/
SomepredictedintermediatesoftheSzostakmodelsuchasDSBsanddHJshavebeen SomepredictedintermediatesoftheSzostakmodelsuchasDSBsanddHJshavebeen

SomepredictedintermediatesoftheSzostakmodelsuchasDSBsanddHJshavebeen - PDF document

madison
madison . @madison
Follow
342 views
Uploaded On 2022-08-31

SomepredictedintermediatesoftheSzostakmodelsuchasDSBsanddHJshavebeen - PPT Presentation

Figure1SzostakmodelofCOandNCOformationandthesynthesisdependentstrandannealingSDSAmodelofNCOformationIntheSzostakmodelaDSBoccursononehomologouschromosomeblueandthetwoduplexendsofthisDSBareproc ID: 944079

2007 etal biol 2004 etal 2007 2004 biol 1016 tcb branchingout andsmith cromie doi 2003 ticb trendscellbiol 453 meioticrecombinationanditsregulation

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SomepredictedintermediatesoftheSzostakmo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SomepredictedintermediatesoftheSzostakmodel,suchasDSBsanddHJs,havebeenobservedinthebuddingSaccharomycescerevisiaeandDSBshavealsobeendetectedintheÞssionyeastSchizosaccharomycespombeandinferredinmicemice.However,recentworkindiffer-entmodelorganismshasledtotheconclusionthattheSzostakmodelisnotageneralmodelformeioticrecombi-nationbutapplies,withrevision,onlytoCOformation.COsandNCOsarisethroughdifferentbranchesoftherecombinationpathwayMutationspreventingDSBformationorprocessingeliminatebothCOsandNCOs,indicatingthatearlystepsinCOandNCOformationproceedbythesamepathway.IntheSzostakandpreviousmodels,thebranchingoftherecombinationpathwaytoproduceCOsorNCOswashypothesizedtooccurataverylatestage.Inthesemodels,NCOsandCOsbotharisefromthesameHJ-containingintermediate,dependingontheorientationofHJresol-ution(Figure1a).Animportantconclusionofrecentstu-diesisthatthisideaisincorrectandthat,instead,thepathwaybranchessoonafterDSBformationandproceedsthroughdifferentDNAintermediatestoproduceeitherCOsorNCOsNCOs.ThesenewconclusionsarebasedonthestudyofmutationsaffectingstepsinrecombinationoccurringafterDSBformationandprocessingandonthestudyofphysicalrecombinationintermediatesandpro-OnepredictionoftheSzostakmodelisthatCOsandNCOsshouldoccuratthesametime.Usingphysicalassaysinbuddingyeast,astudyofectopicrecombinationrecombinationshowedthatthisisnottrueandthatNCOsformbeforeCOs.Similarly,repairDNAsynthesisassociatedwithNCOsinbuddingyeastoccursearlierthandoesthatassociatedwithCOsCOs.DSBsareprecursorstobothCOsandNCOs,buttheotherobservedintermediatesoftheSzostakmodel(D-loopsanddHJs)appeartolieonlyontheCOpathway.Inbuddingyeast,thetimingofdHJappearanceanddis-appearancecomparedwiththetimingofCOandNCOformationsuggeststhatdHJsareprecursorsonlyofCOsCOs.MutantswithreducedSEIordHJformationhavereducedCObutnotNCOfrequencyfrequency.InbothÞssionÞssionandbuddingbuddingyeasts,mutationscausingdefects Figure1.SzostakmodelofCOandNCOformationandthesynthesis-dependentstrand-annealing(SDSA)modelofNCOformation.IntheSzostakmodel,aDSBoccursononehomologouschromosome(blue)andthetwoduplexendsofthisDSBareprocessedtoformsingle-strand3overhangs(i).OneendoftheDSBinvadesanotherhomologouschromosome(red)andsetsupaSEIordisplacement-loop(D-loop)structure(ii).DNAsynthesisextendstheD-loopandenablesannealingofthesecondsideoftheDSB.FurtherDNAsynthesisfillsintheremaininggapsandadoubleHJstructureisformed(iii).Cleavageandre-annealing,or‘resolution’,ofeitherpairoflike-orientedstrandsineachHJ(‘1’or‘2’),occursatrandom.Inthefigure,theleftwardHJhasbeenresolvedinorientation‘1’;resolutionoftherightwardHJinorientation‘1’thenproducesaNCO(iv)andinorientation‘2’aCO(v).Notethat,intheSzostakmodel,newlyreplicatedDNA(brokenlines)occursonbothhomologouscterminatedattheDSBsiteoneach(iii).IntheSDSAmodel,aDSBisformedandprocessedasintheSzostakmodel(i).OneendoftheDSBtransientlyinvadesanotherhomologouschromosomeandisextendedbyDNAsynthesis(ii).ThisendthenpullsoutandthenewlysynthesizedextensionannealswiththeotherendoftheDSB(iii).FurtherrepairDNAsynthesisoccursandaNCOisformed(iv).NoHJresolutionhasoccurred.Notethat,intheSDSAmodel,newlyreplicatedDNA(brokenlines)occursonlyononehomologouschromosomeandspanstheDSBsite(iii).Inbothmodels,geneconversionscanoccurbymismatchcorrectioninanyregionofheteroduplexDNA,shownasduplexescontainingoneblueandoneredstrand. TRENDSinCellBiologyVol.xxxNo.x TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com inHJresolutionreduceonlyCOfrequency,arguingthatCOsbutnotNCOsarisefromHJresolution.MutationsspeciÞcallyreducingCObutnotNCOformationhavealsobeenidentiÞedinmicemiceandthefruitßyßy.ItthereforeappearsthattheÔdecisionÕtoformCOsorNCOsisearly,afterDSBformationbutbeforeHJresolutionorevenSEIformation.Todate,DNAintermediatesspeciÞctotheNCOpathwayhavenotbeenIthasbeensuggestedthatNCOsoccurbysynthesis-dependentstrand-annealing(SDSA),whichisamechanisminvolvingstrandinvasion,DNAsynthesisandstrandÔpulloutÕthat,cruc

ially,doesnotinvolveHJs(Figure1b).Arecentstudyinbuddingyeastyeastusedthymidine-analogincorporationtodetectDNAsynthesisoccurringduringmeioticrecombination.Thisstudydeter-minedthepatternofDNAsynthesisataDSBhotspotusingDNAcombing,inwhichindividualDNAmoleculesareextendedonaglasscoverslip.ThecombedDNAwasprobedforthymidine-analogincorporationandposition-deÞninglociandthenexaminedbymicroscopy.Usingthistechnique,itwasobservedthatthepatternofDNAsyn-thesisassociatedwithCOsisthatexpectedfromtheSzostakmodel,whereasthepatternofDNAsynthesisassociatedwithNCOsisthatexpectedfromSDSAFigure1).Therefore,itappearsthattheSDSAmodelisvalidforNCOrecombinationandtheSzostakmodel,modiÞedtoassumestronglybiasedHJresolutiontoCOs,isessentiallyvalidforCOrecombination.Thereismorethanonepathwaytocrossing-overAswellasCOsandNCOsarisingbyseparatepathways,itisalsobecomingclearthatthereareatleasttwodifferentpathwaystoformingCOs,atleastinbuddingyeast.OnepathwaydependsontheMsh4ÐMsh5complexandissub-jecttoaformofspatialCOregulationcalledinterference(discussedlater),inwhichoneCOpreventsadditionalCOsfromoccurringnearby.TheotherpathwaydependsontheMus81ÐEme1complexandisnotsubjecttointerference.Bothpathways,aswellasthepathwaytoformingNCOs,areinitiatedbyDSBs(Figure2).Comparisonofexper-imentalresultsfromdifferentmodelorganismshasbeenparticularlyimportantindecipheringthisstory.InÞssionyeast,meioticHJresolutionappearstobecarriedoutsolelybytheMus81ÐEme1endonucleasecom-com-.Mus81andEme1(calledMms4inbuddingyeast)arewidelyconservedandinvitroofcomplexesfromÞssionyeast,buddingyeastandhumansindicatesthattheyallhaveHJresolutionactivityactivity19].However,miceareviableandfertilefertileandtheeffectofamutationinbuddingyeastisonlyamildreductioninCOfrequencyfrequency.TheexplanationforthesephenotypicdifferencesisthatÞssionyeastandsomeothereukaryotes,includingfruitfruit,lackanalternativeCOpathwaythatappearstobeactiveinmammalsandbuddingyeast.ThispathwaydependsonagroupofproteinscalledÔZMMproteinsÕ(seelater)thatincludeMsh4andMsh5,sothat,inbuddingyeast,mutationsaffectingboththeMus81andMsh4ÐMsh5pathwayshaveamoreseverereductioninCOfre-quencythandotheindividualmutationsmutations.Msh4andMsh5arehomologuesofthebacterialMutSmismatchrepairproteinbut,insteadofactinginmismatchrepair,theyformaslidingclampthatrecognizesHJsspeciÞcallyspeciÞcally.Msh4andMsh5areapparentlyabsentfromÞssionyeastandfruitßies.ItappearsthattheMsh4ÐMsh5,butnottheMus81ÐEme1,pathwayissubjecttoCOinterference.Thisaffectsthepatternofinterferenceseenineachorganism,dependingonwhethertheorganismhasbothpathwaysoronlyone(Figure2).InthewormCaenorhabditiselegansonlytheMsh4ÐMsh5pathwayappearstobeactiveandCOsaresubjecttoexceptionallystronginterferenceinterference(seelater).Bycontrast,inÞssionyeast,whereonlytheMu81ÐEme1pathwayispresent,thereisnono.Inbuddingyeast,theMus81ÐEme1-de-pendentCOslackinterference,whereasthosedependentonMsh4ÐMsh5aresubjecttointerferenceinterference.PlantsandmammalsappeartohavetheproteinsrequiredforbothCOpathwaysand,consistentwiththis,appeartohavebothinterference-sensitiveand-insensitiveclassesofCOsCOs.Inorganismsinwhichbothpathwaysarepre-sent,theirrelativeimportancecanvary.Mutationsaffect-ingeitherpathwayinbuddingyeasthavesimilar,moderatedefectsinrecombinationrecombinationbutmus81/micearefertilefertile,whereasmiceareare.SingleanddoubleHollidayjunctionsWhatistherelationshipbetweenthetwoCOpathwaysandtheSzostakpathwayofDNAintermediates?BothCOpathwaysareinitiatedbyDSBsandtwo-dimensionalgelelectrophoreticstudiesinbuddingyeast,inwhichbothCOpathwaysoperate,identiÞedtheSEIanddHJintermedi-atespredictedbytheSzostakmodelmodel.BuddingyeastdHJshavealsobeenseenbyelectronmicroscopy Figure2.ThreedifferentpathwaysproduceCOs(withorwithoutinterference)andNCOs.AllthreepathwaysareinitiatedbyDSBs.NCOsappeartobeproducedbytheSDSAmechanismbuttheproteinsspecificallyinvolvedinthispathwayareunknown.WorkfrombuddingyeastindicatesthatCOswithinterferenceareproducedbytheSzostakmechanism,progressingthroughdHJsandspecificallyusingtheZMMproteins,includingMsh4–Msh5.Workfromfissionyeastandbuddingyeas

tindicatesthatCOswithoutinterferenceareproducedbyamechanismthatmightinvolvesHJsandspecificallyrequirestheMus81–Eme1proteins.ThismechanismmightbeessentiallythesameastheSzostakmodel,modifiedtoproducesHJs. TRENDSinCellBiologyVol.xxxNo.x3 TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com Bycontrast,electronmicroscopicandtwo-dimensionalgelelectrophoreticstudiesinÞssionyeast,inwhichonlytheMus81pathwayisactive,observedmostlysingleHJs(sHJs),recombinationintermediatesnotpredictedbytheSzostakmodel,andonlyaminorityofdHJsdHJs.ThesmallnumberofÞssionyeastdHJsmightrepresentcloselyspacedsHJsbecauseCOinterferenceisnotactiveinthatorganism.Interestingly,asizableminorityofsHJsisalsoseenbyelectronmicroscopyinbuddingyeast.Itisthereforepossiblethat,althoughthetwoCOpathwaysarebothinitiatedbyDSBs,theymightproceedthroughdiffer-entDNAintermediates:sHJsfortheMus81pathwayanddHJsfortheMsh4ÐMsh5pathway(Figure2).AsHJmightarisebycuttingoftheD-loop(Figure1aii)before,ratherthanafter,captureofthesecondendoftheDSB.Similarproposals,thatis,thatMus81ÐEme1actsonstructuresdifferenttothedHJsoftheMsh4ÐMsh5pathway,speciÞ-callyunligatedorpartialHJs,havebeenadvancedbasedontheinvitroactivitiesoftheMus81ÐEme1complexcomplex.RegulationofCOnumberandpositionCOcontrol,thatis,theregulationofCOpositionandnumber,isspeciÞedatseveraldifferentlevels.Mostfun-damentally,theDSBsthatinitiaterecombinationaredis-tributednon-randomly.Inmanyorganisms,thereisevidencethatDSBsareconcentratedatparticularsitescalledhotspotshotspots.Inrecentyears,severalstudieshaveexaminedthegenome-widedistributionofmeioticDSBsinbuddingyeastusingSpo11-basedchromatinimmunopre-cipitation(ChIP)andmicroarrayanalysis,atechniquetermedChIPÐchip.Inthesestudiesmicroarrayswithalargenumberofoligonucleotideprobes,givinggenome-widecoverage,areusedtodeterminewhichlociareenrichedspeciÞcallyduringmeiosisbyChIPofSpo11.Spo11isthetopoisomerase-likeactive-siteproteinthatgeneratesmeioticDSBsand,hence,theChIP-enrichedlociareinferredtobethesitesatwhichDSBshaveoccurred.Suchgenome-widestudiesinbuddingyeastindicatethatDSBhotspotstendtooccurinpromoterregionsandaresomewhatsuppressedincentromericandtelomerictelomeric.ThisconÞrmspreviousconclusionsdrawnfromSouthernblotanalysisofselectedregionsofthebuddingyeastgenomegenome.Bycontrast,SouthernblotandChIPanalysesoftheÞssionyeastgenomeindicatethatDSBsitesareseparatedmorewidelywidely.COsandNCOsbotharisefromDSBsandthechoiceofwhichDSBsgenerateCOsprovidesanadditionallevelofCOcontrol.Inmost,butnotall,organisms,meioticCOsaredistributedhighlynon-randomly.ThetotalnumberofCOsislowbutevensmallchromosomesreceiveatleastone.Two,possiblylinked,effectscontributetothisdistri-bution.First,anobligateCOperchromosomeoccursand,second,agradientofsuppressionaroundeachCOdecreasestheprobabilityofadditionalCOsbutnotDSBsorNCOs.ThesuppressiveeffectistermedCOinterferenceFigure3Forsomeyears,itseemedlikelythatCOinterferencewasmediatedbythesynaptonemalcomplex(SC).Theonlyorganismsknowntolackinterference,thefungiS.pombeAspergillusnidulans,alsolackSCs,andabuddingyeastmutationaffectingZip1,anSCcomponent,abolishesboththeSCandinterferenceinterference.TheSCisaprotein-aceousstructurethat,inmostorganisms,linksthecoresofpairedhomologouschromosomesduringmeiosisII.Itconsistsoftwolateralelements,onefromeachhomologouschromosome,heldtogetherbyacentralelement(Figure3Eachlateralelementisaproteinaceousstructureformingasinglecoreoraxisencompassingbothsisterchromatidsofonehomologouschromosome.BeforeformationofthematureSC,lateralelementsarecalledaxialelements. Figure3.COinterferenceandthesynaptonemalcomplex.COinterference.Recombinationoccursbetweenhomologouschromosomes,eachconsistingoftwosisterchromatids,asshown.Azoneofinterference(blackelongatedtriangles)iscenteredatpositionswhereDSBsareprocessedtogiveCOs.Inthiszone,furtherCOsaresuppressedtovaryingdegrees,withDSBsinsteadbeingprocessedtogivemoreNCOs.Theinterferenceeffectisstrongestatthesiteofth

eCOanddeclineswithdistance.Structureofmeioticchromosomesheldtogetherbythesynaptonemalcomplex.Eachchromosome,consistingoftwosisterchromatids,formsasingleaxis.TheaxialelementsareheldtogetherbyacentralelementinthematureSC,formingatripartiteproteinaceousstructure,whichjoinsthetwohomologouschromosomestogether.Inthisstructure,thedescendentsoftheaxialelementsarecalledlateralelements.LoopsofDNAareshownemergingfromtheselateralelementsfortwoofthefourchromatids(DNAloopsintheothertwoarenotshown). TRENDSinCellBiologyVol.xxxNo.x TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com RecentresearchindicatesthatthepatternofinterferenceisactuallysetupbeforetheSCisformed.TheZip2andZip3proteins,possiblycomponentsofaubiquitin-conjugatingcomplex[48],aremembersofthegroupofÔZMMÕproteinsthatarerequiredspeciÞcallytoproduceCOsthataresubjecttointerference[10].Msh4ÐMsh5isamemberofthisgroupandcolocalizeswithZip2ÐZip3[49].BuddingyeastZip2ÐZip3fociappeartomarkthesiteswhereinterference-sen-sitiveCOswilloccur.ThesefocihavearelativefrequencyanddisplayadegreeofinterferencematchingthoseoftheCOs,evenwhenthenumberofCOsisincreasedordecreasedbyappropriatemutations[50Ð52].MouseMsh4ÐMsh5focialsoshowinterference[53].BecauseZip2ÐZip3fociarealsothesitesatwhichSCformationisnucleated[54,55]thisindicatesthatatleastthisaspectofinterferencepre-cedesformationoftheSC.Instead,itappearsthattheSCisinitiatedatthesitesofCOssubjecttointerference.IfnotthroughtheSC,howisinterferencemediated?RecentevidencefromthewormC.eleganssuggeststhatthephysicalstructureofthechromosomalaxiscanpropa-gateinterference.InC.elegans,onlytheMsh4ÐMsh5pathwayisactiveandanextremeformofinterferenceensuresthatessentiallyeverychromosomehasoneandonlyoneCOduringmeiosismeiosis.However,whentwooreventhreechromosomesarefusedend-to-end,theresult-ingfusions,ratherthanexperiencingtwoorthreemeioticCOs,respectively,stillusuallyexperienceoneandonlyoneone(Figure4).ItappearsthatC.elegansCOcontrolactsonchromosomesasaunit,independentoflength,toensurethateachreceivesonlyoneCO.Continuityofchromosomeaxesisessentialtothemechanismofinterference.Whenfusedchromo-somesundergorecombinationwithtwounfusedchromo-somes,sothatoneofthetwoÔhomologuesÕisÔbrokenÕandthereforedoesnothaveacontinuousaxis,thenumberofCOsincreases(Figure4).Inaddition,amutationlimitingthelevelofthemeiosis-speciÞcchromosome-axiscom-ponentHim3increasesthefrequencyofchromosomepairsthatexperiencedoubleCOsCOs.Acurrentmodelsuggeststhatstressforcesintheaxesofmeioticchromo-somespromotemeioticCOs,which,inturn,relieveaxialstresslocally,suppressingfurtherCOs,thatis,generatinggenerating.However,howthiswouldaccountforotheraspectsofinterference,suchasthatofZip2ÐZip3foci,isunclear.Recently,anentirelynewlevelofCOregulationinbuddingyeasthasbeenreported:aphenomenontermedÔcrossoverhomeostasisÕ.ThisworkwascarriedoutusinghypomorphicallelesofSpo11,whichreducetheDSBfre-quencytovaryingdegrees.AstheDSBfrequencyisreduced,thefrequencyofCOsdoesnotfallintandem;rather,COnumbersaremaintainedandNCOsarereducedpreferen-tiallyinstead[58].ThissupportsmodelsinwhichaÞxednumberofCOsarederivedfromtheÔpoolÕofallDSBs,withtheremainderoftheDSBsproducingNCOs[57,58]WhetherCOhomeostasisexistsinorganismsotherthanbuddingyeasthasnotyetbeendetermined.Severaldifferentnon-randomdistributionscanbeobservedinmeiosis.TheseincludethepositionsofDSBs,whichsubsetofDSBsformCOs,thenumberandlocationsofCOs,andthepositioningofproteincomplexes,suchasZip2ÐZip3.Unifyingmodelsthatexplainmultiplenon-randomdistributions,seenacrossarangeofmodelorgan-isms,intermsofoneorasmallnumberofconserved,underlyingprocessesareattractiveattractive.However,itisalsopossiblethatmorethanonefundamentalmechanismisinvolvedand,hence,theremightbemorethanonetypeofinterferenceactingduringmeiosis.Fundamental Figure4.IntactchromosomeaxesarerequiredfortransmissionofCOinterferenceinthewormC.elegans.EachpairofhomologouschromosomesusuallyundergoesoneandonlyoneCOpermeiosi

s.Whentwo,oreventhree,chromosomesarefused,theresultinglargechromosomesstillusuallyundergooneandonlyonecrossoverperpairduringmeiosis.Thisindicatesthat,forthepurposesofinterference,intactchromosomesaretreatedasasingleunit,irrespectiveofsize.Bycontrast,ifafusionoftwoorthreechromosomesundergoesrecombinationwithtwounfusedhomologouschromosomes,morethanoneCOpermeiosisoccurs.Thisisequivalenttorecombinationbetweentwofusedchromosomesbutwhereonehasanaxialdiscontinuity.Therefore,anintactchromosomeaxisisnecessaryfortransmissionof TRENDSinCellBiologyVol.xxxNo.x5 TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com mechanisticdifferencesmightalsoexistamongspecies.Forexample,inmice,proteincomplexesinvolvedmostlyinNCOormostlyinCOformationbothshowinterference,ofdifferentstrengthsstrengths.Inaddition,theproteincomplexesassociatedwiththesitesofCOsinmiceshowinterferenceintheabsenceofintactaxialelements,aswellasintheabsenceofintactSCSC.Choiceofpartner-DNAmoleculeforcrossing-overAnimportantfunctionofmeioticrecombinationisthegenerationofCOsbetweenhomologouschromosomes.How-ever,whenaDSBoccurs,itdoesnothavetoberepairedagainstthehomologouschromosome:recombinationwiththesisterchromatidcanalsooccur(Figure5).Inaddition,ifhomologyexistselsewhereinthegenome,ectopicrecombi-nationwithanon-alleliclocuscantakeplace.Whatdeter-minesthechoiceofpartnerinmeioticrecombination?PartnerchoiceinmeioticrecombinationcanbestudiedatDSBhotspotsusinghomologouschromosomeswithdifferentpatternsofrestrictionsitesatahotspotlocus.Thisenablesintersisterrecombinationintermediatestobedistinguishedfrominterhomologuerecombinationinter-mediates.SuchphysicalstudiesofDNAintermediatesatabuddingyeastmeioticrecombinationhotspotindicatedthatinterhomologuerecombinationisgreatlyfavoredoverintersisterrecombination,incontrasttothegeneralbiasforintersistereventsseenduringmitosismitosis.Becausethismakessenseintermsofpromotingproductiveinterhomo-logueevents,itwaspresumedtobeauniversalfeatureofmeiosis.However,recentresearchinÞssionyeasthasdisprovedtheuniversalityofthisconclusion:intersisterrecombinationisfavoredoverinterhomologuerecombina-tionatameioticrecombinationhotspothotspot.Mechanistically,thedifferenceinpartnerchoicebetweenbuddingandÞssionyeastappearstobeexplainedbythepresenceofabarriertointersisterrecombinationthatispresentintheformerbutnotinthelatter(Figure5ThisisseenmostclearlywhencomparingthebehaviorofmutationsaffectingDmc1,ameiosis-speciÞcstrand-exchangeprotein.Inmutantsofbothyeasts,inter-homologuerecombinationisreduced.However,inÞssionyeast,essentiallyeveryDSBisstillrepaired,presumablyagainstasisterchromatidchromatid,whereas,inbuddingyeast,DSBsremainunrepaired,indicatingtheexistenceofabarriertointersisterrepairrepair.LikeÞssionyeast,plantsappeartolacktheintersisterrecombinationbarrierseeninbuddingyeastyeast.ThenatureofthebuddingyeastbarrierisunclearbutinvolvestheMek1proteinkinaseandtheHop1andRed1axial-elementcomponents.Mutationofremovesthebarriertointersisterrecombina-tioninabuddingyeastyeast.Inadditiontotheintersisterrecombinationbarrierinbuddingyeast,interhomologuerecombinationmightbeupregulatedspeciÞcallybytheHed1proteininthatorgan-ism.ThisproteinpromotestheuseofDmc1bysuppressingrecombinationcarriedoutsolelybytheconstitutivelyexpressedRad51strand-exchangeproteinprotein.Hed1hasnotyetbeencharacterizedinothermodelorganisms.Asmentionedearlier,meioticrecombinationcanoccurbetweenhomologousDNAsequencespresentatdifferentplacesonthegenome(ectopicrecombination),aswellasbetweenthesamelocusonsisterchromatidsorhomolo-gouschromosomes(allelicrecombination).Generally,ecto-piceventsoccurlessfrequentlythanallelicevents,although,inbuddingyeast,someectopicrecombinationratesapproachallelicfrequenciesfrequencies.Ingeneral,buddingyeastappearstohavemoreformsofcrossovercontrol,suchasinterferenceandthebarriertointersisterrecombination,thandoesÞssionyeast.WhyaretheseformsofregulationnecessarywhenmeiosisinÞssio

nyeastoccurssuccessfullywithoutthem?COcontrolappearstoexisttolimitthetotalamountofrecombination,implyingthatCOscanbedeleteriousifoccurringtoofrequently.Fissionyeast,withanunusuallysmallnumberofrelativelylargechromosomes,needsfewertotalCOs,intheabsenceofCOcontrol,toensureatleastoneCOperchromosomepermeiosis.Thisnumberispresumablylowenoughtoavoiddeleteriouseffectsand,hence,theneces-sityforCOcontrol.However,theseissuesarefarfromsettledandremaintopicsofdebate.ConcludingremarksRecentresearchhasgreatlyexpandedourunderstandingofhowmeioticCOsform,howtheirdistributionandnum-berareregulatedandhowCOpartnerchoiceismade.NovelpathwaysofCOandNCOformationhavebeenidentiÞed,alongwithnewformsofCOregulation.Inparticular,thesingleSzostakmodelforCOandNCOformationhasbeenreplacedbyatleastthreebranchesleadingfromaninitiatingDSBtoproduceNCOsorinter-feringornon-interferingCOs.Thefullerpicturenowemer-ginghighlightsthemechanisticdifferencesbetweenmeioticrecombinationindifferentorganismsandindicatesthattheideaofasinglepathwayofmeioticrecombinationisobsolete.Futurestudieswillconcentrateonexploringthenewpathwaysthatrecentresearchhasrevealedand Figure5.Partnerchoiceduringmeioticrecombination.RecombinationinitiatedbyaDSBononechromatidcanoccurwiththehomologouslocusontheother(sister)chromatidofthesamechromosomeorwiththehomologouslocioneitherchromatidoftheotherhomologouschromosome.Inbuddingyeast,astrongbiastointerhomologuerecombinationisseeninmeiosismeiosisbut,bycontrast,infissionyeast,abiastointersisterrecombinationisseenseen.Thebiastointerhomologueeventsinbuddingyeastseemstobetheresultofabarriertointersisterrecombinationthatisabsentfromfissionyeast. TRENDSinCellBiologyVol.xxxNo.x TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com understandingthecontrastingmeioticrecombinationmechanismsandtheircontrolindifferentorganisms.WethankSueAmundsenandLutherDavisforcriticalreadingofthemanuscript.OurresearchissupportedbygrantsR01GM031693andR01GM032194fromtheNationalInstitutesofHealth.1Szostak,J.W.etal.(1983)Thedouble-strand-breakrepairmodelfor33,25Ð352Sun,H.etal.(1989)Double-strandbreaksataninitiationsiteformeioticgeneconversion.338,87Ð903Schwacha,A.andKleckner,N.(1995)IdentiÞcationofdoubleHollidayjunctionsasintermediatesinmeioticrecombination.83,783Ð7914Cervantes,M.D.etal.(2000)MeioticDNAbreaksassociatedwithrecombinationinS.pombeMol.Cell5,883Ð8885Qin,J.etal.(2004)MousestrainswithanactiveH2-EameioticrecombinationhotspotexhibitincreasedlevelsofH2-Ea-speciÞcDNAbreaksintesticulargermcells.Mol.Cell.Biol.24,1655Ð16666Mahadevaiah,S.K.etal.(2001)RecombinationalDNAdouble-strandbreaksinmiceprecedesynapsis.Nat.Genet.27,271Ð2767Allers,T.andLichten,M.(2001)Differentialtimingandcontrolofnoncrossoverandcrossoverrecombinationduringmeiosis.8Guillon,H.etal.(2005)CrossoverandnoncrossoverpathwaysinmouseMol.Cell20,563Ð5739Terasawa,M.etal.(2007)Meioticrecombination-relatedDNAsynthesisanditsimplicationsforcross-overandnon-cross-overrecombinantformation.Proc.Natl.Acad.Sci.U.S.A.10Borner,G.V.etal.(2004)Crossover/noncrossoverdifferentiation,synaptonemalcomplexformation,andregulatorysurveillanceattheleptotene/zygotenetransitionofmeiosis.117,29Ð4511Osman,F.etal.(2003)GeneratingcrossoversbyresolutionofnickedHollidayjunctions:aroleforMus81-Eme1inmeiosis.Mol.Cell12Smith,G.R.etal.(2003)FissionyeastMus81ÐEme1Hollidayjunctionresolvaseisrequiredformeioticcrossingoverbutnotforgene165,2289Ð229313Bhagat,R.etal.(2004)Studiesoncrossover-speciÞcmutantsandthedistributionofcrossingoverinDrosophilaCytogenet.Genome107,160Ð17114Boddy,M.N.etal.(2001)Mus81ÐEme1areessentialcomponentsofaHollidayjunctionresolvase.107,537Ð54815Cromie,G.A.etal.(2006)SingleHollidayjunctionsareintermediatesofmeioticrecombination.127,1167Ð117816Chen,X.B.etal.(2001)HumanMus81-associatedendonucleasecleavesHollidayjunctionsinvitroMol.Cell8,1117Ð112717Gaillard,P.H.etal.(2003)TheendogenousMus81ÐEme1complexresolvesHollidayjunctionsbyanickandco

unternickmechanism.12,747Ð75918Whitby,M.C.etal.(2003)CleavageofmodelreplicationforksbyÞssionyeastMus81ÐEme1andbuddingyeastMus81ÐMms4.J.Biol.Chem.278,6928Ð693519Gaskell,L.J.etal.(2007)Mus81cleavageofHollidayjunctions:afailsafeforprocessingmeioticrecombinationintermediates?26,1891Ð190120McPherson,J.P.etal.(2004)InvolvementofmammalianMus81ingenomeintegrityandtumorsuppression.304,1822Ð182621delosSantos,T.etal.(2003)TheMus81/Mms4endonucleaseactsindependentlyofdouble-Hollidayjunctionresolutiontopromoteadistinctsubsetofcrossoversduringmeiosisinbuddingyeast.164,81Ð9422Sekelsky,J.J.etal.(2000)DNArepairinDrosophila:insightsfromthegenomesequence.J.CellBiol.150,F31ÐF3623Argueso,J.L.etal.(2004)CompetingcrossoverpathwaysactduringmeiosisinSaccharomycescerevisiaeGenetics168,1805Ð181624Snowden,T.etal.(2004)hMSH4-hMSH5recognizesHollidayjunctionsandformsameiosis-speciÞcslidingclampthatembraceshomologousMol.Cell15,437Ð45125Zalevsky,J.etal.(1999)CrossingoverduringCaenorhabditiselegansmeiosisrequiresaconservedMutS-basedpathwaythatispartiallydispensableinbuddingyeast.153,1271Ð128326Meneely,P.M.etal.(2002)CrossoverdistributionandhighinterferenceforboththeXchromosomeandanautosomeduringoogenesisandspermatogenesisinCaenorhabditiselegans162,1169Ð117727Hillers,K.J.andVilleneuve,A.M.(2003)Chromosome-widecontrolofmeioticcrossingoverinC.elegansCurr.Biol.13,1641Ð164728Munz,P.(1994)AnanalysisofinterferenceintheÞssionyeastSchizosaccharomycespombe137,701Ð70729Copenhaver,G.P.etal.(2002)CrossoverinterferenceinArabidopsisGenetics160,1631Ð163930Housworth,E.A.andStahl,F.W.(2003)Crossoverinterferenceinhumans.Am.J.Hum.Genet.73,188Ð19731Higgins,J.D.etal.(2004)TheArabidopsisMutShomologAtMSH4functionsatanearlystepinrecombination:evidencefortwoclassesofrecombinationinGenesDev.18,2557Ð257032Mercier,R.etal.(2005)TwomeioticcrossoverclassescohabitinArabidopsis:oneisdependentonMER3,whereastheotheroneisCurr.Biol.15,692Ð70133Chelysheva,L.etal.(2007)Zip4/Spo22isrequiredforclassICOformationbutnotforsynapsiscompletioninArabidopsisthalianaPLoSGenet.3,e8334deVries,S.S.etal.(1999)MouseMutS-likeproteinMsh5isrequiredforproperchromosomesynapsisinmaleandfemalemeiosis.GenesDev.13,523Ð53135Kneitz,B.etal.(2000)MutShomolog4localizationtomeioticchromosomesisrequiredforchromosomepairingduringmeiosisinmaleandfemalemice.GenesDev.14,1085Ð109736Hunter,N.andKleckner,N.(2001)Thesingle-endinvasion:anasymmetricintermediateatthedouble-strandbreaktodouble-Hollidayjunctiontransitionofmeioticrecombination.106,59Ð7037Bell,L.R.andByers,B.(1983)HomologousassociationofchromosomalDNAduringyeastmeiosis.ColdSpringHarb.Symp.Quant.Biol.829Ð84038deMassy,B.(2003)Distributionofmeioticrecombinationsites.Genet.19,514Ð52239Gerton,J.L.etal.(2000)GlobalmappingofmeioticrecombinationhotspotsandcoldspotsintheyeastSaccharomycescerevisiaeNatl.Acad.Sci.U.S.A.97,11383Ð1139040Borde,V.etal.(2004)AssociationofMre11pwithdouble-strandbreaksitesduringyeastmeiosis.Mol.Cell13,389Ð40141Mieczkowski,P.A.etal.(2006)GlobalanalysisoftherelationshipbetweenthebindingoftheBas1ptranscriptionfactorandmeiosis-speciÞcdouble-strandDNAbreaksinSaccharomycescerevisiaeCell.Biol.26,1014Ð102742Mieczkowski,P.A.etal.(2007)LossofahistonedeacetylasedramaticallyaltersthegenomicdistributionofSpo11p-catalyzedDNAbreaksinSaccharomycescerevisiaeProc.Natl.Acad.Sci.U.S.A.104,3955Ð396043Baudat,F.andNicolas,A.(1997)Clusteringofmeioticdouble-strandbreaksonyeastchromosomeIII.Proc.Natl.Acad.Sci.U.S.A.5213Ð521844Young,J.A.etal.(2002)MeioticrecombinationremotefromprominentDNAbreaksitesinS.pombeMol.Cell9,253Ð26345Cromie,G.A.etal.(2007)AdiscreteclassofintergenicDNAdictatesmeioticDNAbreakhotspotsinÞssionyeast.PLOSGenetics.3,e14146Sym,M.andRoeder,G.S.(1994)Crossoverinterferenceisabolishedintheabsenceofasynaptonemalcomplexprotein.Cell79,283Ð29247Page,S.L.andHawley,R.S.(2004)Thegeneticsandmolecularbiologyofthesynaptonemalcomplex.Annu.Rev.CellDev.Biol.20,525Ð55848Perry,J.etal.(2005)Bioinformaticanalysesimplicatethecollaboratingmeioticcrossover/chiasmaproteinsZip2,Zip3,andSpo22/Zip4inubiquitinlabeling.Proc.Natl.Acad.Sci.U.S

.A.102,17594Ð1759949Novak,J.E.etal.(2001)ThebuddingyeastMsh4proteinfunctionsinchromosomesynapsisandtheregulationofcrossoverdistribution.Genetics158,1013Ð102550Rockmill,B.etal.(2003)TheSgs1helicaseregulateschromosomesynapsisandmeioticcrossingover.Curr.Biol.13,1954Ð196251Fung,J.C.etal.(2004)Impositionofcrossoverinterferencethroughthenonrandomdistributionofsynapsisinitiationcomplexes.795Ð802 TRENDSinCellBiologyVol.xxxNo.x7 TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com 52Henderson,K.A.andKeeney,S.(2004)TyingsynaptonemalcomplexinitiationtotheformationandprogrammedrepairofDNAdouble-strandbreaks.Proc.Natl.Acad.Sci.U.S.A.101,4519Ð452453deBoer,E.etal.(2006)TwolevelsofinterferenceinmousemeioticProc.Natl.Acad.Sci.U.S.A.103,9607Ð961254Chua,P.R.andRoeder,G.S.(1998)Zip2,ameiosis-speciÞcproteinrequiredfortheinitiationofchromosomesynapsis.93,349Ð35955Agarwal,S.andRoeder,G.S.(2000)Zip3providesalinkbetweenrecombinationenzymesandsynaptonemalcomplexproteins.56Nabeshima,K.etal.(2004)Chromosome-wideregulationofmeioticcrossoverformationinCaenorhabditiselegansrequiresproperlyassembledchromosomeaxes.168,1275Ð129257Kleckner,N.etal.(2004)Amechanicalbasisforchromosomefunction.Proc.Natl.Acad.Sci.U.S.A.101,12592Ð1259758Martini,E.etal.(2006)Crossoverhomeostasisinyeastmeiosis.126,285Ð29559deBoer,E.etal.(2007)MeioticinterferenceamongMLH1focirequiresneitheranintactaxialelementstructurenorfullsynapsis.J.CellSci.120,731Ð73660Schwacha,A.andKleckner,N.(1997)Interhomologbiasduringmeioticrecombination:meioticfunctionspromoteahighlydifferentiatedinterhomolog-onlypathway.90,1123Ð113561Young,J.A.etal.(2004)ConservedandnonconservedproteinsformeioticDNAbreakageandrepairinyeasts.Genetics167,593Ð60562Siaud,N.etal.(2004)Brca2isinvolvedinmeiosisinthalianaassuggestedbyitsinteractionwithDmc1.EMBOJ.23,1392Ð63Bishop,D.K.etal.(1999)Highcopynumbersuppressionofthemeioticarrestcausedbyamutation:REC114imposesanearlyrecombinationblockandRAD54promotesaDMC1-independentDSBrepairpathway.GenesCells4,425Ð44464Wan,L.etal.(2004)Mek1kinaseactivityfunctionsdownstreamofRED1intheregulationofmeioticdoublestrandbreakrepairinbuddingyeast.Mol.Biol.Cell15,11Ð2365Niu,H.etal.(2005)PartnerchoiceduringmeiosisisregulatedbyHop1-promoteddimerizationofMek1.Mol.Biol.Cell16,5804Ð66Tsubouchi,H.andRoeder,G.S.(2006)BuddingyeastHed1down-regulatesthemitoticrecombinationmachinerywhenmeioticrecombinationisimpaired.GenesDev.20,1766Ð177567Virgin,J.B.andBailey,J.P.(1998)TheM26hotspotofSchizosaccharomycespombestimulatesmeioticectopicrecombinationandchromosomalrearrangements.Genetics149,1191Ð120468Schlecht,H.B.etal.(2004)Compartmentalizationoftheyeastmeioticnucleusrevealedbyanalysisofectopicrecombination.1189Ð120369Davis,L.andSmith,G.R.(2006)ThemeioticbouquetpromoteshomologinteractionsandrestrictsectopicrecombinationinSchizosaccharomycespombe174,167Ð177 TRENDSinCellBiologyVol.xxxNo.x TICB-453;NoofPages8 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07.007www.sciencedirect.com Branchingout:meioticrecombinationanditsregulationGarethA.CromieandGeraldR.SmithDivisionofBasicSciences,FredHutchinsonCancerResearchCenter,1100FairviewAvenueNorth,Seattle,WA98109-1024,USAHomologousrecombinationisadynamicprocessbywhichDNAsequencesandstrandsareexchanged.Inmeiosis,thereciprocalDNArecombinationeventscalledcrossoversarecentraltothegenerationofgeneticdiver-sityingametesandarerequiredforhomologsegregationinmostorganisms.Recentstudieshaveshedlightonhowmeioticcrossoversandotherrecombinationproducts Correspondingauthor:Cromie,G.A.(Availableonlinexxxxxx. TICB-453;NoofPages8www.sciencedirect.com0962-8924/$–seefrontmatter2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.tcb.2007.07.007 Pleasecitethisarticleinpressas:Cromie,G.A.andSmith,G.R.,Branchingout:meioticrecombinationanditsregulation,TrendsCellBiol.(2007),doi:10.1016/j.tcb.2007.07

Related Contents


Next Show more