PPT-Neural Networks
Author : min-jolicoeur | Published Date : 2017-05-22
Week 5 Applications Predict the taste of Coors beer as a function of its chemical composition What are Artificial Neural Networks Artificial Intelligence AI Technique
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Neural Networks" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Neural Networks: Transcript
Week 5 Applications Predict the taste of Coors beer as a function of its chemical composition What are Artificial Neural Networks Artificial Intelligence AI Technique Artificial Neural Networks. Kong Da, Xueyu Lei & Paul McKay. Digit Recognition. Convolutional Neural Network. Inspired by the visual cortex. Our example: Handwritten digit recognition. Reference: . LeCun. et al. . Back propagation Applied to Handwritten Zip Code Recognition. Brains and games. Introduction. Spiking Neural Networks are a variation of traditional NNs that attempt to increase the realism of the simulations done. They more closely resemble the way brains actually operate. What are Artificial Neural Networks (ANN)?. ". Colored. neural network" by Glosser.ca - Own work, Derivative of File:Artificial neural . network.svg. . Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg#/media/File:Colored_neural_network.svg. CAP5615 Intro. to Neural Networks. Xingquan (Hill) Zhu. Outline. Multi-layer Neural Networks. Feedforward Neural Networks. FF NN model. Backpropogation (BP) Algorithm. BP rules derivation. Practical Issues of FFNN. 2015/10/02. 陳柏任. Outline. Neural Networks. Convolutional Neural Networks. Some famous CNN structure. Applications. Toolkit. Conclusion. Reference. 2. Outline. Neural Networks. Convolutional Neural Networks. Abhishek Narwekar, Anusri Pampari. CS 598: Deep Learning and Recognition, Fall 2016. Lecture Outline. Introduction. Learning Long Term Dependencies. Regularization. Visualization for RNNs. Section 1: Introduction. Dongwoo Lee. University of Illinois at Chicago . CSUN (Complex and Sustainable Urban Networks Laboratory). Contents. Concept. Data . Methodologies. Analytical Process. Results. Limitations and Conclusion. Ali Cole. Charly. . Mccown. Madison . Kutchey. Xavier . henes. Definition. A directed network based on the structure of connections within an organism's brain. Many inputs and only a couple outputs. Fall 2018/19. 7. Recurrent Neural Networks. (Some figures adapted from . NNDL book. ). Recurrent Neural Networks. Noriko Tomuro. 2. Recurrent Neural Networks (RNNs). RNN Training. Loss Minimization. Bidirectional RNNs. Introduction to Back Propagation Neural . Networks BPNN. By KH Wong. Neural Networks Ch9. , ver. 8d. 1. Introduction. Neural Network research is are very . hot. . A high performance Classifier (multi-class). Dr. Abdul Basit. Lecture No. 1. Course . Contents. Introduction and Review. Learning Processes. Single & Multi-layer . Perceptrons. Radial Basis Function Networks. Support Vector and Committee Machines. Dr David Wong. (With thanks to Dr Gari Clifford, G.I.T). The Multi-Layer Perceptron. single layer can only deal with linearly separable data. Composed of many connected neurons . Three general layers; . Developing efficient deep neural networks. Forrest Iandola. 1. , Albert Shaw. 2. , Ravi Krishna. 3. , Kurt Keutzer. 4. 1. UC Berkeley → DeepScale → Tesla → Independent Researcher. 2. Georgia Tech → DeepScale → Tesla. Patrick . Siarry. ,. Ph.D., . Editor-in-chief. Patrick . Siarry. was born in France in 1952. He received the PhD degree from the University Paris 6, in 1986 and the Doctorate of Sciences (. Habilitation.
Download Document
Here is the link to download the presentation.
"Neural Networks"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents