PPT-Automated Anomaly Detection, Data Validation and Correction

Author : min-jolicoeur | Published Date : 2015-10-19

Machine Learning Techniques wwwaquaticinformaticscom 1 Touraj Farahmand Aquatic Informatics Inc Kevin Swersky Aquatic Informatics Inc Nando de Freitas

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Automated Anomaly Detection, Data Valida..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Automated Anomaly Detection, Data Validation and Correction: Transcript


Machine Learning Techniques wwwaquaticinformaticscom 1 Touraj Farahmand Aquatic Informatics Inc Kevin Swersky Aquatic Informatics Inc Nando de Freitas Department of Computer Science Machine Learning University of British Columbia UBC . Introduction and Use Cases. Derick . Winkworth. , Ed Henry and David Meyer. Agenda. Introduction and a Bit of History. So What Are Anomalies?. Anomaly Detection Schemes. Use Cases. Current Events. Q&A. Anomaly Detection for. Cyber Security. Presentation by Mike Calder . Anomaly Detection. Used for cyber security. Detecting threats using network data. Detecting threats using host-based data. In some domains, anomalies are detected so that they can be removed/corrected. Problem motivation. Machine Learning. Anomaly detection example. Aircraft engine features:. . = heat generated. = vibration intensity. …. (vibration). (heat). Dataset:. New engine:. Density estimation. Craig Buchanan. University of Illinois at Urbana-Champaign. CS 598 MCC. 4/30/13. Outline. K-Nearest Neighbor. Neural Networks. Support Vector Machines. Lightweight Network Intrusion Detection (LNID). Anomaly-based . Network Intrusion . Detection (A-NIDS). by Nitish Bahadur, Gulsher Kooner, . Caitlin Kuhlman. 1. PALANTIR CYBER An End-to-End Cyber Intelligence Platform for Analysis & Knowledge Management [Online]. Available: . Detection. Carolina . Ruiz. Department of Computer Science. WPI. Slides based on . Chapter 10 of. “Introduction to Data Mining”. textbook . by Tan, Steinbach, Kumar. (all figures and some slides taken from this chapter. DETECTION. Scholar: . Andrew . Emmott. Focus: . Machine Learning. Advisors: . Tom . Dietterich. , Prasad . Tadepalli. Donors: . Leslie and Mark Workman. Acknowledgements:. Funding for my research is . 9. Introduction to Data Mining, . 2. nd. Edition. by. Tan. , Steinbach, Karpatne, . Kumar. With additional slides and modifications by Carolina Ruiz, WPI. 11/20/2018. Introduction to Data Mining, 2nd Edition. Lecture Notes for Chapter 10. Introduction to Data Mining. by. Tan, Steinbach, Kumar. New slides have been added and the original slides have been significantly modified by . Christoph F. . Eick. Lecture Organization . Shilin . He. ,. . Jieming. Zhu, . Pinjia. . He,. and Michael R. . Lyu. Department of Computer Science and Engineering, . The Chinese University of Hong Kong, Hong Kong. 2016/10/26. Background & Motivation. “Anomaly Detection: A Tutorial”. Arindam. . Banerjee. , . Varun. . Chandola. , . Vipin. Kumar, Jaideep . Srivastava. , . University of Minnesota. Aleksandar. . Lazarevic. , . United Technology Research Center. 14. . World-Leading Research with Real-World Impact!. CS 5323. Outline. Anomaly detection. Facts and figures. Application. Challenges. Classification. Anomaly in Wireless.  . 2. Recent News. Hacking of Government Computers Exposed 21.5 Million People. Hierarchical Temporal Memory (and LSTM). Jaime Coello de Portugal. Many thanks to . Jochem. . Snuverink. Motivation. Global outlier. Level change. Pattern deviation. Pattern change. Plots from: Ted . Institute of High Energy Physics, CAS. Wang Lu (Lu.Wang@ihep.ac.cn). Agenda. Introduction. Challenges and requirements of anomaly detection in large scale storage systems . Definition and category of anomaly.

Download Document

Here is the link to download the presentation.
"Automated Anomaly Detection, Data Validation and Correction"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents