),whichisveryconvenientinthecontextoftime-dependentpartialdierentialequations,isgivenbySimon[24](seealso[19]).Areadableaccountofsomeofthehistoricaldevelopmentcanbe 10HANCHE-OLSENANDHOLDEN[18]A.N.Kolmogorov.ÜberKompaktheitderFunktionenmengenbeiderKonvergenzimMittel,Nachr.Ges.Wiss.Göttingen9(1931),6063.Englishtranslation:Onthecompactnessofsetsoffunctionsinthecaseofconvergenceinthemean,inV.M.Tikhomirov(ed.),SelectedWorksofA.N.Kolmogorov,Vol.I,Kluwer,Dordrecht,1991,pp.147150.[19]E.Maitre.OnanonlinearcompactnesslemmainLp(0;T;B).Int.J.Math.Math.Sci.no.27(2003)17251730.[20]M.Nicolescu.OnthecriterionofcompactnessofA.Kolmogorov.(InRomanian)Acad.Repub.Pop.Române.Bul.“ti.Ser.Math.Fiz.Chim.2(1950)407415.[21]R.L.Pego.CompactnessinL2andtheFourierTransform.Proc.Amer.Math.Soc.95(1985)252254.[22]R.S.Phillips.Onlineartransforms.Trans.Amer.Math.Soc.48(1940)516541.[23]M.Riesz.Surlesensemblescompactsdefonctionssommables.(InFrench)ActaSzegedSect.Math.6(1933),136142.AlsoinL.Gårding,L.Hörmander(eds.),MarcelRieszCollectedPapers,Springer,Berlin(1988).[24]J.Simon.CompactsetsinthespaceLp(0;T;B).Ann.Mat.PuraAppl.146(1987),6596.[25]T.Takahashi.Onthecompactnessofthefunction-setbytheconvergenceinmeanofgeneraltype.StudioMath.5(1934)141150.[26]J.D.Tamarkin.OnthecompactnessofthespaceLp.Bull.Amer.Math.Soc.32(1932),7984.[27]Yu.V.Tret'yachenkoandV.V.Chistyakov.Selectionprincipleforpointwiseboundedse-quencesoffunctions.Math.Notes84(2008)396406.[28]M.Tsuji.OnthecompactnessofspaceLp(p�0)anditsapplicationtointegraloperators.KodaiMath.J.(1951)3336.[29]A.Tulajkov.ZurKompaktheitimRaumLpfürp=1.(InGerman)Nachr.Ges.Wiss.Göttingen,Math.Phys.Kl.I1933,nr.39,167170.[30]P.Veress.ÜberFunctionenmengen.(InGerman)Actascient.math.3(1927)177192.[31]A.Weil.L'intégrationdanslesgroupestopologiquesetsesapplications.HermannetCie.,Paris,1940.[32]K.Yosida.FunctionalAnalysis.Springer,Berlin,1980.(Hanche-Olsen)DepartmentofMathematicalSciencesNorwegianUniversityofScienceandTechnologyNO7491Trondheim,NorwayE-mailaddress:hanche@math.ntnu.noURL:http://www.math.ntnu.no/hanche/(Holden)DepartmentofMathematicalSciencesNorwegianUniversityofScienceandTechnologyNO7491Trondheim,Norway,andCentreofMathematicsforApplicationsUniversityofOsloP.O.Box1053,BlindernNO0316Oslo,NorwayE-mailaddress:holden@math.ntnu.noURL:http://www.math.ntnu.no/holden/