/
ThePartitioningofPolewardHeatTransportbetweentheAtmosphereandOc
... ThePartitioningofPolewardHeatTransportbetweentheAtmosphereandOc
...

ThePartitioningofPolewardHeatTransportbetweentheAtmosphereandOc ... - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
367 views
Uploaded On 2015-09-27

ThePartitioningofPolewardHeatTransportbetweentheAtmosphereandOc ... - PPT Presentation

ean A RNAUD C ZAJA DepartmentofPhysicsImperialCollegeLondonUnitedKingdom J OHN M ARSHALL DepartmentofEarthAtmosphereandPlanetarySciencesMassachusettsI nstituteofTechnologyCambridgeMassachusetts ID: 142053

ean A RNAUD C ZAJA DepartmentofPhysics ImperialCollege London UnitedKingdom J OHN M ARSHALL DepartmentofEarth AtmosphereandPlanetarySciences MassachusettsI nstituteofTechnology Cambridge Massachusetts

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ThePartitioningofPolewardHeatTransportbe..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ThePartitioningofPolewardHeatTransportbetweentheAtmosphereandOc ean A RNAUD C ZAJA DepartmentofPhysics,ImperialCollege,London,UnitedKingdom J OHN M ARSHALL DepartmentofEarth,AtmosphereandPlanetarySciences,MassachusettsI nstituteofTechnology,Cambridge,Massachusetts (Manuscriptreceived28February2005,infinalform28September2005) ABSTRACT Observationsofthepolewardheattransportoftheearth( H )suggestthattheatmosphereistheprimary transportingagentpolewardof30°,thatoceanic( H O )andatmospheric( H A )contributionsarecomparable inthetropicalbelt,andthatoceantransportdominatesinthedeepTropic s. Tostudythepartitionweexpresstheratio H A / H O as H A H O   A  O  C A   A C O   O , where  (withsubscripts A and O denotingatmosphereandocean,respectively)isthemeridionalmass transportwithin  layers(moistpotentialtemperaturefortheatmosphere,potentialtempe ratureforthe ocean),and C   ( C beingthespecificheat)isthechangeinenergyacrossthecirculationdef inedby  . Itisarguedherethattheobservedpartitioningofheattransportbetween theatmosphereandoceanis arobustfeatureoftheearth’sclimateandreflectstwolimits:(i)domina nceofatmosphericmasstransport inmid-to-highlatitudes(  A   O with C A   A  C O   O andhence H A / H O  1)and(ii)dominanceof oceanicenergycontrastintheTropics( C O   O  C A   A with  A  O andhence H A / H O  1). Motivatedbysimpledynamicalarguments,theseideasareillustratedthr oughdiagnosisofatmospheric reanalyses,longsimulationsofanoceanmodel,andacoupledatmosphere– oceanmodelofintermediate complexity. 1.Introduction Figure1ashowsanestimateoftheatmospheric( H A , black)andoceanic( H O ,gray)heattransportfromdata publishedbyTrenberthandCaron(2001),basedon NationalCentersforEnvironmentalPrediction (NCEP)andEuropeanCentreforMedium-Range WeatherForecasts(ECMWF)atmosphericreanalyses (continuousanddashedcurves,respectively).Bothat- mosphericproductssuggestthat(Fig.1b),polewardof about30°,theatmosphericcontributiontothetotal polewardheattransportamountstoroughly90%ofthe total.Asoneapproacheslowerlatitudes,however,both contributeinroughlyequalamounts,althoughaprecise estimateismadedifficultbythefactthatboth H O and H A becomesmallintheTropics(notethelargespread betweenthedashedandcontinuouscurvesinFig.1b equatorwardof10°). Anobviousquestioniswhetherthereisasimple physicalexplanationforthepartitioningsuggestedin Fig.1b.Animportantsteptowardthisgoalwasrecently madebyHeld(2001),whorepresentedtheoceanicand atmosphericheattransportastheproductofanover- turningmasstransportstreamfunction  andanenergy contrast C   , H A , O   A , O C A , O   A , O  1  wherethesubscripts A , O denoteatmosphericandoce- anicvalues,and C and   are,respectively,theheat capacityanddifferenceinanappropriatelydefinedpo- tentialtemperatureacrosstheupperandlower branchesoftheoverturningcirculation(asweshallsee therelevantquantityismoiststaticenergyfortheat- Correspondingauthoraddress: Dr.ArnaudCzaja,Dept.of Physics,ImperialCollege,PrinceConsortRoad,London,SW7 2AZ,UnitedKingdom. E-mail:a.czaja@imperial.ac.uk 1498 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 ©2006AmericanMeteorologicalSociety JAS3695 mosphereandpotentialtemperaturereferencedtothe surfacefortheocean).Suchadecompositioniscom- monlycarriedoutinoceanography(e.g.,Talley2003). UsingEq.(1),theratioofatmospherictooceanicheat transportbecomes H A H O   A  O  C A   A C O   O .  2  IntheTropics,wheretransferbyquasi-two- dimensionalatmosphericeddiesislargelyabsent,Held (2001)arguedthatoceanicandatmosphericmasstrans- portsareclosetooneanotherandsetbytheEkman meridionalmasstransport.Hewentontoproposethat therelativemagnitudeof C   inEq.(1)mustbere- sponsibleforthepartitioning.Torationalizethis,Held suggestedthat C   isessentiallyameasureoftheoce- anicandatmosphericstratificationintheTropics.Oce- anicstratificationishighinthedeepTropicswhere upwellingofcoldfluidtothewarmsurfaceontheequa- torformsapronouncedthermocline.Intheatmo- sphere,bycontrast,tropicaldeepconvectionactsto returnthefluidtomarginalstabilitytomoistprocesses inwhich  A ,themoiststaticenergy,hasweakvertical gradients.ThestateofaffairsisschematizedinFig.2. Hence,asHeld(2001)emphasized,dominanceof oceanheattransportoveratmosphericisexpectedin thedeepTropics. Itisnotstraightforwardtocarrythisargumentto mid-to-highlatitudeswhereitiswellestablishedthat atmospherictransienteddiescannotbeignoredwhen estimatingmeridionalmasstransports.Thuswemight expect  A and  O todecouplemovingawayfromthe Tropics,andtheroleofstratificationinsettingthepar- titioningbecomesmuchlessclear. Inthispaper,weattempttoestimateoceanicand atmosphericheattransportsglobally,motivatedbythe decompositionEq.(1).Todoso,wewillestimatethe meridionalmasstransportswithinpotentialtempera- turelayers — definedbymoiststaticenergyintheat- mosphereandpotentialtemperatureintheocean — whichwillallowustoestimate  and C   directlyfrom data.Ourmainconclusionisthatthepartitioningseen inFig.1bcanbesimplyunderstoodastwolimitsofEq. (2):amasstransport “  limit ” inmid-to-highlatitudes where  A   O andtheatmosphericcontributionto H  H O H A dominates;anenergycontrast “ C   limit ” intheTropicswhere C A  A  C O  O andwhere theoceaniccontributionto H overwhelmsthatofthe atmosphere. Thepaperissetoutasfollows.Sections2and3 F IG .2.Schematicofthedistributionofatmosphericmoistpo- tentialtemperature(  A ,i.e.,moiststaticenergy)andoceanicpo- tentialtemperature(  O )asafunctionoflatitudeandheight (blackcontours).Theequatorisindicatedasaverticaldashed line. F IG .1.(a)Estimatesofoceanic( H O ,gray)andatmospheric ( H A ,black)heattransportinPW(1PW  10 15 W).(b)Relative contributionofocean(gray)andatmosphere(black)tothetotal energytransport H  H O H A using(a).Continuouscurves correspondtoNCEP-basedestimates,whiledashedcurvescorre- spondtoECMWF-basedestimates.Theratiosin(b)werenot plottedinthedeepTropics(2 ° S – 2 ° N)where H A H O vanishes. M AY 2006 CZAJAANDMARSHALL 1499 presentanestimateof  A and  O from,respectively, theNCEP – NationalCentersforAtmosphericResearch (NCAR)reanalysesandalongsimulationofanocean circulationmodel.Applicationoftheseestimatestothe partitioningproblemwillbepresentedinsection4.In section5weproposesimplescalingstounderstandthe masstransportandenergycontrastlimitshighlighted above.Motivatedbythesesimplearguments,insection 6weanalyzeacoupledclimatemodelofintermediate complexityruninanaquaplanetgeometry.Apartition- ingverysimilartothemodernobservationalrecordis found,suggestingthatitislikelytobearobustfeature oftheearth ’ sclimate.Wesummarizeandconcludein section7. 2.Atmosphericmasstransport a.Meridionalmasstransportwithinmoiststatic energylayers Weusedailyestimatesoftemperature T ,geopoten- tial ,andspecifichumidity q fromtheNCEP – NCAR reanalysis(Kalnayetal.1996)ona2.5 °  2.5 ° gridand 17pressurelevels.Thecentraldiagnosticvariableisa quantity  A proportionaltothemoiststaticenergy, 1 definedbytherelation C A  A C A T L  q  ,  3  where L isthelatentheatofvaporizationand C A isthe specificheatcapacityofdryair.Figure3showsthe zonal-meandistributionof  A (dashedcontours),which canbecomparedtothedrypotentialtemperature  (continuouscontours).Themoststrikingfeatureisthe homogeneityof  A intheTropics,whichisconsistent withthetropicalatmosphericlapseratebeingcloseto thatofamoistadiabat(XuandEmanuel1989).An- otherinterestingtropicalfeatureisthepresenceofa lowtomidlevelminimumof  A ,associatedwiththe subsidenceofdryairfromaloft.Inmidlatitudes,one observesthat  A contoursslopemoresteeplythan  contoursduetothewatervaporloadingterminEq.(3). NotethattheshadinginFig.3indicatesthezonalmean distributionofErtel ’ spotentialvorticity(PV) — the 3-PVUcontour(thedashedwhiteline)willbeused belowtodefinethepositionofthetropopause[1po- tentialvorticityunit(PVU)  10 6 Km 2 s 1 kg 1 ]. Onagivenday,themeridionalmasstransportwithin anaircolumnispartitionedintoasetof  A layerswith aresolution  A  5K(finer  A gridswerealsocon- sideredbuttheresultswerefoundtobeinsensitiveto thischoice).Foreach  A layerthetotalmeridional transportacrossagivenlatitudewasthencomputedby summingthecontributionsovereachlongitude.Note thattoenforcemassconservation,thelong-termmean northwardmasstransportpertemperatureclass(ex- pressedinkgs 1 K 1 andhereafterdenotedby M ), summedoveralltemperatureclasses,wassettozero foreachlatitude.From M ,ateachlatitude  wecom- puteamasstransportstreamfunction  A (inkgs 1 ) usingthedefinition:  A   ,  A     A min  A M   ,  A  d  A ,  4  whereweimposedthat  A vanishesforalllatitudesat achosenlowtemperature  min A .Withthesignconven- tionadopted,apositive  A indicatesclockwisecircula- tioninthe(  ,  A )plane.Anappendixsetsoutmore detailsofthemasstransportcalculations. Figure4showsourestimateof  A fortheperiodof 1May2003to30September2003(Fig.4a;Southern Hemispherewinter)andfortheperiod1November 2002to31March2003(Fig.4b;NorthernHemisphere winter).IntheSouthernHemisphere,oneobservesa singleequator-to-polecirculationinbothseasons,with polewardmasstransportathigh  A andequatorward masstransportatlow  A .Thewintertimecellisthe mostintense,reachingamaximumofmorethan200Sv atalatitudeof  40 ° .Notethatwehaveredefineda Sverdrup(thetraditionaloceanographer ’ sunitofvolume transport)torepresentamasstransport(i.e.,1Sv 10 9 1 Notethat  A asdefinedinEq.(3)isrelatedto,butnotthe sameas,moistpotentialtemperature.Itisameasureofenthalpy ratherthanentropy. F IG .3.Zonalmeandistributionof  A (dashedcontours)and  (continuouscontours)fortheperiodfrom1May2003to30Sep 2003(contourintervalis10K).Thezonalmeandistributionof Ertel ’ sPV,inPVU(1PVU  10 6 Km 2 s 1 kg 1 )isshaded.The tropopause(definedasthe3-PVUcontour)isindicatedbythe thickdashedwhiteline. 1500 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 kgs 1 ). 2 IntheNorthernHemispheresummer(Fig.4a) weagainobserveasingleequator-to-polecellwitha maximumofabout100Svnear30 ° oflatitude.Inwin- ter,however,thereisindicationoftwoseparatecenters ofactioninFig.4bnear20 ° and50 ° oflatitude,each withanamplitudeofabout140Sv.Wenotethatme- ridionalmasstransportsof100 – 200Svaresignificantly largerthanthetypical20Svobservedintheocean. Belowwesuggestthatthisisindeedthemajorreason whytheatmosphericcontributionto H dominatesover thatoftheoceaninmid-to-highlatitudes. InFig.4,wealsoplot(graylowercurve)thezonally averagedmeansurface  A .Itisreadilyseenthatmost oftheequatorwardmasstransportoccursinlayerswith temperaturescolderthanthemean(zonallyaveraged) surface  A .Inmidlatitudesthisisbecause[seeHeldand Schneider(1999)]theequatorwardmasstransportis achievedbycoldairoutbreaks,thatis,transientfea- turesofthegeneralcirculation.IntheTropicshowever, thereisadifferentreason:apictureverysimilartoFig. 4canbeobtained(inthe20 ° S – 20 ° Nlatitudeband)if seasonalmean,ratherthandailyfieldsofmeridional velocityandmoistpotentialtemperatureareused(not shown).Equatorwardmasstransportatalower  A than thatofthe(zonallyaveraged)  A atthegroundoccurs becauseofzonalasymmetriesinthesurface  A ,the equatorwardflowbeingfoundmostlyatlowlevelsover thecoldtonguesoftheAtlanticandPacificoceans(not shown). TheuppergraycurveinFig.4isthevalueof  A on thetropopause.Itisseenthatthelattergivesagood estimateoftheupperboundaryofthecellsforallsea- sonsandbothhemispheres. b.Discussionofatmosphericmasstransport Astrikingresultintheaboveanalysisisthatthe Hadleyandmidlatitudeeddy-drivencellstendtobe joinedintoasinglecell(Figs.4a,b).Thisisapro- nouncedfeatureofourdiagnostics,evenmoresothan inpreviousestimatesofmeridionalmasstransport streamfunctionwithindrypotentialtemperaturelay- ers — theso-calledresidualcirculation(e.g.,Karolyet al.1997;HeldandSchneider1999). Tounderstandtheoriginofthisdifference,wedis- playinFig.5theanalogofFig.4butforacalculation inwhichwehaveset L  0in(3),therebyonlycon- sideringthecontributionofdrystaticenergytotheheat transport.Onethenobservesamuchmorepronounced twocellstructureineachwinterhemisphere,withthe tropical(Hadley)celldominating.Thedifferencesbe- tweenFigs.4and5canonlyarisebecauseofmoisture effects.Theysimplyreflectthatmoistureanddrystatic energyarebothtransportedpolewardinmid-to-high latitudes,andsoaddtooneanothertocreatethevig- orousoverturningcellinmidlatitudesseeninFig.4, whiletheyopposeeachotherintheTropics,therebyre- ducingthepronouncedHadleycellcomponentinFig.4. Asecondimportantaspectwewishtodiscussis whetherthemidlatitudecirculationinFigs.4a,bcan 2 Thischoiceismadeforreadycomparisontooceanicmass transports.Thedensityofseawaterisalwayscloseto10 3 kgm 3 , sothataSverdrupof10 6 m 3 s 1 representsamasstransportof10 9 kgs 1 .Accordingly,amasstransportof,say,20  10 9 kgs 1 isthe sameasavolumetransportof20  10 6 m 3 s 1 intheocean,i.e., “ volume(Sv) ” and “ massSverdrups ” areequivalenttoonean- other. F IG .4.Atmosphericmeridionalmasstransportstreamfunction withinmoiststaticenergylayers(contouredevery25Svwhere1 Sv  10 9 kgs 1 ;positivewhenclockwise,seearrows;zerocontour omitted;extremaindicatedontheplot)for(a)Southernand(b) NorthernHemispherewinterof2003.The x axisdenoteslatitude andthe y axis  A (K).Theupper(lower)graycurveisthezonally average  A atthetropopause(ground). M AY 2006 CZAJAANDMARSHALL 1501 indeedbeinterpretedasanoverturningcellintheme- ridional-heightplane.Toaddressthisissue,wecheck againstobservationsthat  A iswellapproximatedby  TEM A ,thestreamfunctionadvectingthezonalmean  A inatransformedEulerianmean(TEM)formulation (Andrewsetal.1987).Thisiswrittenas  A   A TEM  A Eul  A Stokes ,  5  where  Eul A istheEulerianmeanmassstreamfunction and  Stokes A isthequasi-Stokesmassstreamfunction (e.g.,Hoskins1983)definedas  A Stokes L x g   A  A p .  6  InEq.(6), L x isthelengthofalatitudecircle, g is gravity, p pressure,and    A isthemeridionaleddyflux ofmoistpotentialtemperature(primesdenotedepar- turesfromzonalandtimemean,denotedbyanover- bar). Figure6compares  A fromthedirectcalculation (Fig.6a,reproducedfromFig.4a)andanestimateof eachtermintherhsofEq.(5)fortheSouthernHemi- spherewinterof2003.BoththeEulerian(Fig.6c)and thequasi-Stokes(Fig.6b)streamfunctionswerecom- putedinthelatitude – pressureplane,thenmappedonto thelatitude –  A planeusingzonalmean,wintertimeav- eraged  A profiles. 3 Itisseenthatinmidlatitudes,the quasi-Stokescontributionaloneisaverygooddescrip- tionoftheintensityandmeridional/  A scalesof  A (as before,graycurvesindicatethe  A ofthetropopause andtheground).Inmidlatitudes,theEuleriancontri- 3 Notethat,fortheSouthernHemispherecaseconsideredin Fig.6,onlytransienteddieswereincludedinthecomputationof    A in(6).Thecontributionofsteadyeddieswasfoundtobe negligibleexceptclosetotheAntarcticcontinent,wherethecon- tributionwasnoisy(notshown). F IG .6.Variousestimatesofthemassstreamfunctionwithin  A layers(a)direct,asinFig.4a,(b)usingEq.(6),and(c)the Eulerianmean.Contourintervalis20Sv.Graycurvesasin Fig.4a. F IG .5.SameasFig.4butforthemeridionalmassstreamfunc- tionwithindrystaticenergylayers.The y axisnowdenotesan equivalentpotentialtemperaturecomputedas C A T . 1502 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 bution — theFerrelcell — isathermallyindirectcell, 4 of muchsmallerintensity.AstheTropicsisapproached, however,theEuleriancontribution — thewintertime Hadleycell — dominatesthetotalmasstransportand providesagoodapproximationto  A . ThattheapproximationEq.(5)holdsgivessupport totheinterpretationof  A asatrueoverturningcellin themeridional – heightplane. 5 Thisinterpretationcan alsobeunderstoodmorephysicallybynotingthat  Stokes A inEq.(5)isanapproximationtotheStokesdrift associatedwithbaroclinicwaves(e.g.,Wallace1978). 3.Oceanicmasstransportwithin  layers Theoceanicanalogtomoiststaticenergyissimply theinternalenergy, C O  O ,where C O isthespecificheat capacityofseawaterand  O isthepotentialtempera- turereferencedtothesurface[seeWarren(1999)fora detaileddiscussionofhow C O  O approximatestheoce- anictotalenergy,i.e.,theBernoullifunction,asde- fined,e.g.,byGill(1982)].Wethereforepresentan estimateofthemeridionalmasstransportwithinpoten- tialtemperature(  O )layersfromalongsimulationof theMassachusettsInstituteofTechnology(MIT)gen- eralcirculationmodel(GCM;Marshalletal.1997).The modelisastateoftheartGCMforcedbyseasonally varyingsurfacewindsandbuoyancyforcing.Itwasrun onthecubedspheregrid(Adcroftetal.2004)atcoarse resolution(15verticallevelsandC32  2.8 °  2.8 ° in thehorizontal).Moreinformationaboutthesimulation canbefoundintheappendix. Fromthelast50yrofathousand-yearintegration,we haveestimatedatimemeanmeridionalvelocity( )and potentialtemperaturefield,aswellasatimemeanbo- lusvelocity( *)introducedbytheGentandMcWill- iamsscheme(GentandMcWilliams1990).Thelatteris meanttorepresenttheStokesdriftassociatedwith barocliniceddies(section2b),which,unlikeintheat- mosphericcalculationsabove,arenotexplicitlyre- solvedinthiscoarseoceanmodelsimulation.Ateach gridpoint,thewatercolumnispartitionedintoasetof  O layers(witharesolutionof  O  1K)andthe meridionalmasstransport( *)withineachlayeris computed.Notethatthisprocedureneglectstime- dependenteffectsthat,inthissimulation,arelimitedto theseasonalcycle(nointerannualvariabilityinthesur- faceforcing).Theerrortherebyintroducedinthean- nualmeanwasestimatedbycomparingtheoceanheat transportcomputedfromtimemean *and  O with thatobtainedfromthetimemeanoftheproduct( *)  O .Itwasfoundtobenegligible.Furtherdetailsof thenumericalprocedurearediscussedintheappendix. Figure7showsthemassstreamfunctionwithin  O layersfortheglobalocean,calculatedfromEq.(4)in thesamewayasintheatmosphere.Oneobserves prominentcellsatwarmtemperatures(  O  15 °– 30 ° C),flankedbycold(  O 10 ° C)deepcellsathigher latitudes.Theintensityofthewarmandcoldcellsis comparable(  30Sv).Thepolewardflowinbothcold andwarmcellstypicallyoccursatatemperaturethatis largerthanthezonallyaveragesurfacetemperature (shownbythethickmediangraycurveinFig.7;the warmestandcoldestsurfacetemperaturearealsoindi- catedastheupperandlowergraycurves).Thisisthe oceanicanalogtotheobservationthatintheatmo- sphere,equatorwardflowoccursatatemperature lowerthanthesurfaceowingtotheeffectoftransient eddies(seesection2).Intheocean,itisaconsequence ofthethree-dimensionalcharacterofthesteadycircu- lationdepictedinFig.7,withadvectioninwarmwest- ernboundarycurrentsandtheirinteriorextensionbe- ingakeyaspect.Aswewillseebelow,  O differsfrom basintobasin.Overall,thefeaturesinFig.7aresig- nificantlymorecomplicatedthanitstwo-dimensional atmosphericcounterpartinwhichthereisasingleover- turningcellineachhemisphere,seeFig.4. Analysisofthemeanthicknessofthe  O layersre- 4 Bythermallydirect(indirect)wemeanameridionalcircula- tionwithascentwherethefluidiswarm(cold)anddescentwhere itiscold(warm). 5 Thegoodagreementbetween  A and  TEM A isnotunexpected forthose  A layerswhichdonotintersecttheground(seeMcIn- toshandMcDougall1996). F IG .7.Annualmeanmassstreamfunctionintheoceanwithin  O layers(contouredevery5Sv,continuouswhenclockwise;zero contouromitted).The x axisislatitudeandthe y axispotential temperature  0 ( ° C).Themiddlegraycurveisthezonallyaverage surface  O whiletheupperandlowergraycurvesindicatethe maximumandminimumsurface  O asafunctionoflatitude. M AY 2006 CZAJAANDMARSHALL 1503 veals(notshown)thatthewarmcellsoccupyavolume offluidwithhighstratification(thinlayers)andcanbe identifiedwiththemasscirculationwithintheventi- latedthermoclinesoftheSouthernandNorthern Hemispheres.Thisisfurtherconfirmedbythefactthat theirpolewardextensionisratherwellpredictedbythe positionofthemidlatitudezerowindstresscurllines (notshown). Thecoldcellsareassociatedwiththick  O layers (weakstratification)andcorrespondtothecirculation ofNorthAtlanticDeepWaterandAntarcticBottom Water.NotethatthetraditionalEulerianmassstream- functiondisplaysmoremodest(  10 – 15Sv)coldcell masstransports. Furtherinformationabout  O isprovidedinFig.8, wherethecalculationwasrepeatedseparatelyforthe Indo-Pacific(Fig.8a)andAtlantic(Fig.8b)basins.A simplepartitioningistherebyobtained,inwhichthe twowarm(symmetric)cellsoriginateinthemainfrom theIndo-Pacificbasinandthe(asymmetric)Northern coldcellfromtheAtlanticbasin. 4.Thepartitioningofheattransport Wenowcombineoceanicandatmosphericmass streamfunctionswithintheirrespectivepotentialtem- peraturelayers.Insodoing(Fig.9),wehavemapped the y axisofFigs.4and7ontoanenergyaxis,whichis C A  A fortheatmosphereand C O  O fortheocean. ThefirststrikingfeatureofFig.9isthat,asantici- patedinsection2,theintensityoftheoceaniccellis muchweakerthanitsatmosphericcounterpart(both areannualaverages,seecaptionofFig.9).Evenat20 ° , where  O reachesitsmaximum,theatmosphericmass transportisroughly4timesthatoftheocean.Itisonly withinthedeepTropicsthatthetwotransportsare comparable.ThisisfurtherdemonstratedinFig.10 (continuousblackcurve),whichshowstheratioofthe maximumof  O andthatof  A ,computedfromFig.9 ateachlatitude.Notethatsinceboth  O and  A be- comesmallclosetotheequator,themassratioshown inFig.10israthernoisyatlowlatitudes. ThesecondimportantfeatureseeninFig.9isthat thethicknessofthecellsinenergyspaceiscomparable. Toestimatethismoreprecisely,wehaveusedFig.9 andcomputedthechangein C O  O and C A  A (hereafter denotedas C O   O and C A   A ,respectively)acrossa referencecontourofmasstransport.Thelatterwas chosentobe10%oftheoverallmaximumof  O (0.1  32Sv  3Svintheocean)and  A (0.1  143Sv  14 Svintheatmosphere).Theratio C O   O / C A   A isplot- tedinFig.10(gray).AsoneapproachestheTropics, where   A issmall,theratiodiverges.Conversely,on movingtohighlatitudeswhereoceanicpotentialtem- peraturevariationsaresmall(weakstratification),the ratioapproacheszero.Inmidlatitudes, C O   O / C A   A F IG .8.SameasFig.7butforthe(a)Indo-Pacificand(b) Atlanticbasins. F IG .9.Annualmeanatmospheric(black)andoceanic(gray) massstreamfunctionwithinconstantenergylayers.Thecontour intervalis10Sv,dashedwhencirculatinganticlockwise.The y axis isanenergycoordinate( C  )inunitsof10 4 Jkg 1 .Theoceanic cellsarethesameasshowninFig.7(annualmean)whilethe atmosphericcellsareanannual-meanestimateobtainedbyaver- agingFigs.4a,b. 1504 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 isoftheorderofunity,thedifferencesinheatcapacity ( C O / C A  4)beingcompensatedforbyalargertem- peraturedifferenceacrosstheatmosphericcell(   A  40Kcomparedto   O  10K). Theproductofthecontinuousblack(  ratio)and gray( C   ratio)curvesallowsanestimateofthere- spectivecontributionofmasstransportandenergycon- trasttothepartitioningofheattransport.Itisshownas theblackdot – dashedlineinFig.10,andfallsbetween theblackandgraycurves.Indeed,theenergycontrast tendstofavortheoceanasthemajorcontributortothe totalheattransportuptolatitudesof40 °– 50 ° .How- ever,themasstransportstronglyfavorstheatmosphere asthedominantcontributortothetotalheattransport atalmostalllatitudes.Thenetresultofthesetwocom- petingeffects(dot – dashedcurve)isconsistentwiththe partitioningshowninFig.1b,withtheatmosphere dominatingthetotalheattransportforlatitudespole- wardofabout20 ° . Finally,webrieflycommentontheinterpretationof the C   termasameasureofstratification.Ascanbe seenfromFig.4,inboththeTropicsandmidlatitudes, C A   A ,thetypicalchangeinmoiststaticenergyacross  A ,issignificantlydifferent(twiceaslarge)fromthe tropopausetoground  A difference.Similarlyinthe ocean,itisreadilyseenfromFig.7that C O   O forthe warmcellsissignificantlydifferent(byabout20% – 30%)thana(zonallyaveraged)surfacetothermocline bottomtemperaturedifference.Onemustbecareful, then,whenestimatingtheenergycontrastacrossthe oceanicandatmosphericcirculationsappropriatefor computationofmeridionalenergytransport. 5.Scalings Ourdiagnosticssuggestthattheobservedratio H A / H O , whichislarger(smaller)thanunitypoleward(equator- ward)ofroughly30 ° ,canbeunderstoodasaconse- quenceoftwosimplelimitsofEq.(2): (i)dominanceofatmosphericmasstransportinmid- to-highlatitudes(  A   O with C A   A  C O   O andhence H A / H O  1) (ii)dominanceofoceanicenergycontrastintheTrop- ics( C O   O  C A   A with  A  O andhence H A / H O  1) Thesecondlimit — alsoinvokedbyHeld(2001) — isthe easiesttorationalizesinceitsimplyinvokessmallen- ergycontrastswithinthetropicalatmosphere(and roughlyequivalentmasstransports,seeintroduction). Thisisaconsequenceofdeepconvectionreturningthe atmospheretoamoistadiabaticlapserateanddynami- caladjustmentssmoothingoutsignificanthorizontal potentialtemperaturegradientswithin  15 ° ofthe equator.Ontheotherhand,thepredominanceofat- mosphericoveroceanicmeridionalmasstransportin midlatitudes[limit(i)]isperhapssomewhatcounterin- tuitiveinviewofthemuchlargerdensityofwatercom- paredtoair.Wenowattempttounderstand  A   O usingdynamicalscalings. Ourstartingpointistoviewthemasscirculations  A and  O asoverturningcellsinthemeridional – height plane.ThissimplificationisjustifiedbyFig.6forthe atmosphere,inwhichthequasi-Stokesadvectionpro- videsagooddescriptionof  A inmidlatitudes(see section2b).Itisprobablylesssointheoceanbecause ofamorefundamentalthree-dimensionalcirculation thatcontributesto  O (seesection3).Neverthelesswe willlimitourselvestothissimplepicture.Forsuchan overturningcirculation,asimpleestimateofthemass transportisgivenby(appropriatetobothoceanand atmosphere)    zVL   z P g VL ,  7  where  isthedensity, V isatypicalmeridionalvelocity,  z istheverticalscaleoftheoverturning,and L isthe zonallengthscaleoverwhichthecirculationextends, andthehydrostaticrelationhasbeenused.Allterms areestimatedforeitherthepolewardortheequator- wardbranchofthecirculation.Sincetheoceanhasa muchgreaterdensitythantheatmosphere,the  z P / g terminEq.(7)willalwaysbelargerforanoceaniccell. Ontheotherhand,meridionalvelocitiestendtobe muchlargerintheatmospherethanintheocean.Since zonallengths L areofsimilarmagnitudeinbothocean F IG .10.Theratio C O   O / C A   A (gray),max(  O )/max(  A ) (continuousblack),andtheirproduct(dot – dashed),computed fromFig.9.Aratioofunityisindicatedbythehorizontaldashed line. M AY 2006 CZAJAANDMARSHALL 1505 andatmosphere,theremustbeastrongcompensation ofmassandvelocityeffects.Thissuggeststhatasimple scalingbasedon(7)willbeproblematicalsinceitmust accountfortwolarge,compensatingterms. Toovercomethisproblem,wefocusdirectlyonthe masstransportstreamfunctions  A and  O andwithin aquasigeostrophicframeworkproposeasimultaneous treatmentoftheirdynamics.Fortheocean,wewill considerboththecaseofachannelgeometry(with meridionaloverturningcellbutnogyres)andthatofa basingeometrywithmeridionalboundaries(bothgyres andoverturningcell). Letusconsider,then,thezonallyaveragedzonalmo- mentumbalancefortheoceanortheatmosphere,mod- eledasBoussinesqfluidsinaCartesiangeometry(ne- glectingadvectionofmeanmomentumbythemean flow), f    ref p x u  y 1 ref  z .  8  Here, x , y, and z denotelongitude,latitude,andheight, respectively, f istheCoriolisparameter, p thepressure, u and denotethezonalandmeridionalvelocities,  ref isareferencedensity,and  representtheturbulent stressduetosmall-scaleprocesses.Asin(6),primes denotedeparturesfromthezonalandtimemean(in- dicatedbyanoverbar).Theparameter  issettounity forthecaseoftheoceanwithbasingeometry,acknowl- edgingthepresenceofeast – westpressuregradients acrosslatitudecircles,andanticipatingtheresultspre- sentedinsection6,itissettozerointhecaseofan oceanchannelgeometryandintheatmosphericcase. 6 FollowingthestandardtransformedEulerianmean procedure(e.g.,Andrewsetal.1987;Marshalland Radko2003),werewrite(8)as f  res  f 1 ref  res z   ref p x u  y 1 ref   z  eddy z  ,  9  where res ,  res aretheresidualmeanmeridionalveloc- ityandmassstreamfunction,respectively(  res  0is clockwiseinthelatitude – heightplane,i.e.,representing athermallydirectcirculationintheNorthernHemi- sphere),and  eddy istheassociatededdystressgivenby  eddy  ref f   d  dz ,  10  where d  / dz isareferencepotentialtemperaturegra- dient.Notetheconnectionof(10)withtheStokes streamfunctiondefinedin(6). IntheatmosphereweintegrateEq.(9)with  0in theverticalfromtheseasurface(where  res  0and    s ,thezonalsurfacewindstress,positiveformid- latitudewesterlies)tothelevelwheretheresidualmean streamfunctionisamaximumand   0(Fig.11).A furthersimplificationarisesbecauseoverthisbottom layertheReynoldsstresstermin(9)canbesafelyne- glected.Denotingby  res ,A theinteriormaximumof  res (wheretheeddystressis  A ),weobtain  res, A   A  s f .  11  Sincetypically  A   s — seefurtherdiscussionbelow — , thisequationshowsthatbarocliniceddiestendtodrive athermallydirectcirculation(  A ,  res ,A  0inthe NorthernHemisphere)opposedbyathermallyindirect Ekman(orFerrell)cellassociatedwithsurfacewind stress. Intheoceanweintegrateverticallyovertheupper layerofthemeridionalcirculation,fromthedepth D where  res reachesitsmaximum(denotedby  res , O ; see Fig.11)andtheturbulentstress  vanishesatthesea surfacewhereagain  res  0and    s .Eventhough currents,andhenceReynoldsmomentumfluxes,are thelargestinthislayer;evenhere,Reynoldsstresses 6 Thisneglectsformdragatthelowestoceanicandatmospheric levels. F IG .11.Schematicoftheresidualcirculation  res intheatmo- sphereandtheoceaninanaquaplanetgeometrysuchasthe SouthernOcean.Atthesurface,  res vanishesinbothoceanand atmosphere,whilealongthehorizontaldashedlineitreachesa maximumvalueintheinterioroftherespectivefluids.Thismaxi- mumisdenotedby  res ,A (atmosphere)and  res ,O (ocean).Equa- tion(9)isintegratedovertheoceanicandatmosphericlayers boundedbythesurfaceandthedashedline. 1506 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 canbeneglectedcomparedtotheeddystress  eddy , owingtothesmallRossbynumberintheocean.Inte- grationof(9)thusyields  res, O   O  s f  f  D 0  x pdz ,  12  whichincludesacontributionfromzonalpressuregra- dient dp /  x ,whichwehaverewrittenas  x p ,inthecase ofabasingeometry(  1).Inthelattercase,wemust relate  x p toothervariables.Thisisdone,following Marshall(1997),byconsideringtheverticallyaveraged (fromsurfacetobottomdepth H )zonalmomentum balanceoftheocean.FromEq.(8)with  1,neglect- ingbottomturbulentstressesandagainReynoldsmo- mentumstresses,wehave f  H 0  dz  0  1 ref  H 0  x pdz  s ref ,  13  whichyields  H 0  x pdz   s .  14  Asimpleclosureisnowchoseninwhichweassume thatthezonalpressuregradientintegratedovertheup- perlayeroftheresidualflowisproportionaltothe depth-averagedzonalpressuregradient,thus,  D 0  x pdz  a  H 0  x pdz  a  s ,  15  where a isa(nondimensional)constantofproportion- alityandwehaveused(14).MakinguseofEq.(15)in (12),wefinallyobtain  res, O   O  1 a    s f .  16  Justasinitsatmosphericcounterpart[Eq.(11)],Eq. (16)indicatesthateddystressestendtodriveather- mallydirectcirculation.Unliketheatmosphere,how- ever,thepresenceofmeridionalboundaries(  0) introducesapressuregradientterm,whichpartlycom- pensatesthezonalwindstressforcing.Equations(11) and(16)suggestascalingoftheratioofatmosphericto oceanicmasstransportstreamfunction,thus,  A  O   res, A  res, O   A  s  O  1 a    s .  17  Inthecaseofpurelyaxisymmetricdynamics(noeddies,  A   O  0,and  0),theratioofatmosphericto oceanicmasstransportis  A /  O  1.Thesenseof circulationandmasstransportoftheatmosphericand oceaniccellsisthesame(theEkmanmasstransport),as inHeld ’ s(2001)discussionofthecoupledtropicalcir- culation.Inmidlatitudes,however,theeddystresses cannotbeneglected,andtheratio  A /  O dependson theirstrengthrelativetothesurfacewindstress. InspectionofFig.6suggeststhat,intheatmosphere inmidlatitudes,theStokesstreamfunction(seesection 2b)ismuchlarger(byatleastafactorof2)thanthe Eulerian(Ferrell)circulation(  A   s )andEq.(17) reducesto  A  O   A  O  1 a    s .  18  IntheSouthernOcean,characterizedbyachannel geometry(  0),diagnosticandtheoreticalstudies suggestthatthesenseoftheresidualcirculationisset bythewind(theso-calledDeaconcell,  O   s / f with anequatorwardupperlevelflow),althoughitsmagni- tudecanbesignificantlyreducedbythepresenceofthe eddystressterm  O (KarstenandMarshall2002;Mar- shallandRadko2003;Olbersetal.2004).Inabasin geometry(  1),suchasoccursintheNorthAtlantic Ocean,theupperflowispolewardinmidlatitudes,that is,oppositetothedirectEkmanflowdrivenbythe surfacewesterlies.Eddystressesand,evenmorelikely, zonalpressuregradientsacrossthebasinmustthus dominateEq.(16).Indeed,about15Svofwateris believedtoflowpolewardatupperlevelsintheNorth Atlantic(GanachaudandWunsch2000)whileoverthe samebasintheEkmancontributionisabout5Svequa- torwardinmidlatitudes. 7 Neglecting  O in(16),thisre- quires a  4.Suchavaluereflectsthelargebaroclinic structureofthepressurefield,yieldinglargerupper levelpressuregradientsthandepth-averagedones,see Eq.(15). Insummary,themasstransportintheatmospherein midlatitudesisdrivenbybarocliniceddiesandisasso- ciatedwithathermallydirectcirculation.Thesurface westerliesproduceanEkmantransportopposingthe eddy-drivenmassflux.Thissituationissomewhat analogoustotheoceaninachannelgeometrywhere cancellationexistsbetweeneddy-andwind-drivenme- ridionalmasstransports,withtheimportantdifference thatsurfacewesterliesaredrivenbyatmosphericeddies whereasoceaniceddiesareaconsequenceofthesur- facewindthroughitsroleingeneratingpotentialen- ergy(Gilletal.1974).Thesedifferentcausalrelation- shipsprobablyexplainwhyintheatmospheretheeddy- drivenmassfluxdominatesoverEkman,whilethe 7 Thisisassuming  s  0.1Nm 2 , f  10 4 s 1 ,andazonal lengthscaleof5000km . M AY 2006 CZAJAANDMARSHALL 1507 reversesituationoccursintheSouthernOcean.The presenceofmeridionalboundariesmaydramatically changethestateofaffairs,asitallowsthelarge-scale geostrophicflowtoaddconstructivelytotheeddy drivenflowandcontributetoanetthermallydirect overturningcirculation,asobservedintheNorthAt- lantic. Overall,theabovediscussionsuggeststhat,inmid- latitudes,thesignof  A /  O isprobablydependent uponthegeometry(negativeinachannelwheresur- faceflowscanbeinthesamedirectioninboththe atmosphereandocean,seeFig.11;positiveinabasin, withoppositedirectionofsurfaceflows,seeFig.9),but thatitsamplitudeisprimarilycontrolledbytheratioof atmosphericeddystresstosurfacewindstress,assum- ingthat   O (1 a  )  s    s .Wethusobtainthe followingscalingfortheratioofmasstransportas   A  O    A  s .  19  Thisratioappearsasthekeyparameterofourstudy. Sincesurfacewindstressbalancestheverticallyinte- gratededdyfluxesofzonalmomentum,  A /  s canbe thoughtofasameasureoftheimportanceofeddyheat fluxes[seeEq.(10)]versusmomentumfluxes,thatis,of therelativestrengthoftheverticalandhorizontalcom- ponentsoftheEliassen – Palmflux(e.g.,Edmonetal. 1980).Itisuncleartouswhetherornotthereisany- thingfundamentalaboutaratio  A /  s  1,associated withmostofthewaveactivitypropagatingupwardand beingdissipatedinplace(verticalEliassen – Palmflux limit). 6.Partitioninginacoupledclimatemodel Thescalingsproposedintheprevioussectionare ratherbasicinthesensethattheydonotrelyona detailedrepresentationofgeometryandorography, etc.Onethusexpectsthattheheattransportpartition- ingseenintheobservationsshouldalsobefoundinthe presenceofverydifferentcontinentalconfigurations. Wenowbrieflyexplorethispossibilitybyanalyzingthe partitioningofheattransportinalongsimulationofa coupledmodelofintermediatecomplexityruninthe absenceofcontinents(aquaplanetgeometry)butwith anactivedynamicalocean. Thecoupledmodelconsistsofafive-layerprimitive equationatmospherewithsimplifiedphysicalrepresen- tations(Molteni2003),coupledtotheMITocean modelasdescribedinMarshalletal.(2004).Theatmo- sphereandoceanarerunonthesamecubedsphere grid(seeAdcroftetal.2004)atahorizontalresolution ofC32(  2.8 °  2.8 ° ).Theoceanbottomisflatwitha constantdepthof5200m.Alinearbottomdragisap- pliedtothelowestoceaniclayerstocontrolthemodel barotropicmode.Thecoupledsystemalsoincludesa simplethermodynamicseaicemodelbasedonWinton (2000).Theresultspresentedbelowarebasedonthe last500yrofa1500-yrintegration. Figure12displaysthecontributionoftheatmosphere (black)andtheocean(gray)tothetotalheattransport ( H A / H and H O / H ,respectively)intheaquaplanet coupledmodelinaformatsimilartoFig.1b.Oneob- serves(continuouscurves)thatagainasimpleparti- tioningisfound,withtheatmospheredominatingpole- wardof20 ° andtheoceandominatingequatorwardof 20 ° .Forreference,wehavealsoindicatedthecorre- spondingcurvesfromobservations(seecaptionofFig. 12)asbrokenblackandgraycurves.Thesimilarity betweenthetwosetsofcurvesisstriking.Evenina worldverydifferentfromourown,thepartitioningof heattransportbetweentheatmosphereandoceanre- mains,tofirstorder,thesame. Furtherdiagnosticsindicatethatthissimilaritycan againbeexplainedfromthetwolimitsinvokedinsec- tion5.Theoceanicenergycontrastsarelargeinthe Tropicswhereequatorialupwellingcreatesasharp, strongthermocline,whereasmoiststaticenergycon- trastsareextremelyweakinthemodeltropicalatmo- sphere,evenmoresothanintherealworldowingto theabsenceofzonalSSTgradientsassociatedwiththe coldtongueandtheabsenceofland – seacontrastsin theaquaplanetgeometry.Theatmosphericmasstrans- portpeaksatabout30 ° withavalue  200Svwhilethe F IG .12.AsinFig.1bbutforthecoupledmodelinanaqua- planetgeometry(continuouscurves).Asareference,observed ratiosarealsoindicated(brokencurves).Thelatterwerecom- putedfromtheobservationspresentedinFig.1a,averagingthe NCEPandECMWFoceanicandatmosphericheattransports. 1508 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 oceanicmasstransportpeaksat20 ° withavalueof  60 Sv,leadingtheatmospheretobethemaincarrierof energypolewardof20 ° . 7.Summaryandconclusions Adiagnosticstudyofthepartitioningofthetotal polewardheattransportbetweentheoceanandatmo- spherewaspresentedinacoordinatesystemcompris- inglatitudeandenergy.Inthiscoordinatesystem,the polewardheattransportbyboththeoceanortheat- mospherescalesas H  C   ,where  representsthe meridionalmasstransportwithin  layers(moiststatic energyormoistpotentialtemperaturefortheatmo- sphere,potentialtemperaturefortheocean)and C   scalestheenergydifferenceacrossthecirculationde- finedby  . Boththeoceanic(  O )andatmospheric(  A )meridi- onalmasstransportsareremarkable.Intheatmo- sphere,asingleequator-to-polecellappearsineach hemisphere,afeaturehighlightedinpreviousstudiesof theresidualcirculation,butwhichisevenmorepro- nouncedherewheremoist,ratherthandry,potential temperatureisused.Theoceanicstreamfunctionshows adistincthemisphericasymmetryinbothwarmwind- drivencellsandcoldbuoyancy-drivencells. Twosimplelimitsemergefromourdiagnostics.In mid-to-highlatitudes,theintensityoftheatmospheric meridionalmasstransportdominatesthatoftheocean (  A  100Svcomparedto  O 30Sv).Withsucha dominantmasstransport,heretheatmosphereisthe maincontributortothetotalpolewardheattransport ( H A / H O   A /  O  1).IntheTropicshowever,  A /  O  1,energycontrastsetsthepartitioningandthe oceanbecomesthemajorcontributortothetotalpole- wardheattransport( H A / H O  C A   A / C O   O  1). Wehavearguedthatthesetwolimitsreflectfunda- mental,robustdynamicsoftheocean – atmospheresys- tem.Thedominanceoftheatmosphericmeridional masstransportinmidlatitudesisaconsequenceofthe efficiencyofbarocliniceddiesindrivingathermally directcirculation.Thestrengthofthelatterismore thantwicethatofthe(indirect)Eulerianmeancircula- tion(theFerrelcell),whichroughlyscalestheocean meridionalmasstransport.Thetendencyoftheatmo- spheretobeclosetoneutralitywithrespecttomoist processeswithin15 ° orsooftheequatorischieflyre- sponsibleforthesecondlimit. Asaconsequenceofthesebasicideas,wehavefur- therarguedthattheobservedpartitioningisarobust featureoftheearth ’ sclimate,unlikelytochangesig- nificantlyinadifferentconfigurationofcontinents,as hashappenedongeologicaltimescales.Somesupport forthisclaimwasobtainedfromalongsimulationofan intermediatecomplexityclimatemodelruninanaqua- planetgeometry(nocontinentsatall!). CombinedwiththestudyofStone(1978),whoar- guedthatthetotal(ocean atmosphere)heattrans- portisessentiallysetbytheplanetaryalbedo,thesolar constantandtheradiusoftheEarth,ourresultssuggest thattheoceanicandatmosphericheattransportmight themselveschangerathermodestlyinverydifferentcli- matestates.Inotherwords,climatevariabilitymaybe associatedwithonlysmalldeparturesfromfixedback- ground H A , H O curves.Thishypothesisdoesnotrule outthepossibility,knownasBjerknes ’ compensation idea(Bjerknes1964),thatchangesin H A and H O op- poseeachotheronlongtimescales.Ourstudysuggests thatsuchcompensatedchangesmaymodifytheparti- tioningbyonlyasmallamount,withtheatmosphere continuingtodominatethetotalheattransportpole- wardof20 ° andtheoceaninthedeepTropics.These ideaswillundoubtedlysoonbecometestableasoceanic andatmosphericreanalysesproductsimprove,anda vasthierarchyofcoupledocean – atmospheremodels,in variousgeometries,becomeavailableforanalysis. Acknowledgments. Thisworkwassupportedbya grantfromNOAA ’ sOfficeofGlobalProgramsaspart ofAtlanticCLIVAR.Jean-MichelCampinwasoftre- mendoushelpinanalyzingtheresultoftheocean GCM.Wewouldalsoliketothankthethreereviewers fortheirhelpfulcomments. APPENDIX SpecificDetailsoftheMassTransportCalculation within  Classes a.Atmosphere DailyoutputsfromtheNCEP – NCARreanalysis (Kalnayetal.1996)wereusedtocomputemoistpo- tentialtemperature  A andmeridionalvelocity ateach nominalpressurelevel.First,onagivenday,  A and wereinterpolatedontoafiner,regular(  P  10mb) pressuregrid,inordertoprovideabetterresolutionin temperatureclass.Layerswithpressuregreaterthan thesurfacepressureforthatday(thelatteralsobeing takenfromtheNCEP – NCARreanalysis)wereex- cludedfromthecalculationsincetheyphysicallywould liebelowtheground.Themeridionalmasstransport withinthefinergridcolumn(  P / g foragivenpressure layer,where g isgravity)wassubsequentlyrepartioned asafunctionofmoistpotentialtemperatureclass,with M AY 2006 CZAJAANDMARSHALL 1509 aresolutionof  A  5K.Finerandcoarserresolutions weretestedfortheSouthernHemispherewinterperiod of2003andfoundtoproduceverysimilarresults.We thususedthisresolutionforallcalculationspresented here,includingmeridionalmasstransportwithindry potentialtemperaturelayers. b.Ocean Weuseyearlyoutputsfromathousand-year-longin- tegrationoftheMIToceanGCM(Marshalletal.1997) runonthecubespherein z -levelcoordinates(Adcroft etal.2004)witharealisticgeometry.Themodelwas forcedbyaseasonallyvaryingclimatologyofsurface windstressandnetsurfaceheatfluxandevaporation minusprecipitation(thesimulationisthesameasthat discussedinMarshalletal.2004).Themodelhasno surfacemixedlayerbutasimpleconvectiveadjustment scheme.Surfacetemperatureandsalinityarerestored toobservedclimatologywithatimescaleof2months and2yr,respectively.Thereisnoseaicemodel,butthe temperatureismaintainedabovefreezing.Avertical diffusivityof K  3.10 5 m 2 s 1 wasusedfortempera- tureandsalinity.TheGentandMcWilliams(1990) schemeisusedtogetherwithanisopycnaldiffusion (Reditensorformalism)coefficientsetto K   800 m 2 s 1 . Theproceduretoobtainthemeridionalmasstrans- portwithinasetof  O (potentialtemperature)layersis almostidenticaltothatusedfortheatmosphere(re- placingthefinerpressuregridbyafinergeometric heightgridwith  z  10m).Onlyonechangewas made:sincetheoceanmodelpredictsatransportwithin eachlayer, waskeptthesamewheninterpolatingonto thefinerzgrid(yieldingastaircaselikeprofile,asinthe rawmodeloutputs).Thisprocedureexactlypreserves the(verticallyintegrated)meridionalmasstransportat eachgridpoint,butonlyapproximatelyconservesthe (verticallyintegrated)  O transportateachgridpoint. Theerrorinthelatterwasfoundtoneverexceed1%, however. Finally,weemphasizethatinboththeoceanorat- mosphere,themasstransportstreamfunction  com- putedfromthemeridionalmasstransportwithin  layersaccordingtoEq.(4)isdifferentfromthemass circulationwithin  layers,thatis,thediabaticcircula- tion(e.g.,TownsendandJohnson1985).Estimating thelatterwouldrequirethecalculationofbothmeridi- onalandupwardmassfluxwithinasetof  layers, whereasweonlyconsideredthemeridionalmassflux. Onemustthereforebecautiouswheninterpretingthe cross  flowsinFigs.4,5,7,and8astrulydiabaticin origin. REFERENCES Adcroft,A.J.,J.-M.Campin,C.N.Hill,andJ.C.Marshall,2004: Implementationofanatmosphere – oceangeneralcirculation modelontheexpandedsphericalcube. Mon.Wea.Rev., 132, 2845 – 2863. Andrews,D.G.,J.R.Holton,andC.B.Leovy,1987: MiddleAt- mosphereDynamics. InternationalGeophysicsSeries , Vol. 40,AcademicPress,489pp. Bjerknes,J.,1964.Atlanticair – seainteraction. AdvancesinGeo- physics, Vol.10,AcademicPress,1 – 82. Edmon,H.J.,B.J.Hoskins,andM.E.McIntyre,1980:Eliassen – Palmcrosssectionsforthetroposphere. J.Atmos.Sci., 37, 2600 – 2616. Ganachaud,A.,andC.Wunsch,2000:Improvedestimatesof globaloceancirculation,heattransportandmixingfromhy- drographicdata. Nature, 408, 453 – 456. Gent,P.R.,andJ.C.McWilliams,1990:Isopycnalmixingin oceancirculationmodels. J.Phys.Oceanogr., 20, 150 – 155. Gill,A.E.,1982: Atmosphere–OceanDynamics .AcademicPress, 662pp. —— ,J.S.A.Green,andA.J.Simmons,1974:Energypartitionin thelargescaleoceancirculationandtheproductionofmid- oceaneddies. Deep-SeaRes., 21, 499 – 528. Held,I.M.,2001:Thepartitioningofthepolewardenergytrans- portbetweenthetropicaloceanandatmosphere. J.Atmos. Sci., 58, 943 – 948. —— ,andT.Schneider,1999:Thesurfacebranchofthezonally averagedmasstransportcirculationinthetroposphere. J. Atmos.Sci., 56, 1688 – 1697. Hoskins,B.J.,1983.Modellingofthetransienteddiesandtheir feedbackonthemeanflow. LargeScaleDynamicalProcesses intheAtmosphere, R.P.PearceandB.J.Hoskins,Eds., AcademicPress,160 – 199. Kalnay,E.,andCoauthors,1996:TheNCEP/NCAR40-YearRe- analysisProject. Bull.Amer.Meteor.Soc., 77, 437 – 471. Karoly,D.J.,P.C.McIntosh,P.Berrisford,T.J.McDougall,and A.C.Hirst,1997:SimilaritiesoftheDeaconcellintheSouth- ernOceanandFerrelcellsintheatmosphere. Quart.J.Roy. Meteor.Soc., 123, 519 – 526. Karsten,R.H.,andJ.C.Marshall,2002:Constructingtheresidual circulationoftheAntarcticCircumpolarCurrentfromobser- vations. J.Phys.Oceanogr., 32, 3315 – 3327. Marshall,D.,1997:Subductionofwatermassesinaneddying ocean. J.Mar.Res., 55, 201 – 222. Marshall,J.C.,andT.Radko,2003:Residualmeansolutionsfor theAntarcticCircumpolarCurrentanditsassociatedover- turningcirculation. J.Phys.Oceanogr., 33, 2341 – 2354. —— ,A.J.Adcroft,C.Hill,L.Perelman,andC.Heisey,1997:A finite-volume,incompressibleNavierStokesmodelforstud- iesoftheoceanonparallelcomputers. J.Geophys.Res., 102, 5753 – 5766. —— , —— ,J.-M.Campin,andC.Hill,2004:Atmosphere – ocean modelingexploitingfluidisomorphisms. Mon.Wea.Rev., 132, 2882 – 2894. McIntosh,P.C.,andT.J.McDougall,1996:Isopycnalaveraging andtheresidualmeancirculation. J.Phys.Oceanogr., 26, 1655 – 1660. Molteni,F.,2003:AtmosphericsimulationsusingaGCMwith simplifiedphysicalparametrizations.I:Modelclimatology andvariabilityinmulti-decadalexperiments. ClimateDyn., 20, 175 – 191. 1510 JOURNALOFTHEATMOSPHERICSCIENCESV OLUME 63 Olbers,D.,D.Borowski,C.Voelker,andJ.-O.Wolff,2004:The dynamicalbalance,transportandcirculationoftheAntarctic CircumpolarCurrent. Antarct.Sci ., 16 ,439 – 470. Stone,P.H.,1978:Constraintsondynamicaltransportofenergy onasphericalplanet. Dyn.Atmos.Oceans, 2, 123 – 139. Talley,L.D.,2003:Shallow,intermediate,anddeepoverturning componentsoftheglobalheatbudget. J.Phys.Oceanogr., 33, 530 – 560. Townsend,R.D.,andD.R.Johnson,1985:Adiagnosticstudyof theinsentropiczonallyaveragedmasscirculationduring thefirstGARPglobalexperiment. J.Atmos.Sci., 42, 1565 – 1579. Trenberth,K.E.,andJ.M.Caron,2001:Estimatesofmeridional atmosphereandoceanheattransports. J.Climate, 14, 3433 – 3443. Wallace,J.M.,1978:Trajectoryslopes,countergradientheat fluxesandmixingbylowerstratosphericwaves. J.Atmos. Sci., 35, 554 – 558. Warren,B.,1999:Approximatingtheenergytransportacrossoce- anicsections. J.Geophys.Res., 104, 7915 – 7919. Winton,M.,2000:Areformulatedthree-layerseaicemodel. J. Atmos.OceanicTechnol., 17, 525 – 531. Xu,K.-M.,andK.A.Emanuel,1989:Isthetropicalatmosphere conditionallyunstable? Mon.Wea.Rev., 117, 1471 – 1479. M AY 2006 CZAJAANDMARSHALL 1511

Related Contents


Next Show more