/
ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONSURFACESSTEPHANESABOURAUAbstra ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONSURFACESSTEPHANESABOURAUAbstra

ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONSURFACESSTEPHANESABOURAUAbstra - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
381 views
Uploaded On 2015-11-10

ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONSURFACESSTEPHANESABOURAUAbstra - PPT Presentation

sysM211 2000MathematicsSubjectClassi cationPrimary53C22Secondary05C38Keywordsandphrasessystoleseparatingsystolesystolicareasystolicratioasymptoticboundsurfacegraph1 2SSABOURAUwherethe ID: 188977

sys(M)2(1.1) 2000MathematicsSubjectClassi cation.Primary53C22;Secondary05C38.Keywordsandphrases.systole separatingsystole systolicarea systolicratio asymptoticbound surface graph.1 2S.SABOURAUwherethe

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONS..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ASYMPTOTICBOUNDSFORSEPARATINGSYSTOLESONSURFACESSTEPHANESABOURAUAbstract.TheseparatingsystoleonaclosedRiemanniansur-faceM,denotedbysys0(M),isde nedasthelengthoftheshort-estnoncontractibleloopswhicharehomologicallytrivial.Wean-swerpositivelyaquestionofM.Gromov[Gr96,2.C.2.(d)]abouttheasymptoticestimateontheseparatingsystole.Speci cally,weshowthattheseparatingsystoleofaclosedRiemanniansurfaceMofgenusandareagsatis esanupperboundsimilartoM.Gro-mov'sasymptoticestimateonthe(homotopy)systole.Thatis,sys0(M).logg.Contents1.Introduction12.Systolicinequalitiesongraphs43.Morsefunctionsand rstBettinumbers74.Constructionofgraphsonthesurface95.Fundamentalgroupsofgraphsandsurfaces126.Proofofthemaintheorem17References201.IntroductionLetMbeanonsimplyconnectedclosedRiemanniansurface.The(homotopy)systoleofM,denotedbysys1(M)orsys(M)forshort,isde nedasthelengthoftheshortestnoncontractibleloopsinM.Wede netheoptimalsystolicareaofanonsimplyconnectedclosedsurfaceMas(M)=infArea(M) sys(M)2(1.1) 2000MathematicsSubjectClassi cation.Primary53C22;Secondary05C38.Keywordsandphrases.systole,separatingsystole,systolicarea,systolicratio,asymptoticbound,surface,graph.1 2S.SABOURAUwherethein mumistakenoverthespaceofallthemetricsonM.Theoptimalsystolicareaisatopologicalinvariantofsurfaces.Theexactvalueoftheoptimalsystolicareaisknownforthetorus,cf.[Be93],theprojectiveplane[Pu52]andtheKleinbottle[Ba86].ForanotionofsystoleextendedtotheisometrygroupsofRiemannianmanifolds,theoptimalsystolicareahasalsobeencomputedforthe17cristallographicgroupsoftheplaneandthetrianglegroups[Ba93].Nootherexactvalueoftheoptimalsystolicareaisknown.However,nontriviallowerboundsontheoptimalsystolicareaofev-erynonsimplyconnectedclosedsurfacehavebeenestablished,cf.[Gr83],[Gr96],[KS06a],[KS05],[KS06b]and[Sa06a]forrecentdevelopments.Forinstance,wededucefrom[Pu52]and[Gr83,5.2.B]thateverynon-simplyconnectedclosedsurfaceMsatis es(M)2 (1.2)withequalityifandonlyifMishomeomorphictotheprojectiveplane.Suchaninequalityiscalledasystolicinequality.Inhigherdimension,nonoptimalsystolicinequalitiesexistfores-sentialmanifolds[Gr83]andoptimalsystolicinequalitiesexistforthenotionsofone-dimensionalstableandconformalsystoles,cf.[Gr99],[IK04],[BCIK].Werefertotheexpositorytexts[Be93],[Gr96],[Gr99]and[CK03],andthereferencesthereinforanaccountonthesubjectandothergeneralizationsinhigherdimensions.Thesystolicinequality(1.2)canbeimprovedbytakingintoaccountthetopologyofM.Forinstance,thefollowingresultofM.Gromovshowsthatclosedsurfacesoflargegenushavealargeoptimalsystolicarea.Theorem1.1([Gr83,6.4.D'],[Gr96,3.C.3]).ThereexistsapositiveconstantCsuchthateveryclosedsurfaceMofgenusgsatis es(M)Cg (lng)2:(1.3)Itisshownin[KS05],usingdi erenttechniques,that(1.3)holdsforeveryCprovidedthangislargeenough.Werefertotheendofthissectionforadiscussionaboutthedi erentproofsofthisresult.Seealso[Gr83],[Gr96]and[Sa06b]forgeneralizationsinhigherdimensions.AnupperboundontheoptimalsystolicareaofsurfacesoflargegenushasbeenfoundbyP.BuserandP.Sarnak[BS94].Namely,theyconstructhyperbolicsurfaces(M;hyp)ofgenusg,obtainedas SEPARATINGSYSTOLESONSURFACES3coveringsofanarithmeticRiemannsurface,suchthatsys(M;hyp)&lng(1.4)Otherconstructionsandhigherdimensiongeneralizationscanbefoundin[KSV].Combiningtheinequalities(1.3)and(1.4),weobtainCg (lng)2(M)C0g (lng)2(1.5)whereCandC0aretwouniversalpositiveconstants.Inparticular,thereisnolowerboundon(M)linearinthegenusg(see[BB05]forageneralizationinhigherdimension).GivenaclosedRiemanniansurfaceMofgenusg2,wede netheseparatingsystole,denotedbysys0(M),asthelengthoftheshortestnoncontractibleloopsinMwhicharehomologicallytrivial.Thatis,sys0(M)=infflength(\r)j\rinducesanontrivialclassin[1(M);1(M)]g:Inthisde nition,thehomologycoecientsareinZandthecom-mutatorofthefundamentalgroupofMisnoted[1(M);1(M)].Similartotheoptimalsystolicarea(M),wede ne0(M)=infArea(M) sys0(M)2wherethein mumistakenoverthespaceofallthemetricsonM.Weclearlyhavesys(M)sys0(M),cf.(1.8)foramorepreciseesti-mate,hence(M)0(M).Lowerboundson0(M)canbededucedfrom[Gr83,5.4](indeed,thelengthofthecommutatoroftwoindependentloopsgivesanupperboundontheseparatingsystole).Inparticular,forsurfacesoflargegenus,M.Gromovshowedthefollowing.Theorem1.2([Gr83,5.4.B],[Gr96,2.C.2.(d)]).Forevery 1,thereexistsapositiveconstantC suchthateveryclosedsurfaceMofgenusg2satis es0(M)C g :Thehyperbolicsurfaces(M;hyp)constructedin[BS94]satisfysys0(M;hyp)&lng:(1.6)Therefore,Theorem1.2doesnotholdfor =1. 4S.SABOURAUM.Gromovaskedin[Gr96,2.C.2.(d)]whetheralowerboundon0(M)similarto(1.3)exits.Weanswerthisquestionpositively.Speci cally,weprovethefollowing.MainTheorem1.3.ThereexistsapositiveconstantCsuchthateveryclosedsurfaceMofgenusg2satis es0(M)Cg (lng)2:(1.7)Theestimate(1.6)showsthattheinequality(1.7)yieldstherightasymptoticbound.Moreprecisely,adoubleinequalitysimilarto(1.5)holdsfor0(M).SuchadoubleinequalityalsoholdsforH(M),whereH(M)isde nedbyreplacingin(1.1)thesystolewiththehomologysystole,cf.[Gr96].Recallthatthehomologysystole,denotedbysysH(M),isthelengthoftheshortesthomologicallynontrivialloopsinM.Weclearlyhavesys(M)sysH(M)butnolowerboundon0(M)canimmediatelybededucedfromalowerboundonH(M).Notealsothatsys(M)=minfsys0(M);sysH(M)g:(1.8)Thesystolicinequality(1.3)was rstprovedin[Gr83,p.74]byus-ingatechniqueknownas"di usionofchains".Itwasthenimprovedin[KS05],whereanupperboundfortheentropyofasystolicallyex-tremalsurfaceintermsofitssystoleisestablished.AsobservedbyF.Balache [B04],theinequality(1.3)canalsobederivedbycombin-ingtheworksofS.Kodani[Ko87],andB.Bollobas,E.SzemerediandA.Thomason[BT97,BS02]onsystolicinequalitiesofgraphs.WewillfollowthislatterapproachtoproveMainTheorem1.3.Moreprecisely,weconstructagraphonasurface(Section4),establishsys-tolicinequalitiesonthisgraph(Section2),relatethelengthofcyclesonthegraphtotheseparatingsystoleonthesurface(Section5)andde-ducealowerboundontheareaofthesurfacethroughacoreaformulaasin[Ko87](Section6).Acknowledgment.Theauthorwouldliketothanktherefereeforhisorhercomments,especiallyonsystolicinequalitiesongraphs,cf.Re-mark2.3.2.SystolicinequalitiesongraphsByde nition,ametricgraphisagraph(i.e.,a nite1-dimensionalsimplicialcomplex)endowedwithalengthstructure. SEPARATINGSYSTOLESONSURFACES5Thehomotopyclassofagraphischaracterizedbyits rstBettinumberb(),whichcanbecomputedasfollows:b()=e()v()+n()(2.1)wheree(),v()andn()arerespectivelythenumberofedges,ver-ticesandconnectedcomponentsof.De nition2.1.Thesystoleandthetotallengthofametricgraph,denotedbysys()andlength(),arerespectivelyde nedasthelengthoftheshortestnoncontractibleloopofandthesumofthelengthsoftheedgesof.Thesetwometricinvariantsdonotdependonthesimplicialstructureofthegraph.Wede nethesystoliclengthofas0()=length sys():Foreveryb1,wealsode neahomotopyinvariantofagraphas0(b)=inff0()jmetricgraphwith rstBettinumberbg:Weputa0whenwedealwithgraphs(asin0()or0(b))andno0whenwedealwithsurfaces(asin(M)).In[BS02],B.BollobasandE.SzemerediimprovedthemultiplicativeconstantofasystolicinequalityforgraphsestablishedbyB.BollobasandA.Thomasson[BT97].Speci cally,theyprovedTheorem2.2([BS02]).Foreveryb3,wehave0(b)3 2b1 log2(b1)+log2log2(b1)+4(2.2)wherelog2isthelogarithmtothebase2.Inparticular,foreveryb2,wehave0(b)1 4b lnb:(2.3)Strictlyspeaking(2.3)isaconsequenceof(2.2)onlyforb5.When2b4,thebound(2.3)stillholdsbecausethesystoliclengthofagraphisatleast1,thatis0(b)1.Remark2.3.Therefereeofthisarticlepointedouttotheauthorthataboundsimilarto(2.3)(withaslightlyworseconstantbutthisdoesnotmatterforourpurpose)canbeobtainedfromelementaryargu-mentsthatdonotrelyonthemainresultof[BS02].Indeed,theesti-mates(1)and(2)of[BS02,x2]allowustoextendtheinequality[BT97,Theorem5]statedfornon-weightedgraphstometricgraphs. 6S.SABOURAUCombinedwiththeupperboundonthesystoliclengthofgraphsestablishedin[BB05],wehave,foreveryb2,1 4b lnb0(b)8ln(2)b lnb:De nition2.4.Ametricgraphissaidtobeadmissibleifthe rstBettinumberofeachofitsconnectedcomponentsisatleast2.Asinthecaseofsurfaces,wede netheseparatingsystoleofanadmissiblegraphassys0()=infflength(\r)j\rinducesanontrivialclassin[1();1()]gwhererunsovertheconnectedcomponentsof.Aspreviously,wealsode ne00()=length sys0()(2.4)and,foreveryb2,00(b)=inff00()jadmissiblemetricgraphwith rstBettinumberbg:UsingTheorem2.2,weobtainalowerboundon00(b).Morepre-cisely,weshowProposition2.5.Foreveryb2,wehave00(b)1 64b lnb:Proof.Letbeanadmissiblemetricgraphwhose rstBettinumberequalsb.Withoutlossofgenerality,wecanassumethatisconnectedandthatsys0()=1.Denotebykthenumberof\smallcycles",i.e.,thenumberofsimpleloopsoflengthlessthan1 8.Supposethattwo\smallcycles",c1andc2,intersecteachother.Thehomotopyclassesofthesetwoloops(basedatthesamepoint)donotcommute.Therefore,theloopc1[c2[c11[c12,oflength2length(c1)+2length(c2)1 2;whichrepresentstheircommutator,isnotcontractiblein.Thus,sys0()1 2,henceacontradiction.Therefore,the"smallcycles"ofaredisjoint.Letcbeashortestpathbetweentwo\smallcycles"c1andc2(recallthatisconnected).Thecommutatorofthehomotopyclassesofc1andc[c2[c1canberepresentedbyaloopoflengthatmost1 2+2length(c).Thus,sys0()1 2+2length(c).Therefore,thelengthofcisatleast1 4. SEPARATINGSYSTOLESONSURFACES7Wededucethatthe1 8-(open)-neighborhoodsofthe\smallcycles"aredisjoint.Sinceisconnected,thelengthofthe1 8-neighborhoodofeach\smallcycle"ciisatleastlength(ci)+1 8.Therefore,length()k 8.Ifkb 2,thenlength()b 16.Thus,foreveryb2,wehave00(b)b 161 64b lnb:Ifkb 2,weremoveanedgefromeach\smallcycle".Thisgivesrisetoagraph0with rstBettinumberb0=bk(recallthatthe"smallcycles"aredisjoint).Byconstruction,thesystoleof0isatleast1 8,i.e.,sys(0)1 8.Further,length()length(0).Therefore,00()1 80(0):Sinceb 2b0b,theinequality(2.3)impliesthat00()1 8b=2 4lnb:Hencetheresult.3.MorsefunctionsandfirstBettinumbersRecallthede nitionofatopologicalMorsefunction.Wereferto[Mo59]and[Mo75]forageneralstudyandapplications.De nition3.1.Letfbeacontinuousfunctiononaclosedn-manifoldM.ApointxofMissaidtoberegular(resp.criticalofindexp)ifthereexistsatopologicalchartatxsuchthatf1f(x)isalinearpro-jection(resp.therestrictionofaquadraticformofsignature(np;p)).Inthesede nitions,thechartisnotnecessarilyadi eomorphism,onlyahomeomorphism.Furthermore,thesede nitionsdonotdependonthechoiceofthechart.ThefunctionfisatopologicalMorsefunctionifeverypointofMisregularorcriticalofindexpforsomeintegerp.NotethatatopologicalMorsefunctiononaclosedmanifoldhas nitelymanycriticalpoints.LetfbeatopologicalMorsefunctiononasurfaceMofgenusgwithonlyonecriticalpointoneachcriticallevel.Letxbeacriticalpointofindex1andy=f(x).SincefisatopologicalMorsefunctionwithonlyonecriticalpointoneachcriticallevel,theconnectedcomponentoff1(y)containingthepointxisaunionZxoftwosimpleloopsintersectingonlyatx. 8S.SABOURAUDe nition3.2.WesaythatxisoftypeIiftheintersectionofeveryr-neighborhoodUr(Zx)ofZxwithf1(]yr;y[)hasoneconnectedcomponent(onecylinder)forrsmallenough.Otherwise,wesaythatxisoftypeII.Inthiscase,theintersectionofeveryr-neighborhoodUr(Zx)ofZxwithf1(]yr;y[)hastwocon-nectedcomponents(twocylinders)forrsmallenough.RecallthatMisorientable,fisatopologicalMorsefunctionandxisofindex1. \r0x \r00x xTypeII:twolegs \r0x \r00x xTypeI:onelegThefollowingresultcanbefoundin[Ko87,(4.9)].Weincludeaproofforthesakeofcompleteness.Lemma3.3.Supposethatfhasonlyonelocalminimum.Then,thefunctionfhasexactlygpointsoftypeII.Proof.LetNibethenumberofcriticalpointsofindexi.FromMorseformula[Mo59],[Mo75,Theorem10.1],wehave1N1+N2=22g:(3.1)WealsohaveN1=NI+NII;(3.2)whereNIandNIIarethenumbersofcriticalpointsoftypeIorII.WecanlowerthecriticalpointsoftypeI(asin[Ma02,Theorem2.34]forinstance),preservingthetotalnumberofcriticalpoints,theirindexandtheirtype,sothatallthecriticalpointsoftypeIforthenewfunction,stilldenotedf,lieinf1(]1;t0[)andallthecriticalpointsoftypeIIorindex2lieinf1(]t0;1[)forsomet0.Astincreases,everytimewepassacriticalvaluecorrespondingtoacriticalpointoftypeI,thenumberofholesoff1(]1;t[)increasesbyone.Therefore,f1(]1;t0[)ishomeomorphictoaspherewithNI+1holes.Ontheotherhand,sincenocriticalpointoftypeIliesinf1(]t0;1[),thespacef1(]t0;1[)hasnohandle.Further,eachconnectedcomponentoff1(]t0;1[)hasonlyonecriticalpointofindex2.Weconclude SEPARATINGSYSTOLESONSURFACES9aspreviouslythatf1(]t0;1[)isaunionofpuncturedsphereswithNII+N2boundarycomponents.Therefore,NI+1=NII+N2:Combiningthisequationwith(3.1)and(3.2),wederivethedesiredresult,i.e.,NII=g.4.ConstructionofgraphsonthesurfaceLetMbearealanalyticRiemanniansurfaceofgenusg2.Fixapointx0lyinginasystolicloopofM.DenotebyFthedistancefunctionfromx0,i.e.,F(x)=dist(x0;x)foreveryx2M.Proposition4.1.ThefunctionFisatopologicalMorsefunction.Proof.Everypointlyingoutsidethecutlocusofx0isregular.There-fore,wewillonlyconsiderpointsinthecutlocusofx0.Nowtheresultfollowsfromthestudyofthecutlocusin[Be77,pp.194-198](seealso[Fi40]),where[Be77,Lemme3]isreplacedby[He82,Lemma1.2].Asobservedin[He82],theconditionofbisectionandthestructureofthecutlocus,cf.my35,my36,usedin[Be77]holdforeveryclosedanalyticsurface.Givenacriticalpointxofindex1ofF,thereexistsaunique(simple)geodesicloop \rxofindex0basedatx0formedoftwominimizingarcs, \r0xand \r00x,joiningx0tox.Conversely,ifa(simple)geodesicloopofindex0basedatx0isformedoftwominimizingarcsjoiningx0tox,thepointxisacriticalpointofindex1.Seethetwo guresinSection3.Fortechnicalreasons,itwouldbeconvenientifFhadonlyonecrit-icalpointoneachcriticallevel.Toachievethiscondition,wecanraisesomecriticalpointsofFasin[Ma02,Theorem2.34].Moreprecisely,forevery"2]0;inj(M)=2[smallenough,wecanapproximateFbyatopologicalMorsefunctionfonMpreservingthecriticalpointswithonlyonecriticalpointoneachcriticallevelandwithx0asitsonlylocalminimum,suchthatf(x0)=0;jjfFjj"onM;fis(1+")-Lipschitz.Wecanalsoassumethatforeverycriticalpointxofindex1,withy:=f(x),theloop \rxsatis esthefollowing: \rxliesinf1([0;y]); \rxcannotbedeformedintof1([0;y[)inf1([0;y]); 10S.SABOURAUaswellaslength( \rx\f1([t;1[))2(yt)+2";(4.1)foreveryt2[0;y].Theheightof \rx,de nedasmaxf( \rx),isequaltof(x)=y.Notethatthereare nitelymanyloops \rx.De nition4.2.Usingthenotationsandde nitionsofSection3,wesaythattheloop \rxisoftypeIorIIifthecriticalpointxisoftypeIorII.Furthermore,ifxisoftypeII,thetwotrajectories \r0xand \r00xpassthroughthetwocylindersofUr(Zx)\f1(]yr;y[)forrsmallenough.Seethetwo guresinSection3.Letusconstructbyinductiona\short"system ofloops \r1;:::; \rnbasedatx0.Theloop \r1isthenoncontractibleloopwiththeleastheightamongthe \rx's.Wede nebyinduction \riastheloopwiththeleastheightamongthe \rx'swhosehomotopyclassdoesnotlieinthesubgroupGi1generatedby \r1;:::; \ri1in1(M;x0).Here,byde nition,G0isthetrivialsubgroupof1(M;x0).Theloop \ripassesthroughtwocriticalpoints,namelyx0and xi.Itsheightmaxf( \ri)isequalto yi:=f( xi).Proposition4.3.i)Thesystem generates1(M;x0).Inparticular, containsatleast2gloops;ii)Thesystem containsatleastgloopsoftypeI;iii)Ifthehomotopyclassofapiecewisesmoothloop\rbasedatx0doesnotlieinGi1,thenmaxf(\r)maxf( \ri).Proof.Supposethatthereexistsapiecewisesmoothloop\rbasedatx0whosehomotopyclassdoesnotlieinGi1.Usingaheightdecreasingdeformationof\rifnecessary,wecanassumethat\rpassesthroughacriticalpointxofindex1suchthatmaxf(\r)=f(x)=y:(4.2)Thus,wecantake\r(passingthroughacriticalpointxofindex1sat-isfying(4.2))sothatitsheightisminimal.Theloop \rxpassingthroughthecriticalpointxofindex1suchthatf(x)agreeswiththeheightof\rsatis esthefollowing.Lemma4.4.Thehomotopyclassof \rxdoesnotlieinGi1. SEPARATINGSYSTOLESONSURFACES11Proof.Theloop\rpasses nitelymanytimesthroughx.Thus,wecantake\rsothatitpassesaminimalnumberoftimesthroughx.De net0=infftj\r(t)=xg.Either\rj[0;t0][ \r0xor\rj[0;t0][ \r00xcanbedeformedintoaloop off([0;y[).Supposethattheformercaseoccurs(similarargumentsworkinthelattercase).Theheightof islessthan\r's.Sincetheheightof\risminimal,thehomotopyclassof liesinGi1.Therefore,wecanassumethat\rj[0;t0]agreeswith \r0x.Since\rpassesaminimalnumberoftimesthroughx,theloop \r00x[\rj[t0;1]canbedeformedintoaloopofheightatmostf(x),whichpassesfewertimesthroughxthan\r(oneshouldexamineseparatelythetypeIandIIcases;seethetwo guresinSection3).Therefore,thehomotopyclassoftheloop \r00x[\rj[t0;1]liesinGi1.Thus,wecanassumethat\rj[t0;1]agreeswith \r00x.Thatis,\ragreeswith \rx.Hencethedesiredresult.Letusnowprovei).Recallthatnisthenumberofelementsof .Supposethatthereexistsapiecewisesmoothloop\rbasedatx0whosehomotopyclassdoesnotlieinthesubgroupGngeneratedby .ByLemma4.4,thereexistsaloop \rxwhosehomotopyclassdoesnotlieinGn.Therefore, \rn+1exists(andagreeswith \rx),whichisabsurd.Hencei).Toestablishiii),wearguebycontradictionagain.ByLemma4.4,thereexistsaloop \rxwithy=f(x)maxf( \ri)whosehomotopyclassdoesnotlieinGi1.Thisyieldsacontradictionwiththede nitionof \ri.Henceiii).FromLemma3.3,thenumberofloopsoftypeIIin isatmostg.Since hasexactly2gloops(eachofthemoftypeIorII),thesystem containsatleastgloopsoftypeI.Letbethesystemofthegshortestloops\r1;:::;\rgoftypeIin .Denotebyyi=maxf(\ri)theheightof\ri.Permutingtheindicesifnecessary,wecanassumethaty1y2yg.Lett0=0,t1=y1andtk=y1+(k1)fork2,where:=1 6 00(g1) g1sys0(M):(4.3)and 00(t):=1 64t ln(2+t)(4.4)foreveryrealt0.Remark4.5.Theloop\r1agreeswith \r1.Further,sincex0liesinasystolicloopofM,theheightof \r1isboundedby1 2sys(M)+".Thatis,t11 2sys(M)+". 12S.SABOURAUDenoteby\rk1;:::;\rkgktheloopsofsuchthattkmaxf(\rki)tk+1andletyki=maxf(\rki)betheheightof\rki.LetKbetheminimalintegerksuchthatygtk+1.WehaveKXk=1gk=g:(4.5)Arealtissaidtobegenericifthepreimagef1(t)isformedofa(possiblyempty) niteunionofdisjointcircles.SincefisatopologicalMorsefunction(with nitelymanycriticalpoints),almosteverytisgeneric.Foragenerictwithtkttk+1and1kK1,wede nethegraphkt:=f1(t)[gk+1[i=1\rk+1i\f1([t;+1[):(4.6)ThegraphktisendowedwiththelengthstructureinducedbytheinclusioninM.Themetricgraphobtainedfromktbyremovingtheconnectedcomponentshomeomorphictocirclesisanadmissiblegraph,cf.De nition2.4,notedbkt(assumingthatitisnonempty).Wehavebktkt:Notethatthegraphsktandbktdi erfromthegraphsde nedin[Ko87,x6](theselattermaycontainarcsofloopsoftypeI).Inparticular,thefundamentalgroupofbktisasubgroupof1(M),cf.Section5.Theverticesofbktagreewiththeintersectionpointsoff1(t)and[gk+1i=1\rk+1i.Thus,thegraphbktis3-regular(i.e.,thevalenceofeachvertexequals3)with2gk+1verticesand3gk+1edges.Recallthatktliesinf1([t;+1[).Hence,the rstBettinumberofbktisequaltogk+1plusthenumberofconnectedcomponentsofbkt,cf.(2.1).Inparticular,ifbktisnonempty,its rstBettinumberisatleast1+gk+1.5.FundamentalgroupsofgraphsandsurfacesInthissection,whereweusethepreviousconstructionsandnota-tions,weshowthatthefundamentalgroupofbktliesinthefundamentalgroupofM.First,weshowthefollowing. SEPARATINGSYSTOLESONSURFACES13Lemma5.1.NosimpleloopofbktiscontractibleinMforeverygenerictwithtkttk+1and1kK1.Inparticular,sys(bkt)sys(M):Proof.Wearguebycontradiction.Let\rbeasimpleloopofbktcon-tractibleinM.Theloop\rboundsadiskinM.Thefunctionfadmitsnolocalminimumintheinteriorof.Oth-erwise,suchalocalminimumagreeswiththeuniquelocalminimumoff,whichisx0.Inthiscase,containsf1([0;t[)andso\r1sincemaxf(\r1)=t1t.Thus,\r1iscontractibleinM.Henceacontradic-tion.Now,twocasesmayoccur:CASEI:Theloop\risnotcontainedinf1(t).Then,\rpassesthroughanarc\ri0\f1(]t;+1[)ofsomeloop\ri0of.Changingtheindexifnecessary,wecanassumethat\rpassesthroughnoarcof\riwithyiyi0(recallthatfhasonlyonecriticalpointoneachcriticallevel).Byconstruction,thesimplearc\riscomposedofarcs\ri\f1(]t;+1[)where\ri2andofsubarcsoff1(t).Since\riscon-tractibleinM,theloop\ri0ishomotopictoaloopbasedatx0lyinginf1([0;yi0[).Thus,thehomotopyclassof\ri0liesinasubgroupgener-atedbyloopsofheightlessthan\ri0's.Thisisimpossiblebyde nitionof\ri0,cf..Proposition4.3.iii).CASEII:Theloop\riscontainedinf1(t).Sincefhasnolocalminimumintheinteriorof,thediskliesinf1([t;+1[).Thereexistsaloop\riof,withyi&#x-292;&#x.374;t,whichintersects\r(recallthat\rliesinbktandthatnoconnectedcomponentofbktishomeomorphictoacircle).Thearc\ri\f1([t;+1[)liesin.Therefore,theloop\riishomotopictoaloopbasedatx0lyinginf1([0;t]).Aspreviously,wederiveacontradiction.Letusintroducesomenotations.Fixagenericrealtwithtkttk+1and1kK1suchthatbktisnonempty.EverysucientlysmallopentubularneighborhoodNofaconnectedcomponentofbktdeformationretractsontothroughfrsgwiths2[0;1]suchthatr0istheidentitymaponNandr11(p)\@Nhasthreeortwoelementsdependingwhetherthepointpofisavertexornot(recallthatbktis3-regular;seethe gurebelow).Wesetr=r1. 14S.SABOURAU@N Theconnectedcomponentsoftheboundary@NofNareformedof nitelymany(disjoint)simpleloops.Furthermore,sinceMisori-entableandthe rstBettinumberofisatleasttwo,theset@Nhasatleastthreeconnectedcomponents.Thus,Nishomeomorphictoaspherewithatleastthreeholes.Inparticular,Nisnothomeomorphictoacylinder.ThefollowingresultwillbeusefulintheproofofProposition5.4.Lemma5.2.Thesimpleloopsformingtheboundary@NofNarenoncontractibleinM.Proof.Supposethatthereexistsasimpleloop\rof@Nwhichiscon-tractibleinM.Theimage \rof\rbythe(deformation)retractionrisnotsimple,otherwiseitwouldbenoncontractibleinMfromLemma5.1(andsowouldbe\r).Thus,rtakestwopointsof\rtothesameimage.Sincethegraphis3-regular,the(deformation)retractionrtakestwoarcsof\rtothesameedgecof.Remark5.3.Changingtheedgecifnecessary,wewillassumethattheheightofcismaximalamongtheedgesofontowhichrsendstwoarcsof\r.Removingcfrom \rdecomposestheloop \rintotwoloopsc1andc2with \r=c[c1[c1[c2: cc1c2Theloopsc1andc2intersecttheedgeconlyatitsendpoints.Since \ristheboundaryofanopendiskinM,theloopsc1andc2aretheboundariesofanopencylinderCinMcontainingc.Inparticular,theboundary@CofCagreeswithc1[c2.Thearcscandcihavedi erentheightsfori=1;2.Otherwise,theircommonheightwouldbet(recallthatfhasatmostonecriticalpoint SEPARATINGSYSTOLESONSURFACES15oneachlevelset)andc[ciwouldbecontainedinf1(t),whichisimpossiblesincef1(t)isformedofaunionofdisjointsimpleloops.Thesameargumentalsoshowsthatc1andc2havedi erentheights,unlesstheybothlieinf1(t).Now,weconsidertwocases.CASEI:Assumethattheheightofcisgreaterthanc1'sandc2's.Notethatyc:=maxf(c)�t.TheconnectedcomponentZoff1(yc)intersectingcliesinthecylinderCandisdisjointfrom@C.Thus,cuttingCalongthetwononcontractiblesimpleloopsformingthecom-ponentZgivesrisetotwocylinders,atthebottom,andonedisk,atthetop(see gurebelow). c1c2ZCcMoreprecisely,f1([0;yc[)\Ciscomposedoftwocylinderswhoseboundarycomponentsagreewiththeconnectedcomponentsof@CandthesimpleloopsformingZ.Wederivethattheloop\rcofwithmaxf(\rc)=yc,whichagreeswithcintheneighborhoodoff1(yc),cf.(4.6),isoftypeII.HenceacontradictionsincetheloopsofareoftypeI.CASEII:Assumethattheheightofc1isgreaterthanc'sandc2's.Inparticular,maxf(c1)�t.Thereexistsaloop\ri0of,withthesameheightasc1,suchthatc1\\ri0agreeswiththearc\ri0\f1([t;+1[).Theloop\ri0isformedoftwoarcs,\r0i0and\r00i0,ofthesameheight,arisingfromx0andendingatthesameendpoint.FromRemark5.3,theloop \rpassesonlyoncethroughc1\\ri0.Letc01andc001bethearcsofc1n\ri0(possiblyreducedtopoints)joining\r0i0tocand\r00i0toc. 16S.SABOURAU c001c2C\r0i0c01Theloop\ri0ishomotopicto(\r0i0nc1)[c01[c011[(c1\\ri0)[c001[c0011[(\r00i0nc1);whichagreeswith(\r0i0nc1)[c01[c1[c0011[(\r00i0nc1):Byassumption,theloopc1ishomotopictotheloopc[c2[c1.There-fore,\ri0ishomotopictotheloop i0=(\r0i0nc1)[c01[c[c2[c1[c001[(\r00i0nc1):WederiveacontradictionfromProposition4.3.iii)sincetheheightof i0islessthan\ri0's.Letusrecallsomefactsaboutthedisk\row.DenotebyM0thesurfaceMendowedwitha xedhyperbolicmetric.Thedisk\rowde nedin[HS94](seealso[Sa04]forasimilar\row)deformsapiecewisesmoothloop\rofM0through\rtwitht0.LetCbea nitecollectionofpiecewisesmoothloopsinM0.Throughoutthedisk\row,theloopsofCsatisfythefollowing:simpleloopsremainsimple;disjointloopsremaindisjoint;forevery\r2C,thefamily\rteitherdisappears(i.e.,\rtcon-vergestoapoint)in nitetimeorconvergestoa(unique)non-contractiblegeodesicloopofM0ast!1.Usingthis\rowandLemma5.2,wecanprovethemainresultofthissection.Proposition5.4.Theinclusioni:,!Mofeveryconnectedcompo-nentofbktinducesamonomorphismbetweenthefundamentalgroups.Thatis,i:1()!1(M)isinjective. SEPARATINGSYSTOLESONSURFACES17Proof.Theboundary@NofNM0decomposesintosimpleloopsc1;:::;ck.Wecanassumethatthenormalvectorsofthetwo-sidedloopscipointtowardN.Considerapiecewisesmoothloop\rofNcontractibleinMandapplythedisk\rowtoc1;:::;ckand\r.TheloopciconvergestotheuniquenoncontractiblegeodesicloopofM0freelyhomotopictocithroughthedisk\rownotedcti.Forev-eryt0,theloopscti,whicharesimpleanddisjointasaretheloopsci,boundanopensetNt'Ntowardwhichpointthenormalvectorsofthetwo-sidedloopscti.Ontheotherhand,theloops\rtremaindisjointfromtheloopsctithroughthedisk\row.Inparticular,theloops\rtlieinNt.NotethatthereexistsahomeomorphismbetweenNtandNwhichtakesctitociandthefreehomotopyclassof\rtto\r's.Since\riscontractibleinM,the\row\rtNtdisappearsin nitetime.Therefore,\rtiscontractibleinNtforsomet.Thisimpliesthat\riscontractibleinNandsoinsinceNdeformationretractsonto.Thus,thehomomorphismi:1()!1(M)isinjective.Weimmediatelydeducethefollowing.Corollary5.5.Wehavesys0(bkt)sys0(M):(5.1)Remark5.6.Contrarytobkt,thefundamentalgroupsofthegraphsde nedin[Ko87]arenotnecessarilyisomorphicsubgroupsof1(M).Withoutthisproperty,itisstillpossibletoboundthesystoleofthesegraphs,cf.Lemma5.1,butaboundsimilarto(5.1)doesnotholdingeneral.6.ProofofthemaintheoremUsingthepreviousnotationsandresults,weshowthemainresultofthisarticlefollowing[Ko87].ProofofMainTheorem1.3.Sinceeverysmoothmetriccanbeapprox-imatedbyarealanalyticoneandsincetheareaandthesystolearecon-tinuousonthespaceofallmetrics,wecanassumethatMisarealana-lyticRiemanniansurfaceofgenusg2.Keepingthesamenotationsasintheprevioussections,wecanalsoassumethatsys(M)1 4sys0(M),otherwisetheinequality(1.3)yieldstheresult.Let\r11and\r21betwoloopsofbasedatx0suchthatmaxf(\r11)=t11 2sys(M)+"andmaxf(\r21)t1+,cf.Remark4.5.Thecommutatorofthehomotopyclassesof\r11and\r21canberepresentedbyaloopcoflengthlessthan4t1+2.Ast13 4sys(M)3 16sys0(M) 18S.SABOURAUand1 8sys0(M),thelengthofcislessthansys0(M).Thus,ciscontractibleandthehomotopyclassesof\r11and\r21commute.Sincethecentralizerofeverynontrivialelementof1(M)isisomorphictoZ(recallthatg2),thehomotopyclassesof\r11and\r21areproportional.Furthermore,thehomotopyclassofasimpleloopontheorientablesurfaceMisindivisible.Therefore,thetwononcontractibleloops\r11and\r21ofagree.Thus,theindexg1de nedinSection4isequalto1,i.e.,g1=1:Lettbegenericwithtkttk+1and1kK1.Ifbktisnonempty,i.e.,gk+1&#x-282;&#x.344;0,thenbktisanadmissiblegraph,cf.De nition2.4andSection4,with rstBettinumberatleast1+gk+12.Thus,since00isnondecreasing,cf.(2.4),wehavelength(bkt)00(1+gk+1)sys0(bkt):FromProposition2.5,wederivethat00(1+gk+1) 00(gk+1),cf.(4.4),where 00(gk+1)=1 64gk+1 ln(2+gk+1):(6.1)Hence,fromtheinclusionbktktandCorollary5.5,wehavelength(kt) 00(gk+1)sys0(M):Furthermore,thisinequalityholdswhengk+1vanishes.Thus,fromthede nitionofkt,cf.(4.6),wehavelengthf1(t)+gk+1Xi=1length\rk+1i\f1([t;+1[) 00(gk+1)sys0(M)Combinedwiththeestimate(4.1),wederivelengthf1(t)+gk+1Xi=12(tk+1it)+2"gk+1 00(gk+1)sys0(M)wheretk+1i=maxf(\rk+1i).Notethattkttk+1tk+1itk+2.Integratingfromtktotk+1for1kK1,weobtainZtk+1tklengthf1(t)dt+2gk+1Xi=1Ztk+1tk(tk+1it)dt+2"gk+1 00(gk+1)sys0(M)SinceZtk+1tktk+1itdt3 22,wehaveZtk+1tklengthf1(t)dt 00(gk+1)sys0(M)3gk+122"gk+1: SEPARATINGSYSTOLESONSURFACES19Now,applythecoareaformulatothe(1+")-Lipschitzfunctionf,cf.[Fe69,3.2.11].OneobtainsArea(M)1 1+"Z10lengthf1(t)dt:Hence,(1+")Area(M)K1Xk=1Ztk+1tklengthf1(t)dt K1Xk=1 00(gk+1)!sys0(M)3 K1Xk=1gk+1!22" K1Xk=1gk+1! KXk=2 00(gk)!sys0(M)3 KXk=2gk!22" KXk=2gk!Sinceg1=1,theinequality(4.5)yieldsKXk=2gk=g1:Furthermore,foreveryp;q2N, 00(p+q)=1 64p ln(2+p+q)+q ln(2+p+q)1 64p ln(2+p)+1 64q ln(2+q) 00(p)+ 00(q)Inparticular,KXk=2 00(gk) 00 KXk=2gk!= 00(g1):Hence,(1+")Area(M) 00(g1)sys0(M)3(g1)22"(g1):Passingtothelimitas"!0,weobtainArea(M) 00(g1)sys0(M)3(g1)21 12 00(g1)2 g1sys0(M)2 20S.SABOURAUsince=1 6 00(g1) g1sys0(M),cf.(4.3).Therefore,Area(M)1 216g1 (ln(1+g))2sys0(M)2:Thus,theinequality(1.7)holdsforg2withC=218.NotethatthevalueoftheconstantCcanbeimproved,especiallyforlargevaluesofg.References[BB05]Babenko,I.;Balache ,F.:Geometriesystoliquedessommesconnexesetdesrev^etementscycliques,Math.Ann.333(2005)157{180.[B04]Balache ,F.:Surdesproblemesdelageometriesystolique,Semin.Theor.Spectr.Geom.Grenoble22(2004)71{82.[BCIK]Bangert,V.;Croke,C.;Ivanov,I.;Katz,M.:Boundarycaseofequal-ityinoptimalLoewner-typeinequalities,Trans.Amer.Math.Soc.359(2007)1-17.[Ba86]Bavard,C.:InegaliteisosystoliquepourlabouteilledeKlein,Math.Ann.274(1986)439{441.[Ba93]Bavard,C.:L'airesystoliqueconformedesgroupescristallographiquesduplan,Ann.Inst.Fourier43(1993)815{842.[Be77]Berger,M.:Volumeetrayond'injectivitedanslesvarietesriemanniennesdedimension3,OsakaJ.Math.14(1977)191{200.[Be93]Berger,M.:SystolesetapplicationsselonGromov,SeminaireBourbaki,Exp.711,Asterisque216(1993)279{310.[BS02]Bollobas,B.;Szemeredi,E.:Girthofsparsegraphs,J.GraphTheory39(2002)194{200.[BT97]Bollobas,B.;Thomason,A.:OnthegirthofHamiltonianweaklypan-cyclicgraphs,J.GraphTheory26(1997)165{173.[BS94]Buser,P.;Sarnak,P.:OntheperiodmatrixofaRiemannsurfaceoflargegenus.WithanappendixbyJ.H.ConwayandN.J.A.Sloane.Invent.Math.117(1994),no.1,27{56.[CK03]Croke,C.;Katz,M.:UniversalvolumeboundsinRiemannianmani-folds,SurveysinDi erentialGeometryVIII,LecturesonGeometryandTopologyheldinhonorofCalabi,Lawson,Siu,andUhlenbeckatHarvardUniversity,May3-5,2002,editedbyS.T.Yau(Somerville,MA:InternationalPress,2003.)pp.109{137.SeearXiv:math.DG/0302248[Fe69]Federer,H.:Geometricmeasuretheory.Grundlehrendermathematis-chenWissenschaften,153.Springer{Verlag,Berlin,1969.[Fi40]Fiala,F.:Leproblemedesisoperimetressurlessurfacesouvertesacour-burepositive,Comment.Math.Helv.13(1941)293{346.[Gr83]Gromov,M.:FillingRiemannianmanifolds,J.Di .Geom.18(1983)1{147.[Gr96]Gromov,M.:Systolesandintersystolicinequalities.ActesdelaTableRondedeGeometrieDi erentielle(Luminy,1992),291{362,Semin.Congr.,vol.1,Soc.Math.France,Paris,1996.www.emis.de/journals/SC/1996/1/ps/smf sem-cong 1 291-362.ps.gz SEPARATINGSYSTOLESONSURFACES21[Gr99]Gromov,M.:MetricstructuresforRiemannianandnon-Riemannianspaces.Progr.inMathematics152,Birkhauser,Boston,1999.[HS94]Hass,J.;Scott,P.:Shorteningcurvesonsurfaces,Topology33(1994)25{43.[He82]Hebda,J:Somelowerboundsfortheareaofsurfaces,Invent.Math.65(1982)485{490.[IK04]Ivanov,S.;Katz,M.:GeneralizeddegreeandoptimalLoewner-typeinequalities,IsraelJ.Math.141(2004)221{233.[KSV]Katz,M.;Schaps,M.;Vishne,U.:Logarithmicgrowthofsystoleofarith-meticRiemannsurfacesalongcongruencesubgroups,preprintavailableatarXiv:math.DG/0505007[KS05]Katz,M.;Sabourau,S.:Entropyofsystolicallyextremalsurfacesandasymptoticbounds,Ergod.Th.Dynam.Sys.,25(2005),1209{1220.[KS06a]Katz,M.;Sabourau,S.:HyperellipticsurfacesareLoewner,Proc.Amer.Math.Soc.134(2006),no.4,1189-1195.[KS06b]Katz,M.;Sabourau,S.:AnoptimalsystolicinequalityforCAT(0)met-ricsingenustwo,Paci cJ.Math.227(2006),no.1,155-176.[Ko87]Kodani,S.:Ontwo-dimensionalisosystolicinequalities,KodaiMath.J.10(1987),no.3,314{327.[Ma02]Matsumoto,Y.:AnintroductiontoMorsetheory,TranslationsofMath-ematicalMonographs,208,Amer.Math.Soc.,Providence,RI,2002[Mo59]Morse,M.:Topologicallynon-degeneratefunctionsonacompactn-manifoldM,J.AnalyseMath.7(1959)189{208.[Mo75]Morse,M.:Topologicallynondegeneratefunctions,Fund.Math.88(1975)17{52.[My35]Myers,S.B.:Connectionsbetweendi erentialgeometryandtopology,I.Simplyconnectedsurfaces,DukeMath.1(1935),no.3,376{391.[My36]Myers,S.B.:Connectionsbetweendi erentialgeometryandtopology,II.Closedsurfaces,DukeMath.2(1936),no.1,96{102.[Pu52]Pu,P.M.:SomeinequalitiesincertainnonorientableRiemannianman-ifolds,Paci cJ.Math.2(1952)55{71.[Sa04]Sabourau,S.:Fillingradiusandshortclosedgeodesicsofthe2-sphere,Bull.Soc.Math.France132(2004)105{136.[Sa06a]Sabourau,S.:Entropyandsystolesonsurfaces,Ergod.Th.Dynam.Sys.,26(2006),no.5,1653{1669.[Sa06b]Sabourau,S.:Systolicvolumeandminimalentropyofasphericalmani-folds,J.Di .Geom.,74(2006),no.1,155{176.LaboratoiredeMathematiquesetPhysiqueTheorique,UniversitedeTours,ParcdeGrandmont,37400Tours,FranceE-mailaddress:sabourau@lmpt.univ-tours.fr

Related Contents


Next Show more