PPT-Image Caption with Deep Learning

Author : min-jolicoeur | Published Date : 2017-03-27

Yulia Kogan and Ron Shiff 19062016 References J Mao W Xu Y Yang J Wang and A L Yuille Explain images with multimodal recurrent neural networks arXiv preprint

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Image Caption with Deep Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Image Caption with Deep Learning: Transcript


Yulia Kogan and Ron Shiff 19062016 References J Mao W Xu Y Yang J Wang and A L Yuille Explain images with multimodal recurrent neural networks arXiv preprint arXiv14101090 2014. Adam Coates. Stanford University. (Visiting Scholar: Indiana University, Bloomington). What do we want ML to do?. Given image, predict complex high-level patterns:. Object recognition. Detection. Segmentation. Quoc V. Le. Stanford University and Google. Purely supervised. Quoc V. . Le. Almost abandoned between 2000-2006. - . Overfitting. , slow, many local minima, gradient vanishing. In 2006, Hinton, et. al. proposed RBMs to . Information Processing & Artificial Intelligence. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 4, 2013 (Day 3). to Speech . EE 225D - . Audio Signal Processing in Humans and Machines. Oriol Vinyals. UC Berkeley. This is my biased view about deep learning and, more generally, machine learning past and current research!. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. No caption/date; Photo No. 8002; Grumman photo; photographer unknown. 2 No caption/date/photo number; photographer unknown; CG V203. Sources: Gordon Swanborough & Peter M. Bowers. United States Nav Recognition. Author : . Kaiming. He, . Xiangyu. Zhang, . Shaoqing. Ren, and Jian Sun. (accepted to CVPR 2016). Presenter : . Hyeongseok. Son. The deeper, the better. The deeper network can cover more complex problems. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 2-5, 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Topic 3. 4/15/2014. Huy V. Nguyen. 1. outline. Deep learning overview. Deep v. shallow architectures. Representation learning. Breakthroughs. Learning principle: greedy layer-wise training. Tera. . scale: data, model, . Deep Learning for Expression Recognition in Image Sequences Daniel Natanael García Zapata Tutors: Dr. Sergio Escalera Dr. Gholamreza Anbarjafari April 27 2018 Introduction and Goals Introduction Dennis Hamester et al., “Face ExpressionRecognition with a 2-Channel ConvolutionalNeural Network”, International Joint Conference on Neural Networks (IJCNN), 2015. New-Generation Models & Methodology for Advancing . Speech Technology . and Information Processing. Li Deng . Microsoft Research, Redmond, . USA. CCF, . Beijing. , July . 8. , 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Assistant Professor. Computer Science and Engineering Department. Indian Institute of Technology Kharagpur. http://cse.iitkgp.ac.in/~adas/. Biological Neural Network. Image courtesy: F. . A. . Makinde. Intro to the deep earth. What is your image of the deep earth. What do we know about the deep earth. How do scientists know about the deep earth. P-wave /. Spirograph. Exercise. Crossword puzzle. Rethink your image of the deep earth.

Download Document

Here is the link to download the presentation.
"Image Caption with Deep Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents