/
Rounding-based Moves for Metric Labeling Rounding-based Moves for Metric Labeling

Rounding-based Moves for Metric Labeling - PowerPoint Presentation

maniakiali
maniakiali . @maniakiali
Follow
342 views
Uploaded On 2020-06-24

Rounding-based Moves for Metric Labeling - PPT Presentation

M Pawan Kumar Center for Visual Computing Ecole Centrale Paris Post Metric Labeling Random variables V v 1 v 2 v n Label set L l 1 l 2 l h Labelings ID: 785141

post rounding interval move rounding post move interval label hierarchical complete probability assign labeling simple random labels generate number

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Rounding-based Moves for Metric Labeling" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Rounding-based Movesfor Metric Labeling

M. Pawan Kumar

Center for Visual Computing

Ecole Centrale Paris

Slide2

Post

Metric Labeling

Random variables V = {v

1

, v2, …, vn}

Label set L = {l1, l2, …, lh}

Labelings quantatively distinguished by energy E(y)

Labeling y ∈ Ln

Unary potential of variable va ∈ V

a

θ

a

(

y

a

)

Slide3

Post

Metric Labeling

Random variables V = {v

1

, v

2, …, vn}Label set L = {l1, l

2, …, lh}Labelings

quantatively distinguished by energy E(y)

Labeling y ∈ Ln Pairwise potential of variables (

v

a

,v

b

)

a

θ

a(ya)

+ ∑(a,b) wab d(ya,yb)

wab is non-negative

d(.,.) is a metric distance function

min

y

Slide4

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based MovesEquivalence

Complete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide5

Post

Expansion Algorithm

Sky

House

Tree

Ground

Initialize with Tree

Expand Ground

Expand House

Expand Sky

Variables take label

l

α

or

retain current label

Boykov

,

Veksler

and

Zabih

, ICCV 1999

Slide6

Post

Move-Making Algorithms

Iteration t

Define S

t ⊆ Ln containing current labeling

yt

∑a θa(ya)

+ ∑(a,b)

wab d(ya,yb

)

argmin

y

s.t.

y

∈ S

t

Sometimes

it can even be solved exactly

Above problem is easier than original problem

yt+1 =

Start with an initial labeling

y

0

Slide7

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based Moves

EquivalenceComplete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide8

Post

Linear Programming Relaxation

Chekuri

,

Khanna, Naor and Zosin, SODA 2001

Binary indicator xa(i) ∈ {0,1}

If variable ‘a’ takes the label ‘i’ then xa(i) = 1

∑i xa(

i) = 1Each variable ‘a’ takes one label

Similarly, binary indicator

x

ab

(

i,k

) ∈ {0,1}

Slide9

Post

Linear Programming Relaxation

Minimize a linear function over feasible

x

Indicators

x

a

(

i

),

x

ab

(

i,k

)

{0,1}

Relaxed

xa

(i), xab(i,k)  [0,1] Rounding

Chekuri, Khanna, Naor and Zosin

, SODA 2001

Slide10

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based Moves

EquivalenceComplete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide11

Post

Move-Making Bound

y

*: Optimal Labeling

y

: Estimated LabelingΣa

θa(ya) + Σ(a,b) wabd

(ya,yb)

Σa θa(y*a) + Σ(

a,b

)

w

ab

d

(y*

a

,y

*b)≥

Slide12

Post

Move-Making Bound

y

*: Optimal Labeling

y

: Estimated LabelingΣa

θa(ya) + Σ(a,b) wabd

(ya,yb)

Σa θa(y*a) + Σ(

a,b

)

w

ab

d

(y*

a

,y

*b)B≤

For all possible values of θa(i) and wab

Slide13

Post

Rounding Approximation

x

*: LP Optimal Solution

x

: Rounded SolutionΣa

Σi θa(i)xa(i) + Σ

(a,b) Σ(i,k) wabd(i,k)

xab(i,k)

Σ

a

Σ

i

θ

a

(i)x*a(i) + Σ(

a,b) Σ(i,k) wabd(i,k)x*ab(i,k)

Slide14

Post

Rounding Approximation

x

*: LP Optimal Solution

x

: Rounded SolutionΣa

Σi θa(i)xa(i) + Σ

(a,b) Σ(i,k) wabd(i,k)

xab(i,k)

Σ

a

Σ

i

θ

a

(i)x*a(i) + Σ(

a,b) Σ(i,k) wabd(i,k)x*ab(i,k)A

For all possible values of θa(i

) and wab

Slide15

Post

Equivalence

For any known rounding with approximation A

there exists a move-making algorithm

such that the move-making bound B = A

We know how to design such an algorithm

Slide16

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based MovesEquivalence

Complete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide17

Post

Complete Rounding

Treat x*

a

(

i

)  [0,1] as probability that ya = li

Cumulative probability

z

a

(

i

)

=

Σ

j≤i

x*

a(j)

0

z

a

(1)

z

a

(2)

z

a

(h) = 1

z

a

(k)

z

a

(

i

)

Generate a random number r

 (0,1]

Assign the label next to r

r

Slide18

Post

Complete Rounding - Example

0

z

a

(1)

z

a

(4)

z

a

(3)

z

a

(2)

0.25

0.5

0.75

1.0

0

z

b

(1)

z

b

(4)

z

b

(3)

z

b

(2)

0.7

0.8

0.9

1.0

0

z

c

(1)

z

c

(4)

z

c

(3)

z

c

(2)

0.1

0.2

0.3

1.0

r

r

r

Slide19

Post

Equivalent Move

Complete Move !!

Slide20

Post

Complete Move

Iteration t

Define S

t ⊆

Ln∑

a θa(ya)

+ ∑(a,b)

wab d(ya,yb)

argmin

y

s.t.

y

∈ S

t

y

t+1

=

Start with an initial labeling

y

0

Slide21

Post

Complete Move

Iteration t

Define S

t =

Ln∑

a θa(ya)

+ ∑(a,b)

wab d(ya,yb)

argmin

y

s.t.

y

∈ S

t

How do we solve this problem?

Above problem is the same as the original problem

y

t+1

=

Start with an initial labeling

y

0

Slide22

Post

Complete Move

Define S

t

= Ln

∑a θa

(ya)+ ∑

(a,b) wab d’(

ya,yb)

argmin

y

s.t.

y

∈ S

t

How do we solve this problem?

Above problem is the same as the original problem

y

t+1

=

Slide23

Post

Complete Move

Define S

t

= Ln

∑a θa

(ya)+ ∑

(a,b) wab d’(

ya,yb)

argmin

y

s.t.

y

∈ S

t

Obtained by solving a small LP

Submodular

overestimation d’ of d

y

t+1 =

Slide24

Post

Submodular

Overestimation

max

i,k d’(li,l

k)/d(li,lk)

mind’d’(li

,lk) ≥ d(li,lk

)s.t.

d’(l

i

,l

k+1

) +

d’(

l

i+1

,l

k) ≥ d(li,lk) +

d(li+1,lk+1)

Slide25

Post

Submodular

Overestimation

b

mind’

d’(li,lk) ≥ d(li

,lk)s.t.

d’(li,lk+1) +

d’(li+1,lk) ≥ d(li

,l

k

) +

d(

l

i+1

,l

k+1

)

bd(li,l

k) ≥ d’(li,lk)Dual provides worst-case instance for complete rounding

Slide26

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based MovesEquivalence

Complete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide27

Post

Interval Rounding

Treat x*

a

(

i

)  [0,1] as probability that ya = li

Cumulative probability

z

a

(

i

)

=

Σ

j≤i

x*

a(j)

0

z

a

(1)

z

a

(2)

z

a

(h) = 1

z

a

(k)

z

a

(

i

)

Choose an interval of length h’

Slide28

Post

Interval Rounding

Treat x*

a

(

i

)  [0,1] as probability that ya = li

Cumulative probability

z

a

(

i

)

=

Σ

j≤i

x*

a(j)

r

Generate a random number r

 (0,1]

Assign the label next to r

if it is within the interval

z

a

(k)-

z

a

(

i

)

0

Choose an interval of length

h’

REPEAT

Slide29

Post

Interval Rounding - Example

0

z

a

(1)

z

a

(4)

z

a

(3)

z

a

(2)

0.25

0.5

0.75

1.0

0

z

b

(1)

z

b

(4)

z

b

(3)

z

b

(2)

0.7

0.8

0.9

1.0

0

z

c

(1)

z

c

(4)

z

c

(3)

z

c

(2)

0.1

0.2

0.3

1.0

Slide30

Post

Interval Rounding - Example

0

z

a

(1)

z

a

(2)

0.25

0.5

0

z

b

(1)

z

b

(2)

0.7

0.8

0

z

c

(1)

z

c

(2)

0.1

0.2

r

r

r

Slide31

Post

Interval Rounding - Example

0

z

a

(1)

z

a

(4)

z

a

(3)

z

a

(2)

0.25

0.5

0.75

1.0

0

z

b

(1)

z

b

(4)

z

b

(3)

z

b

(2)

0.7

0.8

0.9

1.0

0

z

c

(1)

z

c

(4)

z

c

(3)

z

c

(2)

0.1

0.2

0.3

1.0

Slide32

Post

Interval Rounding - Example

0

z

c

(1)

z

c

(4)

z

c

(3)

z

c

(2)

0.1

0.2

0.3

1.0

Slide33

Post

Interval Rounding - Example

0

z

c

(3)

z

c

(2)

0.1

0.2

r

-

z

c

(1)

-

z

c

(1)

Slide34

Post

Interval Rounding - Example

0

z

a

(1)

z

a

(4)

z

a

(3)

z

a

(2)

0.25

0.5

0.75

1.0

0

z

b

(1)

z

b

(4)

z

b

(3)

z

b

(2)

0.7

0.8

0.9

1.0

0

z

c

(1)

z

c

(4)

z

c

(3)

z

c

(2)

0.1

0.2

0.3

1.0

Slide35

Post

Equivalent Move

Interval Move !!

Slide36

Post

Interval Move

Iteration t

y

∈ St iff

ya = yta or ya

∈ interval of labels

∑a θa(ya

)+ ∑(a,b)

w

ab

d(

y

a

,y

b

)

argminy

s.t.y ∈ Styt+1 =

Start with an initial labeling

y

0

Choose an interval of labels of length h’

How do we solve this problem?

Slide37

Post

Interval Move

Iteration t

y

∈ St iff

ya = yta or ya

∈ interval of labels

∑a θa(ya

)+ ∑(a,b)

w

ab

d’(

y

a

,y

b

)

argminy

s.t.y ∈ Styt+1 =

Start with an initial labeling

y

0

Choose an interval of labels of length h’

Submodular

overestimation d’ of d

Slide38

PostExisting Work

Move-Making Algorithms (Efficient)

Linear Programming Relaxation (Accurate)

Rounding-based MovesEquivalence

Complete Rounding and Complete MoveInterval Rounding and Interval MoveHierarchical Rounding and Hierarchical MoveOutline

Slide39

Post

Hierarchical Rounding

L

1

L

2l1

l2

l3l4

l5

l

6

l

7

l

8

l

9

L

3

Hierarchical clustering of labels (e.g. r-HST metrics)

Slide40

Post

Hierarchical Rounding

L

1

L

2l1

l2

l3l

4l5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels L

1

, L

2

or L

3

Move down the hierarchy until the leaf level

Slide41

Post

Hierarchical Rounding

L

1

L

2l1

l2

l3l4

l5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

1

, l

2

or l

3

Slide42

Post

Hierarchical Rounding

L

1

L

2l1

l2

l3l

4l5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

4

, l

5

or l

6

Slide43

Post

Hierarchical Rounding

L

1

L

2l1

l2

l3l

4l5

l

6

l

7

l

8

l

9

L

3

Assign variables to labels l

7

, l

8

or l

9

Slide44

Post

Equivalent Move

Hierarchical Move !!

Slide45

Post

Hierarchical Move

L

1

L

2l1

l2l

3l4

l5

l

6

l

7

l

8

l

9

L

3

Hierarchical clustering of labels (e.g. r-HST metrics)

Slide46

Post

Hierarchical Move

L

1

L

2l1

l2l

3l4

l5

l

6

l

7

l

8

l

9

L

3

Obtain labeling

y

1

restricted to labels {l

1

,l

2

,l

3

}

Slide47

Post

Hierarchical Move

L

1

L

2l1

l2

l3l4

l5

l

6

l

7

l

8

l

9

L

3

Obtain labeling

y

2

restricted to labels {l

4

,l

5

,l

6

}

Slide48

Post

Hierarchical Move

L

1

L

2l1

l2

l3l

4l5

l

6

l

7

l

8

l

9

L

3

Obtain labeling

y

3

restricted to labels {l

7

,l

8

,l

9

}

Slide49

Post

Hierarchical Move

L

1

L

2

L3

V

a

V

b

y

1

(a)

y

2

(a)

y

3

(a)

Move up the hierarchy until we reach the root

y

1

(b)

y

2

(b)

y

3

(b)

Slide50

Questions?

http://

mpawankumar.info

Slide51

Post

Simple Example - Rounding

θ

a

(1)xa(1) + θ

a(2)xa(2) + θb(1)

xb(1) + θb(2)

xb(2)minx

≥0+ d(1,1)xab

(1,1)

+

d(1,2)

x

ab

(1,2)

+ d(2,1

)

x

ab(2,1) + d(2,2)xab(2,2)

xa(1) + xa(2) = 1s.t.

xb(1) + x

b(2) = 1

x

ab

(1,1)

+

x

ab

(1,2) =

x

a

(1)

x

ab

(2,1)

+

x

ab

(2,2) =

x

a

(2)x

ab(1,1) + xab(2,1) = xb(1)xab(1,2) + xab(2,2) = xb(2)

Slide52

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

is assigned label l

1

?

x*

a

(1)

Probability that

V

a

is assigned label l

2

?

x*

a

(2)

Slide53

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

1

and l

1

?

min{x*

a

(1), x*

b

(1)}

Slide54

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

1

and l

1

?

min{x*

ab

(1,1)+x*

ab

(1,2), x*

ab

(1,1) + x*

ab

(2,1)}

x*

ab

(1,1)

+

min{x*

ab

(1,2), x*

ab

(2,1)}

Slide55

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

1

and l

2

?

max{0,x*

a

(1)

-

x*

b

(1)}

Slide56

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

1

and l

2

?

x*

ab

(1,2)

-

min{x*

ab

(1,2), x*

ab

(2,1)}

max{0,x*

ab

(1,2)

-

x*

ab

(2,1)}

Slide57

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

2

and l

1

?

max{0,x*

b

(1)

-

x*

a

(1)}

Slide58

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

2

and l

1

?

x*

ab

(2,1)

-

min{x*

ab

(1,2), x*

ab

(2,1)}

max{0,x*

ab

(2,1)

-

x*

ab

(1,2)}

Slide59

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

2

and l

2

?

1-max{x*

a

(1)

,

x*

b

(1)}

Slide60

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

2

and l

2

?

min{x*

a

(2)

,

x*

b

(2)}

Slide61

Post

Simple Example - Rounding

x*

a

(1) + x*

a

(2) = 1

x*

a

(1)

0

x*

b

(1) + x*

b

(2) = 1

x*

b

(1)

0

Generate a uniform random number r

 (0,1]

Assign the label next to r

r

r

Probability that

V

a

and

V

b

are assigned l

2

and l

2

?

min{x*

ab

(2,2)+x*

ab

(1,2), x*

ab

(2,2) + x*

ab

(2,1)}

x*

ab

(2,2)

+

min{x*

ab

(1,2), x*

ab

(2,1)}

Slide62

Post

Simple Example - Move

θ

a

(ya) + θb

(yb)miny

+ d(ya,yb)

ya ,

yb ∈ {1,2}If d is submodular

, solve using graph cuts

Otherwise

Slide63

Post

Simple Example - Move

θ

a

(ya) + θb

(yb)miny

+ d’(ya,yb)

ya ,

yb ∈ {0,1}If d is submodular

, solve using graph cuts

Otherwise

use

submodular

overestimation d’

Estimate d’ by minimizing distortion

Slide64

Post

Simple Example - Move

b

min

d'

d’(1,1) ≤ b d(1,1)s.t.d’(1,2) ≤ b d(1,2)

d’(2,1) ≤ b d(2,1)d’(2,2) ≤ b d(2,2)

d(1,1) ≤ d’(1,1)d(1,2) ≤ d’(1,2)

d(2,1) ≤ d’(2,1)d(2,2) ≤ d’(2,2)

d’(1,1) + d’(2,2) ≤ d’(2,1) + d’(2,2)

Dual LP provides worst-case rounding example

LP in the variables d’(

i,k

)

Slide65

Post

Simple Example - Move

d(1,1)β(1,1)+d(

1,2

)β(1,2)+d(2,1)β(2,1

)+d(2,2)β(2,2)minα,

β,γ≥0s.t.

d(1,1)α(1,1)+d(1,2)α(1,2)+d(2,1)α(2,1

)+d(2,2)α(2,2) = 1β(1,1) = α(1,1) + γ

β(

1,2) = α(1,2) -

γ

β

(2,1) = α(2,1) -

γ

β

(2,2) = α(2,2) +

γ

Set

xab*(i,k) = α(i,k)Set

γ = min{xab*(1,2), x

ab*(2,1)}