/
Thelogicoftoposes(withNNO)isinherentlyintuitionisticandinHAHtheaxiomof Thelogicoftoposes(withNNO)isinherentlyintuitionisticandinHAHtheaxiomof

Thelogicoftoposes(withNNO)isinherentlyintuitionisticandinHAHtheaxiomof - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
373 views
Uploaded On 2015-11-26

Thelogicoftoposes(withNNO)isinherentlyintuitionisticandinHAHtheaxiomof - PPT Presentation

thefullseparationschemeInrecentyetunpublishedworkbySAwodeyCButzASimpsonandTStreicherABSSithasbeenshownthatsettheorywithboundedseparationieseparationrestrictedtoboundedformulasbutwithrepl ID: 206220

thefullseparationscheme.Inrecent yetunpublishedworkbyS.Awodey C.Butz A.SimpsonandT.Streicher[ABSS]ithasbeenshownthatsettheorywithboundedseparation i.e.separationrestrictedtoboundedformulas butwithrepl

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Thelogicoftoposes(withNNO)isinherentlyin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Thelogicoftoposes(withNNO)isinherentlyintuitionisticandinHAHtheaxiomofchoiceimpliesclassicallogic.Therefore,wehavetogiveup(1)and(2)abovewhenconsideringGrothendieckandrealizabilitytoposesasmodelsofsomekindofsettheory.Butwhatabout(3),theaxiomofreplacement?Firstofallnoticethattherearemodelsofsettheorywithoutreplacementbutsatisfyingclassicallogicandchoice,namelyV!+!.2Ontheotherhandalotoftoposes,inparticularGrothendiecktoposesandrealizabilitytoposes,domodeltheaxiomofreplacementwhereasinmostcasestheyrefuteclassicallogicandtheaxiomofchoice.Moreprecisely,theabovementionedtoposesmodelIZF,i.e.ZFwithintuitionisticlogicandaxiomofregularityreformulatedas2-induction.3ThoughalargeclassoftoposesvalidatesIZFonestillmaycomplainthattheformulationofIZFsu ersfrom\epsilonitis",i.e.thatit\implements"in-formalmathematicsviathe2-relationratherthanaxiomatizingmathematicalpracticeintermsofitsbasicnotions.Soonemayaskwhatisthemathematicalrelevanceoftheset-theoreticreplacementaxiom?Maybeaset-theoristwouldanswer\forconstructingordinalsgreaterthan!+!"which,however,mayseemabitdisappointingbecausemostmathematicscanbeformulatedwithoutref-erencetotrans niteordinals.4Actually,whataxiomofreplacementismainlyneededforinmathematicalpracticeistode nefamiliesofsetsindexedbysomesetIcarryingsomeinductivestructureas,typically,thesetNofnaturalnum-bers.Forexample,mostmathematicianswouldnothesitatetoconstructthesequence(Pn(N))n2Nby(primitive)recursionoverN.AlreadyinZC,however,thisisimpossiblebecausefhn;Pn(N)ijn2Ng62V!+!.Usually,inZFCthesequence(Pn(N))n2Nisconstructedbyapplyingtheaxiomofreplacementtoanappropriatelyde nedclassfunctionfromthesetofnaturalnumberstotheclassofallsets.However,inasensethatdoesnotproperlyre ectthemathe-matician'sintuitionwhothinksof(Pn(N))n2NasafunctionffromNtosetsde nedrecursivelyasf(0)=Nandf(n+1)=P(f(n)).Thereis,however,a\little"problem,namelythatthecollectionofallsetsdoesnotformasetbutaproperclass.Notice,however,thataposterioritheimageoffdoesformaset thefullseparationscheme.Inrecent,yetunpublishedworkbyS.Awodey,C.Butz,A.SimpsonandT.Streicher[ABSS]ithasbeenshownthatsettheorywithboundedseparation,i.e.separationrestrictedtoboundedformulas,butwithreplacement(andevenstrongcollection)isequiconsistenttoHAHaslongastheunderlyinglogicisintuitionistic.OtherwisetheclassicalPrincipleofExcludedMiddleallowsonetoderivefullseparationfromreplacement.Inthecontextofthispaperwhenwesayreplacementwemeanthepowerofreplacementtogetherwithfullseparation(althoughthelatterdoesnotmakesensefromatype-theoreticpointofview!).2ButnoticethatV!+!validatesZC,i.e.ZFCwithoutreplacement,which,however,isstillstrongerthanHAHasalreadyZprovestheconsistencyofHAH.3Axiomofregularityand2-inductionareequivalentonlyclassicallyasinIZFtheprincipleofexcludedmiddlefollowsfromtheaxiomofregularityjustasinHAHtheprincipleofexcludedmiddlefollowsfromtheleastnumberprinciple.4Therearenotableexceptionstypicallyintheareaofdescriptivesettheoryase.g.BoreldeterminacywhichisprovableinZF(asshownbyD.A.Martin)butnotinZ(asshownbyH.Friedman).EvenIZFdoesnotdecideBoreldeterminacyasitholdsinSetbutnotinHyland'se ectivetoposE .2 2UniversesinToposesWenowde neanotionofuniverseinan(elementary)toposthatisstrongerthantheset-theoreticaxiomofreplacementbutadaptedtothe\spirit"oftypetheoryandthusfreedfrom\epsilonitis".Wedonotclaimanyoriginalityforthesubsequentnotionasitisinspiredbythecategoricalsemantics(seee.g.[Str1])foranimpredicativeversionofMartin-Lof'suniversesascanbefoundintheExtendedCalculusofConstructions(see[Luo]).CategoricalsemanticsofuniverseswasanticipatedbyJeanBenabou'sin- uentialpaper[Ben](from1971!)introducing(amongotherimportantthings)anotionoftoposinternaltoatopos.7De nition2.1AuniverseinatoposEisgivenbyaclassSofmorphismsinEsatisfyingthefollowingconditions(1)SisstableunderpullbacksalongmorphismsinE,i.e.foreverypullbackB -AJb? f-Ia? inEitholdsthatb2Swhenevera2S.(2)ScontainsallmonosofE.(3)Sisclosedundercomposition,i.e.iff:A!Iandg:B!AareinSthenfg=fg2S.(4)Sisclosedunderdependentproducts,i.e.iff:A!Iandg:B!AareinSthenfg2S(wherefisrightadjointtof:E=I!E=A).(5)InSthereisageneric8morphism,i.e.amorphismEl:E!UinSsuchthatforeverya:A!IinSwehaveA -EIa? f-UEl? forsomemorphismf:I!UinE,i.e.a=fEl.AuniverseSiscalledimpredicativei !1isinS.IfEhasanaturalnumbersobjectNthenwesaythatScontainsNi N!1isinS. 7Alas,laterworkoncategoricalsemanticsoftypetheoriesusuallydoesnotreferto[Ben]butratherimplicitlytosome\folklore"datingbacktotheearly70ieswhen[Ben]waswritten.8Noticethatwedonotrequireuniquenessoff,i.e.Elisnota\classifying"butonlya\generic"familyforS.Someauthorsusealsotheword\weaklyclassifying"insteadof\generic".4 Condition(3)saysthat(ineach bre)forafamilyof\small"setsindexedovera\small"setitssum(disjointunion)issmall,too.From(1)and(3)itfollowsthatfora:A!Iandb:B!Ithe brewiseproductaIb:AIB!IisinS,too.If,moreover,condition(2)isassumedthenfora:A!IinSandarbitrarysubobjectsm:A0AthecompositeamisinS,too.Thus,underassumptionof(1),(2)and(3)foreveryobjectIinEthefullsubcategoryS=IofE=I(onmapsofSwithcodomainI)is nitelycompleteandinheritsits nitelimitsfromE=I.11Condition(4)saysthatthefullsubcategoryasgivenbySisclosedunderdependentproductsand,therefore,underexponentiation.Underassumptionof(1),(2)and(3)condition(4)isequivalenttotherequirementthateveryS=IisclosedunderexponentiationinE=I,i.e.thatS=Iisafullsub-cartesian-closed-categoryofE=I.Underassumptionofconditions(1){(4)condition(5)isequivalenttotherequirementthatthesub brationofPEasgivenbyS,!E2isequivalent12toasmall bration.Thisstillholdsevenifcondition(2)isweakenedtotherequire-mentthatforallI2EthesubcategoryS=IofE=Iisclosedunderequalisers.Ingeneral,agenericfamilyneednotbeclassifyingasitcanwellhappenthatfordistinctf1;f2:I!Uthefamiliesf1Elandf2ElareisomorphicasfamiliesoverI.ThefamilyElisclassifyingi intheinternallogicofEitholdsthat8a;b2U�El(a)=El(b))a=Ub.NoticethatthisrequirementfailsalreadywhenEisSetandSisthefamily(a)a2UforsomeGrothendieckuniverseUinSetbecauseUwillcontainanawfullotofdistinctbutequipollentsets.This,ofcourse,canbeovercomebyrestrictingUtothecardinalnumbersinUwhich,however,isonlypossibleinpresenceoftheaxiomofchoiceandinanycasedoesnotseemverynatural.Oneoftheusefulconsequencesofcondition(5)isthatthemapsofSareclosedunder+whichcanbeseenasfollows.Supposea:A!Iandb:B!JaremapsinS.Bycondition(5)thereexistmapsf:I!Uandg:J!Uwitha=fElandb=gEl.Duetotheextensivitypropertiesoftoposeswethenhavea+b=fEl+gEl=[f;g]El2Sasdesired.NoticethatS=Mono(E)isaclassofmapssatisfyingconditions(1){(5).Thus,auniverseneednotcontaintheterminalprojection E!1E.However,ifitdoes,i.e.ifSis\impredicative",theneveryS=Icontainstheobject:I !IandthusS=IisasubtoposofE=IinthesensethatS=I,!E=Iisalogicalfunctor.Moreover,forE=SettheclassFoffamiliesof nitecardinalsgivesrisetoanimpredicativeuniversewhich,however,doesnotcontainN.OneoftheusefulconsequencesofimpredicativityisthatSisclosedunder 11Actually,aweakerconditionthan(2)sucesforthispurpose,namelythateveryregularmonomorphismisinS.Underassumptionof(1)and(3)thisweakeningof(2)isequivalenttotherequirementthatScontainsallisosandfg2Simpliesg2S.Thus,itfollowsinparticularthatmorphismsbetweensmallmapsaresmallthemselves.12This brationneednotitselfbesmallasthereneednotbeaclassifyingfamily,onlyagenericone.Butitisequivalenttothesmall brationarisingfromtheinternalcategoryinEwhosesetofobjectsisgivenbyUandwhosefamilyofmorphismsisgivenbytheexponentialElElinE=U.6 WesuggestthatareasonablenotionofmodelforimpredicativeconstructivemathematicsisprovidedbyatoposEwithanaturalnumbersobjectNtogetherwithasequence(Sn)n2NofimpredicativeuniversescontainingNsuchthateverySniscontainedinSn+1(inthesenseofDef.2.2above).AnappropriateinternallanguageforsuchastructureisgivenbyZ.Luo'sExtendedCalculusofConstructions(ECC),see[Luo],togetherwiththeAxiomofUniqueChoice(AUC),extensionalityforfunctions,thepropositionalextensionalityprinciple8p;q2Prop�(p,q))p=qandtheprincipleofproof-irrelevancestatingthatpropositionaltypes,i.e.typesinProp,containatmostoneelement.WecallthisformalsystemECCTasanacronymforExtendedCalculusofConstructionswithinaTopos.Determiningtheproof-theoreticstrengthofECCTisanopenproblemwhich,however,seemstobefairlydicultforthefollowingreasons.OntheonehandinSetanimpredicativeuniversecontainingNhasatleaststronglyinaccessiblecardinality(becauseitisin nite,regularandclosedunderP(�),i.e.2(�)).Thus,inSetanin nitecumulativesequenceofsuchuniversesrequirestheexistenceofin nitelymanystronglyinaccessiblecardinals.ForthisreasononemightexpectthatECCTisasstrongasIZFwithanexternal13cumulativesequenceofGrothendieckuniverses.PostulatingtheAxiomofChoice(AC)thishasbeenachievedbyB.Wernerin[Wer].However,intoposesACdoesnotholdunlesstheirlogicisboolean.Butin[JM]A.JoyalandI.Moerdijkhaveconstructedso-calledinitialZF-algebras,i.e.internalmodelsofIZF,fromuniversesSwhichontheonehandarealittleweakerthanournotion(seediscussioninsection4)butontheotherhandarestrongerinthesensethattheyvalidatetheso-calledtype-theoreticCollectionAxiom(CA)(8X)(8A:U)(8e:X!A)Epic(e))(9C:U)(9f:C!X)Epic(ef)whichisneededforverifyingthattheinitialZF-algebravalidatestheset-theoreticreplacementaxiomandtheyhaveveri edtheexistenceofsuchuniversesforallGrothendieckandrealizabilitytoposes.Thus,alas,thesecomparativelywell-knownmodelscannotservethepurposeofdisprovingtheclaimthatECCTprovesconsistencyofIZF.Ontheotherhandonehasgottheimpressionthatsomethinglike(CA)isneededforverifyingthattheinitialZF-algebradoesactuallyvalidatethereplacementaxiom.3ExistenceofUniversesinToposesAfterhavingintroducedthenotionofuniverseinatoposwenowdiscussthequestionoftheirexistence.WeareprimarilyinterestedintheexistenceofimpredicativeuniversescontainingNandfromnowonrefertothemsimplyasuniverses.Accordingly,weassumealltoposestohavean.n.o.denotedasN. 13ApparentlyECCTdoesnotprovetheconsistencyofIZFtogetherwiththeaxiomthateverysetisanelementofaGrothendieckuniverse.ForthispurposeonewouldhavetoextendECCTwithafurtheruniverseU!containingallUnforn!.8 pointistheexistenceofamorphismEl:E!UgenericforU.Wede neUasthepresheafoverCwithU(I)=U(C=I)opandfor :J!IinCweputU(f)=f=U(C=f)op.Wede nethegenericfamilyEl:E!UastheobjectofbC=Ucorresponding(viabC=U'\Elts(U))tothepresheafE:Elts(U)op!Uwhichisde nedasfollows:witheveryobject(I;A)inElts(U)weassociatethesetE(I;A)=A(idI)inUandwitheverymorphismf:(J;fA)!(I;A)inElts(U)weassociatethemapE(f)=A(f):E(I;A)!E(J;fA).ThisconstructionforbCextendstosheaftoposesE=Sh(C;J)forGrothen-diecktopologiesJonCinthefollowingway.LetUbetheuniverseinbCasconstructedabove.Wede neauniverseUEinEastheintersectionofUandEbC.TheclassUEconsistsofallmapsofEthatareisomorphictosomearrowa(f)wheref2Uanda:bC!Sh(C;J)istheshea cationfunctorleftadjointtotheinclusionE=Sh(C;J),!bC.(OnereadilychecksthattheimageofUunderaiscontainedinU(usingtheassumptionthatCisinternaltoU)andthereforeUEcoincideswiththeimageofUundera.)FromthisobservationitfollowsthatUEisclosedundercompositionandastheshea cationfunctorapreserves nitelimitsitisimmediatethatUEisstableunderpullbacksalongarbitraryarrowsinE.Moreover,themapa(El)isgenericforUEbecauseElisgenericforU.AsapreservesmonosandUcontainsallmonosofbCitfollowsthatUEcontainsallmonosofE.ThatUEsatis escondition(4)ofDe nition2.1canbeseenasfollows.Undertheconditions(1),(2)and(3)(alreadyestablishedforUE)condition(4)isequivalenttotherequirementthatforallA2EthesliceUE=AhasexponentialsinheritedfromE=A.Supposeb1:B1!Aandb2:B2!AareobjectsinUE=A.Thentheirexponentialbb12takeninbC=AstayswithinUasUisauniverseinbCanditstayswithinE=AasE=Aisasubtopos15ofbC=Aandsubtoposesareclosedunderexponentiation.Thusbb12isinUE=AconcludingtheargumentthatUE=AisclosedunderexponentiationtakeninE=A.NextweshowthattheuniverseUEisimpredicative.Firstnoticethata(�bC)isagenericmonoforE.16Thus,thereexistsamaps: E!a( bC)with�E=sa(�bC).Asthereisalsoamapp:a( bC)! Ewitha(�bC)=p�Eitfollowsthat(ps)�E=�E.Thus,wehaveps=id Eand,therefore,themaps: E!a( bC)isasplitmono.AsUisimpredicativeitcontainstheterminalprojectionof bCand,accordingly,UEcontainstheterminalprojectionofa( bC).Thus,asUEisclosedundersubobjectsinEitfollowsthatUEcontainsalsotheterminalprojectionof E,i.e.thatUEisimpredicative.AsUEcontainstheterminalprojectionofNE=a(N),then.n.o.ofE,theuniverseUEcontainsNE. 15inthegeometricsensebecausea=A:bC=A!E=Aisa nitelimitpreservingleftadjointtotheinclusionE=A,!bC=A16Ingeneral,shea cationdoesnotpreservesubobjectclassi ers.Actually,itdoesifandonlyifthecorrespondingLawvere-Tierneytopologyjpreservesimplicationinthesensethatj!=!(jj).10 with2SA;02S,suchthatforeveryr:RABwithr;02Sthereexistsaunique:B!PS(A)withR -2SAABr?? A-APS(A)?? Obviously,thesubobjectPS(A)consistsofthosesubsetsofAwhicharesmallinthesenseofS.In[Sim1]ithasbeenshownthatexistenceofsuchsmallpowerobjectsentailsthedescentpropertyforS.19Currentlyitisnot(yet)clear(tous)whethertheuniversesintroducedinsection3arede nable.ThoughthisseemstobeverylikelythecaseforGrothendiecktoposesthequestionforrealizabilitytoposesseemstobemuchharder20.However,insteadofauniverseSonemightinsteadconsideritsstackcom-pletionS`stillsatisfyingconditions(1){(4)ofDe nition2.1butinsteadofcondition(5)only(5.1)(descent)foreverya:A!Iifea2S`forsomeepie:JIthenalreadya2S`(5.2)(weaklygenericfamily)thereexistsamapEl:E!UinS`suchthatforeverya:A!IinS`thereisanepie:JIandf:J!Uwithea=fEl.Weleaveitforfutureinvestigationsto ndoutwhetherthestackcompletionsS`oftheuniversesSconstructedinsection3dovalidatethetype-theoreticComprehensionAxiom(CA)discussedatendofsection2. 19Ifb2SandB e0--AJb? e--Ia? thena=(2SA;0)wheretheclassifyingmap:I!PS(A)isgivenbyx=(i)()9j2J:i=e(j)^x=e0!(b�1[j])wheree0!isthedirectimagemapfore0andb�1istheinverseimagemapforb,i.e.(i)=fx2Aj9y2B:e(b(y))=i^e0(y)=xg:20OnewouldhavetoshowforexamplethatfortheclassSofsmallmapsintherealizabilitytoposE asconsideredin[JM]thereexistsagenericfamilyandnotonlyaweaklygenericone.Butthisisdicultasonedoesn'tevenknowthesizeof��1(1),i.e.howmany(uptoisomorphism)objectsX2E existsuchthatXhaspreciselyoneglobalelement.12 References[ABSS]S.Awodey,C.Butz,A.Simpson,T.StreicherRelatingsettheories,toposesandcategoriesofclasses.paperinpreparation(2004).[Ben]J.BenabouProblemesdanslestopos.LectureNotesofaCoursefrom1971takenbyJ.-R.RoisinandpublishedasTech.Rep.,Univ.Louvain-la-Neuve(1973).[Jac]B.JacobsCategoricalLogicandTypeTheory.NorthHolland(1999).[HS]M.Hofmann,T.StreicherLiftingGrothendieckUniverses.unpublishednote(199?)availableelectronicallyathttp:==www:mathematik:tu�darmstadt:de=~streicher=NOTES=lift:dvi:gz.[JM]A.Joyal,I.MoerdijkAlgebraicSetTheory.LondonMathematicalSocietyLectureNotesSeries,220.CambridgeUniversityPress(1995).[Luo]Z.LuoComputationandReasoning.ATypeTheoryforComputerScience.OxfordUniversityPress(1994).[MM]S.MacLane,I.MoerdijkSheavesinGeometryandLogic.SpringerVerlag(1994).[McC]Ch.McCartyRealizabilityandRecursiveMathematics.PhDThesis,Oxford(1984).[Sim1]A.SimpsonElementaryaxiomsforcategoriesofclasses.Proc.ofLICS'99,pp.77-85,IEEEPress(1999).[Sim2]A.SimpsonComputationalAdequacyforRecursiveTypesinModelsofIntuitionisticSetTheory.acceptedforAnnalsofPureandAppliedLogic(2003).[Str1]T.StreicherSemanticsofTypeTheory.Birkhauser(1991).[Str2]T.StreicherFibredCategoriesalaJeanBenabou.lecturenotes(2003)availableelectronicallyathttp:==www:mathematik:tu�darmstadt:de=~streicher=FIBR=FibLec:ps:gz.[Wer]B.WernerSetsinTypes,TypesinSets.Proc.ofTACS'97,SLNCS1281.14

Related Contents


Next Show more