PDF-2CEE421L.MatrixStructuralAnalysis{DukeUniversity{Fall2013{H.P.GavinSol
Author : marina-yarberry | Published Date : 2015-11-02
fdg4827665517NotethatifK11K12K21K22thenthelinesareparallelThereisnouniquepointatwhichtheycrossandthereisnosolutionfdgK1fpgInotherwordsifK11K12K21K22thenthematrixKcannotbe
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "2CEE421L.MatrixStructuralAnalysis{DukeUn..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
2CEE421L.MatrixStructuralAnalysis{DukeUniversity{Fall2013{H.P.GavinSol: Transcript
fdg4827665517NotethatifK11K12K21K22thenthelinesareparallelThereisnouniquepointatwhichtheycrossandthereisnosolutionfdgK1fpgInotherwordsifK11K12K21K22thenthematrixKcannotbe. DualoflinearprogramininequalityformwedenetwoLPswiththesameparametersc2Rn,A2Rmn,b2RmanLPin`inequalityform'minimizecTxsubjecttoAxbanLPin`standardform'maximize bTzsubjecttoATz+c=0z0thisproblemiscal AddresscorrespondencetoMathiasFleck,DukeUniversity,LSRCBldg.,Box90999,Durham,NC27708,e-mail:mathias. 2!k+!k 2(7)Rayleighdampingcanbeextended.ItcanbeshownthatthedampingmatrixC=M+K+ MK 1M+KM 1K(8)isaclassicaldampingmatrix.AnextendedRayleighdampingmatrix,calledCaugheydamp-ing[1,2],canbecomputedfromC Linear-fractionalprogramminimizecTx+d gTx+hsubjecttoAxbgTx+h0ifneeded,weinterpreta=0asa=0=+1ifa 0,a=0= 1ifa0however,inmostapplications,AxbimpliesgTx+h 0equivalentform(withaddedvariable)minimize Grantsponsor:LeverhulmeTrust*Correspondenceto:AnneStarling,DepartmentofBiologicalAnthropologyandAnatomy,DukeUniversity,08BiologicalSciencesBldg.,Box90383,Durham,NC27708-0383.E-mail:aps4@duke.eduReceiv Processing Draft,Fall2013.Submittedforinclusionin:Schwarz,Florian(ed.)UnderContract.ExperimentalPerspectivesonPresuppositions,editedvolumeforSpringer UniversityofArizona,DukeUniversity leeTEACHINGInstructor,MIT,UndergraduateseminarinDiscreteMathematics(Spring2014)Instructor,MIT,TopicsinMathematicswithapplicationsinnance(Fall2013,2014)Instructor,KMO(KoreanMathematicalOlympiad)sum Linearandanefunctionslinearfunction:afunctionf:Rn!Rislineariff(x+y)=f(x)+f(y)8x;y2Rn;;2Rproperty:fislinearifandonlyiff(x)=aTxforsomeaanefunction:afunctionf:Rn!Risaneiff(x+(1 )y)=f(x)+(1 ) Subspacedenition:anonemptysubsetSofRnisasubspaceifx;y2S;;2R=)x+y2Sextendsrecursivelytolinearcombinationsofmorethantwovectors:x1;:::;xk2S;1;:::;k2R=)1x1++kxk2Sallsubspacescontaintheorigin LM(x)=M1 x L 1!+M2x LThetotalpotentialenergyofabeamwiththeseforcesandmomentsis:U=1 2ZL0M2 EIdx+1 2ZL0V2 G(A=)dxByCastigliano'sTheorem,1=@U @M1=ZL0M(x)@M(x) @M1 EIdx+ZL0V(x)@V(x) @M1 G(A=)dx=0B@ZL0 k=(m+ma).Ifca=0,thesystemisun-dampedandr=fiszeroat!=q ka=ma.Theequationsofmotioninthiscasearemr(t)+kr(t) ca(_ra(t) _r(t)) ka(ra(t) r(t))=fcos!t(7)mara(t)+ca(_ra(t) _r(t))+ka(ra(t) r(t))=0(8)Using DukeUniversity,UniversityofToronto,KLARU,BaycrestCentre,Toronto2003MassachusettsInstituteofTechnologyJournalofCognitiveNeuroscience15:2,pp.249 Ghee-CheePhuaMDisaffiliatedwiththeDivisionofPulmonary,Al-lergy,andCriticalCare,DepartmentofMedicine,DukeUniversity,Durham,NorthCarolina,andwiththeDepartmentofRespiratoryandCriticalCareMedicine,Singapo
Download Document
Here is the link to download the presentation.
"2CEE421L.MatrixStructuralAnalysis{DukeUniversity{Fall2013{H.P.GavinSol"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents