/
Singular alue Decomposition Notes on Linear Alge bra ChiaPing Chen Department of Computer Singular alue Decomposition Notes on Linear Alge bra ChiaPing Chen Department of Computer

Singular alue Decomposition Notes on Linear Alge bra ChiaPing Chen Department of Computer - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
550 views
Uploaded On 2014-12-22

Singular alue Decomposition Notes on Linear Alge bra ChiaPing Chen Department of Computer - PPT Presentation

brPage 2br Intr oduction The singular alue decomposition SVD is just as amazing as the LU and QR decompositions It is closely related to the diagonal form of symmetric matrix What happens if the matrix is not symmetric It turns out that we can actor ID: 27533

brPage 2br Intr oduction

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Singular alue Decomposition Notes on Lin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SingularValueDecompositionNotesonLinearAlgebraChia-PingChenDepartmentofComputerScienceandEngineeringNationalSunYat-SenUniversityKaohsiung,TaiwanROCSingularValueDecomposition–p.1 IntroductionThesingularvaluedecomposition,SVD,isjustasamazingastheLUandQRdecompositions.ItiscloselyrelatedtothediagonalformA=QQTofasymmetricmatrix.Whathappensifthematrixisnotsymmetric?ItturnsoutthatwecanfactorizeAbyQ1QT,whereQ1;Q2areorthogonalandisnonnegativeanddiagonal-like.Thediagonalentriesofarecalledthesingularvalues.SingularValueDecomposition–p.2 SVDTheoremAnymnrealmatrixAcanbefactoredintoA=Q1QT=(orthogonal)(diagonal)(orthogonal):Thematricesareconstructedasfollows:ThecolumnsofQ1(mm)aretheeigenvectorsofAAT,andthecolumnsofQ2(nn)aretheeigenvectorsofATA.Thersingularvaluesonthediagonalof(mn)arethesquarerootsofthenonzeroeigenvaluesofbothAATandATA.SingularValueDecomposition–p.3 ProofofSVDTheoremThematrixATAisrealsymmetricsoithasacompletesetoforthonormaleigenvectors:ATAxj=jxj,andxTATAxj=jxTxj=jij:Forpositivej's(sayj=1;:::;r),wedenej=pjandqj=Axjj.ThenqTiqj=ij.Extendtheqi'stoabasisforRm.Putx'sinQ2andq'sinQ1,then(QTAQ2)ij=qTiAxj=0ifj�r;jqTiqj=jijifjr:Thatis,QTAQ2=.SoA=Q1QT2.SingularValueDecomposition–p.4 RemarksForpositivedenitematrices,SVDisidenticaltoQQT.Forindenitematrices,anynegativeeigenvaluesinbecomepositivein.ThecolumnsofQ1;Q2giveorthonormalbasesforthefundamentalsubspacesofA.(RecallthatthenullspaceofATAisthesameasA).AQ2=Q1,meaningthatAmultipliedbyacolumnofQ2producesamultipleofcolumnofQ1.AAT=Q1TQTandATA=Q2TQT2,whichmeanthatQ1mustbetheeigenvectormatrixofAATandQ2mustbetheeigenvectormatrixofATA.SingularValueDecomposition–p.5 ApplicationsofSVDThroughSVD,wecanexpandamatrixtobeasumofrank-onematricesA=Q1QT=u11vT1++urrvTr:Supposewehavea10001000matrix,foratotalof106entries.Supposeweusetheaboveexpansionandkeeponlythe50mostmostsignicantterms.Thiswouldrequire50(1+1000+1000)numbers,asaveofspaceofalmost90%.Thisisusedinimageprocessingandinformationretrieval(e.g.Google).SingularValueDecomposition–p.6 SVDforImageApictureisamatrixofgraylevels.ThismatrixcanbeapproximatedbyasmallnumberoftermsinSVD.SingularValueDecomposition–p.7 PseudoinverseSupposeA=Q1QTistheSVDofanmnmatrixA.ThepseudoinverseofAisdenedbyA+=Q2+QT;where+isnmwithdiagonals11;:::;1r.ThepseudoinverseofA+isA,orA++=A.Theminimum-lengthleast-squaresolutiontoAx=bisx+=A+b.Thisisageneralizationoftheleast-squareproblemwhenthecolumnsofAarenotrequiredtobeindependent.SingularValueDecomposition–p.8 ProofofMinimumLengthMultiplicationbyQTleavesthelengthunchanged,sojAxbj=jQ1QTxbj=jQT2xQT1bj=jyQT1bj;wherey=QTx=Q12x.Sinceisadiagonalmatrix,weknowtheminimum-lengthleast-squaresolutionisy+=+QTb.Sincejyj=jxj,theminimum-lengthleast-squaresolutionforxisx+=Q2y+=Q2QTb=A+b:SingularValueDecomposition–p.9