/
AndrewC.Connolly,1andJ.SwaroopGuntupalli11DepartmentofPsychologicaland AndrewC.Connolly,1andJ.SwaroopGuntupalli11DepartmentofPsychologicaland

AndrewC.Connolly,1andJ.SwaroopGuntupalli11DepartmentofPsychologicaland - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
375 views
Uploaded On 2015-10-10

AndrewC.Connolly,1andJ.SwaroopGuntupalli11DepartmentofPsychologicaland - PPT Presentation

expressedastheresponsestrengthsforfeaturesofthatpatternegvoxelssingleneuronsormodeldimensionsHyperalignmenttransformationofindividualrepresentationalspacesintoamodelrepresentationalspaceinwhich ID: 156557

expressedastheresponsestrengthsforfeaturesofthatpattern e.g. voxels singleneurons ormodeldimensionsHyperalignment:transformationofindividualrepresentationalspacesintoamodelrepresentationalspaceinwhich

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "AndrewC.Connolly,1andJ.SwaroopGuntupalli..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AndrewC.Connolly,1andJ.SwaroopGuntupalli11DepartmentofPsychologicalandBrainSciences,CenterforCognitiveNeuroscience,DartmouthCollege,Hanover,NewHampshire03755;email:james.v.haxby@dartmouth.edu,andrew.c.connolly@dartmouth.edu,swaroopgj@gmail.com2CenterforMind/BrainSciences(CIMeC),UniversityofTrento,Rovereto,Trentino38068,ItalyAnnu.Rev.Neurosci.2014.37:435Ð56FirstpublishedonlineasaReviewinAdvanceonJune25,2014TheAnnualReviewofNeuroscienceisonlineatneuro.annualreviews.orgThisarticleÕsdoi: expressedastheresponsestrengthsforfeaturesofthatpattern,e.g.,voxels,singleneurons,ormodeldimensionsHyperalignment:transformationofindividualrepresentationalspacesintoamodelrepresentationalspaceinwhicheachdimensionhasacommontuningfunctionREPRESENTATIONALSPACERepresentationalspaceisahigh-dimensionalspaceinwhicheachneuralresponseorstimulusisexpressedasavectorwithdifferentvaluesforeachdimension.Inaneuralrepresentationalspace,eachpatternfeatureisameasureoflocalactivity,suchasavoxelorasingleneuron.Inastimulusrepresentationalspace,eachfeatureisastimulus components,ormeasuresofsynchronybetweensources.Thecomputationaladvantagesofrepresentationalvectorspacesextendbeyondneuralrepre-sentationalspacestorepresentationalspacesforstimuliorcognitivestates.Forexample,avisualstimuluscanbemodeledasasetoffeaturesbasedonresponsepropertiesofneuronsinV1,ashigher-ordervisualfeatures,orasasetofsemanticlabels.SoundsÑvoicesandmusicÑcanbemod-eledassetsofacousticfeatures,wordscanbemodeledassetsofsemanticfeatures,actionsassetsofmovementandgoalfeatures,etc.Oncethedescriptionofthestimulusisinarepresentationalspace,variouscomputationalmanipulationscanbeappliedforrelatingstimulusrepresentationalspacestoneuralrepresentationalspaces.Allthemajorvarietiesofneuraldecodingandencodinganalysesfollowfromthisconversionofpatternsofbrainactivityorstimulitosinglepointsinhigh-dimensionalrepresentationalvectorspaces.MVPclassiÞcationusesmachinelearningmethodstodeÞnedecisionboundariesinaneu-ralrepresentationalspacethatbestdistinguishasetofresponsevectorsforonebrainstatefromothers.RSAanalyzesthesimilaritybetweenresponsevectorsasdistancesintherepresentationalspace.Stimulus-model-basedencodingpredictsthelocationoftheneuralresponsevectorforanewstimulusonthebasisofthecoordinatesofthatstimulusinastimulusfeaturespace.Stimulus-model-baseddecodingtestswhethertheencoding-basedpredictionallowscorrectclassiÞcationofneuralresponsevectorstonewstimuli.Buildingamodelofaneuralrepresentationalspacethatiscommonacrossbrainsrequireshyperalignmenttorotatethecoordinateaxesofindividualrepresentationalspacestominimizethedifferenceinthelocationsofresponsevectorsforthesamestimuli.Thus,stimuliandothercognitiveeventsarerepresentedasvectorsinneuralrep-resentationalspacesaswellasinstimulusrepresentationalspaces,andthecomputationaltaskforunderstandingrepresentationbecomesoneofcharacterizingthegeometrieswithinspacesandrelatingthegeometriesofthesespacestoeachother.Numerically,asetofresponsevectorsinarepresentationalspaceisamatrixinwhicheachcol-umnisalocalpatternfeature(e.g.,voxel)andeachrowisaresponsevector(Figure1).Thevaluesineachcolumnreßectthedifferentialresponsesofthatpatternfeaturetoconditionsorstimuli. vectorsAnMVPclassiÞcationanalysisbeginswithdividingthedataintoindependenttrainingandtestdatasets(Figure2).ThedecisionrulesthatdeterminetheconÞnesofeachclassofneuralresponsevectorsaredevelopedontrainingdata.Theborderbetweensectorsfordifferentconditionsiscalledadecisionsurface.ThevalidityoftheclassiÞeristhentestedontheindependenttestdata.Forvalidgeneralizationtesting,thetestdatamustplaynoroleinthedevelopmentoftheclassiÞer,includingdatapreprocessing(Kriegeskorteetal.2009).EachtestdataresponsevectoristhenclassiÞedasanotherexemplaroftheconditionassociatedwiththesectorinwhichitislocated.ClassiÞeraccuracyisthepercentageoftestvectorsthatarecorrectlyclassiÞed.AmorerevealingassessmentofclassiÞerperformanceisaffordedbyexaminingtheconfusionmatrix.AconfusionmatrixpresentsthefrequenciesforallclassiÞcationsofeachexperimentalcondition,includingthedetailsaboutmisclassiÞcations.ExaminationofmisclassiÞcationsaddsinformationaboutwhichconditionsaremostdistinctandwhicharemoresimilar.ThisinformationisanalyzedusingadditionalmethodsinRSA(seenextsection).ExaminationofclassiÞcationaccuracyforeachconditionseparatelycanalerttheinvestigatortowhetheraverageaccuracyisreallydependentonasmallnumberofconditions,ratherthananaccuratereßectionofperformanceacrossallormostconditions.Thus,averageclassiÞcationaccuracyisausefulmetricbutdiscardsinformationthatcanbediscoveredbyexaminingtheclassiÞcationconfusionmatrix.Confusionmatricesareshownin Percent classi! Figure5Threeexamplesofrepresentationalsimilarityanalysis(RSA).(a)Dendrogramderivedfrommultiplesingle-unitrecordingsinmacaqueinferiortemporal(IT)cortex(fromKianietal.2007)showshierarchicalcategorystructurewithremarkabledetailtothelevelofdifferentclassesofanimalbodytype.( Figure6).CorticalÞeldscanalsobeidentiÞedbyvirtueofhavingsimilaritystructuresthat00.85Mean correlationa MVP classi!cationb Between-subject correlation of DSMs112Number of subjects112Number of subjectsc DSM cluster 1 - LOCd DSM cluster 2 - early visualFigure6MVPAsearchlightanalyses(Kriegeskorteetal.2006)foridentifyingcorticalÞeldsofinterest(fromConnollyetal.2012a).MVPclassiÞcationaccuracies(a)andconsistencyinlocalsimilaritystructuresacrosssubjects(b)identifysimilarlylargeswathsofthevisuallyresponsivecortex.ClusteringofvoxelsbasedonsimilaritiesbetweenlocallydeÞnedsearchlightdissimilaritymatrix(DSMs)providesameanstoidentifycorticalÞeldswithuniquesharedstructuresuchasthelateraloccipitalcomplex(LOC)(c)andtheearlyvisual howRSAmaybeusedtotestawell-controlledmodel.OneofthegreatadvantagesofRSAisthatitstripsaclusterofresponsevectorsoutofafeature-basedrepresentationalspaceintoarepresentationalspacebasedonrelativedistancesamongvec-tors.Thisformatallowscomparisonofrepresentationalgeometriesacrosssubjects,acrossbrainregions,acrossmeasurementmodalities,andevenacrossspecies.Thesecond-orderisomorphismacrossthesespacesisaffordedbythefeature-independentformatofDSMs.Forexample,between-subjectsimilarityofDSMshasbeenexploitedtoaffordbetween-subjectMVPclassiÞcation(Abdietal.2012b,Raizada&Connolly2012).Thefeature-independentsecond-orderisomorphism,however,doeshavesomecost.Strippingrepresentationalspacesoffeaturesmakesitimpossibletocomparepopulationcodesintermsoftheconstituenttuningfunctionsofthosefeatures.Thus,onecannotinvestigatewhetherthespacesindifferentsubjectssharethesamefeaturetuningfunctionsorhowthesetuningfunctioncodesdifferfordifferentbrainregions.Onecannotpredicttheresponsetoanewstimulusinasubjectonthebasisoftheresponsestothatstimulusinothersubjects.Onecannotpredictthetuningfunctionforindividualneuralfeaturesintermsofstimulusfeatures,precludinginvestigatorsfrompredictingtheresponsepatternvectorforanewstimulusonthebasisofitsfeatures.Thenexttwosections sumofthesepatternsofweights(Figure8a).ModelsofVTcortexbasedonsingledimensions,suchascontraststhatdeÞnecategory-selectiveregions,aremodeledwellinthe35-dimensionalmodelspace(Figure8b),butthesesingledimensionsaccountforonlyasmallportionofthevarianceinresponsestoadynamicandvariednaturalstimulussuchasthemovie.Forexample,thecontrastbetweenresponsestofacesandresponsestoobjects,whichdeÞnesthefusiformfacearea(FFA)(Kanwisheretal.1997),accountsforonly12%ofthevariancethatisaccountedforbythe35-dimensionalmodel.Thisresultindicatesthatmodelsbasedonsimple,univariatecontrastsareinsufÞcientasmodelsofneuralrepresentationalspaces.Theuseofacomplex,dynamicstimulusisessentialforderivingtransformationmatrixparam-etersthataffordgeneralvalidityacrossawiderangeofstimuli.Transformationmatricescanalsobecalculatedonthebasisofresponsestomorecontrolledexperiments,suchasthecategoryper-ceptionexperiments.Thesetransformationmatricesarevalidformodelingtheresponsevectorsforstimuliinthatexperimentbut,whenappliedtodatafromotherexperiments,donotaffordBSCofnewstimuli(Haxbyetal.2011).Thisresultindicatesthatdatafromalimitedsamplingofbrainstates,suchasthosesampledinastandardcategoryperceptionexperiment,donotprovideasufÞcientbasisforbuildingacommonmodelofaneuralrepresentationalspace.STIMULUS-MODEL-BASEDENCODINGANDDECODINGForMVPclassiÞcation,RSA,andhyperalignment,aresponsevectortobedecodediscomparedwithresponsevectorsforthatsamestimulusmeasuredinthesamesubjectorinothersubjects.Thesemethodscannotpredicttheresponsepatternforanovelstimulusorexperimentalcondition.Stimulus-model-basedmethodsextendneuraldecodingtonovelstimulibypredictingtheresponsetostimulusfeaturesratherthantowholestimuli.Thestimuliusedtoproducetrainingdataforstimulus-model-baseddecodingareanalyzedintoconstituentfeatures.FeaturesetsusedforthistypeofanalysisincludemodelsofV1neuron ChenY,NamburiP,ElliottLT,HeinzleJ,SoonCS,etal.2011.Corticalsurface-basedsearchlightdecoding.NeuroImage56:582Ð92ConnollyAC,GobbiniMI,HaxbyJV.2012a.Threevirtuesofsimilarity-basedmulti-voxelpatternanalysis:anexamplefromthehumanobjectvisionpathway.InUnderstandingVisualPopulationCodes(UVPC):TowardACommonMultivariateFrameworkforCellRecordingandFunctionalImaging NeuroImage 54:2418Ð25 AlfonsoCaramazza,StefanoAnzellotti,LukasStrnad,andAngelikaLingnau!!!!!!!!!!!1TranslationalControlinSynapticPlasticityandCognitiveDysfunctionShellyA.BufÞngton,WeiHuang,andMauroCosta-Mattioli!!!!!!!!!!!!!!!!!!!!!!!!!!!!17ThePerirhinalCortexWendyA.SuzukiandYujiNaya!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!39AutophagyandItsNormalandPathogenicStatesintheBrainAiYamamotoandZhenyuYueApolipoproteinEinAlzheimerÕsDisease:AnUpdateJin-TaiYu,LanTan,andJohnHardy!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!79FunctionandDysfunctionofHypocretin/Orexin:AnEnergeticsPointofViewXiao-BingGaoandTamasHorvath !!!!!!!289Motion-DetectingCircuitsinFlies:ComingintoViewMarionSilies,DarylM.Gohl,andThomasR.Clandinin!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!307NeuromodulationofCircuitswithVariableParameters:SingleNeuronsandSmallCircuitsRevealPrinciplesofState-DependentandRobustNeuromodulationEveMarder,TimothyOÕLeary,andSonalShruti!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!329 CAN) | Tel: 650.493.4400 | Fax: 650.424.0910 | Email: service@annualreviews.orgNew From Annual Reviews:Annual Review of Statistics and Its Application=VS\TL‹6USPUL1HU\HY`‹O[[W!Z[H[PZ[PJZHUU\HSYL]PL^ZVYNEditor: Stephen E. Fienberg!"Carnegie Mellon UniversityAssociate Editors: Nancy Reid!" Jonathan Rougier, Michael Goldstein‹Probabilistic Forecasting, Tilmann Gneiting, Matthias Katzfuss Martin J. Wainwright‹High-Dimensional Statistics with a View Toward Applications in Biology, Peter BŸhlmann, Markus Kalisch, Lukas Meier‹Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data, Kenneth Lange, Jeanette C. Papp, Janet S. Sinsheimer, Eric M. Sobel‹Breaking Bad: Two Decades of Life-Course Data Analysis in Criminology, Developmental Psychology, and Beyond, Elena A. Erosheva, Ross L. Matsueda, Donatello Telesca‹Event History Analysis, Niels Keiding‹:[H[PZ[PJHS,]HS\H[PVUVM-VYLUZPJ+5(7YVÄSL,]PKLUJLChristopher D. Steele, David J. Balding‹Using League Table Rankings in Public Policy Formation: Statistical Issues, Harvey Goldstein‹Statistical Ecology, Ruth King‹Estimating the Number of Species in Microbial Diversity Studies, John Bunge, Amy Willis, Fiona Walsh‹Dynamic Treatment Regimes, Bibhas Chakraborty,