/
troductionExactandapproximateGaussianmaximumlikelihood( troductionExactandapproximateGaussianmaximumlikelihood(

troductionExactandapproximateGaussianmaximumlikelihood("Whittle")estim - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
395 views
Uploaded On 2015-12-07

troductionExactandapproximateGaussianmaximumlikelihood("Whittle")estim - PPT Presentation

andmeanstheratioofleftandrightsidestendsto1issaidtohalongmemoryif0 shortmemoryif0andnegativememoryif beenbelonghthat nitenberofdi erencesproducesanARMAshortmemoryprocessbeingrootmodelscandi eren ID: 217135

and""meanstheratioofleftandrightsidestendsto1 issaidtohalongmemoryif0 shortmemoryif=0andnegativememoryif beenbelonghthat nitenberofdi erencesproducesanARMAshortmemoryprocess beingrootmodelscandi eren

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "troductionExactandapproximateGaussianmax..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

troductionExactandapproximateGaussianmaximumlikelihood("Whittle")estimatesofparametricsta-timeseriesmodelshabeenshownto rst-orderasymptoticpropertiesunderlongmemoryasearliershownundershortmemory(e.g.xandTaqqu,1986,Dahlhaus,1989,Solo,1989,GiraitisandSurgailis,1990,Hosoa,1996).Acoariancestationaryserieswithspectraldensity(sd))satisfying and""meanstheratioofleftandrightsidestendsto1,issaidtohalongmemoryif0 ,shortmemoryif=0andnegativememoryif beenbelonghthat nitenberofdi erencesproducesanARMAshortmemoryprocess,beingrootmodelscandi erencingisassumedtoproduceaserieswithspectrumsatisfying(1),with=0notassumed.,anonstationaryfractionalARIMAseriesissuchthat(1isastationaryandinertibleARMA,where isarealnberandisthelagoperator.withotherparametersinnonstationaryfractionalARIMAmodels.LingandLi(1997)extendedhisapproachtoallowforconditionalheteroscedasticit,whileBeran,BhansaliandOcer(1998)discussedmodelselectionintheautoregressivecase.ediscussBeran'sasymptoticjusti cationbelow,inviewofwhiceanalyzeanalternative,discrete-frequencydomainversionofWhittle. iscowithmeanandsdbeha=0wede nethepseudosd(psd)ofof;decompositionofthe(in nite)varianceofthenonstationarytimeseries.assuggestedySolo(1992)andHurvichandRay(1995),thepsd)canbeinterpretedasthelimitoftheexpectedsampleperiodogram,asinthestationaryframewThispropertasusedinVstationarytimeseries(seeGeweandPorter-Hudak,1983)haethesamedesirableasymptoticpropertiesfor asshownbyRobinson(1995a,b)for withtaperingneededforlargeenoughortoeliminatepolynomialtrends. 0100200300400500 0.51.01.5 Figure1:Arizonatree-ringwidths(548-1047).possiblyationsofaseriesofannualtree-ringwidthsinArizonafrom548A.D.onardsobtainedbD.A.Graybillin1984andmaintainedbyR.Hyndmanatwww-personal.buseco.monash.edu.au/~behadependenlocalaboutpoinsemiparametricestimateforbandwidths=25and50withtheoriginalanddi erencedseries,adjustingthevalueofinthelattercase.able1:ryoftree-ringwidths.rametricestimates=25=50 t.586(.100)Xt.599(.100) Thoughallestimatesgivcon denceinalsbasedontheasymptoticnormaldistributionandbothypothesesexponential(FEXP(modelsBloom eldexponenmodelingofbehaviour(seeSection4).Theydonotullhypothesiscomparingone-sidedstatisticstoastandardnormalforanyloworderFEXP()model.2thewingt-ratiosindicatethepresenceofsomehigherlevelofmemory:modeling,proceduremodelmodelGaussianlikelihood.ifwseriesisnonstationaryandtak able2:estsoffractionalhypothesisfortree-ringwidths q-5.50-3.97 istheorderoftheFEXP()modelmaintainedunderthenwithsimilar tsfortheAR(3)andAR(2)parameters.paper andasymptoticstandarderrorsforthefrequencydomain(possiblytapered)Whittleestimatesofnonstationaryserieswithnopriorassumptionsonorthestationaryincrementsofthetree-ringwidthsthebest tofWhittleestimatesisgivenbyanAR(2)modelwithal,thesamecriterion ndsthat556withalmostthesameautoregressiveparameters.Thisindicatestheclaimedrobustnesstononstationarityoffrequencydomainestimation,whictaperingbehabelltaperbelow)wcon rmthesmalldegreeFEXP(2)models,obtainingsimilarvaluesof,inagreementwiththescoretests.able3:ryoftree-ringwidths.rametricestimates NotaperCostaperNotaperCostaper .556(.057).536(.082).617(.071).613(.099).563(.057).501(.084).609(.071).574(.099) TherestofthepaperisorganizedasfolloThefollowingsectionpresentsthemodelanddiscussesthepropertiesofthetaperedFouriertransformofnonstationarytimeseries.theirasymptoticproperties.samplepropertiesoftheestimatesareexaminedinaMonteCarloexperimentinSection4,whileSection5appliesthemethodsdiscussedtotoempiricalseries.ThetechnicalassumptionsandresultsaresummarizedinAppendixA,withproofsinAppendixB. eassumethatthepsdofsatis es(2)andbelongstotheparametricclassde nedb ;:::;parametervandscalareassumethat independenbestprocess;extracomplexity(seeRobinson,1978,HosoaandThi,1982).er(3)coersstandardparameterizationsoffractionalARIMAandFEXPmodels.De nethetapereddiscreteFouriertransform(DFT)of;:::;n,andj=nteger,andatapersequence):=taperedperiodogrambothtralpartofthedata.processestaperedperiodogrampoinindependendependenprocessestoorespectAppendixdependenceoftheperiodogramordinatesarea ectedbysharppeaksinthepsd.aperingwsuggestedbey(1967)tocontrolleakageproblemsinspectralestimationwhennonstation-yissuspected,aswascedindi erentframeworksbyZhurbenko(1979),Robinson(1986)andDahlhaus(1988)amongothers.urbenk;:::;assumedtobeinteger,proportionaltothecoecien)givenb+1)=(1+ 1z!p:4 taperssmoothAlekseev,1996),andwhen=1givethenontaperedDFTw1,when=3theyaresimilartothefullcosinebell 21 whilewhen=4theyareveryclosetoParzen'sw n 2 2tn n 3;NN;2n1 2tn TheasymptoticpropertiesofthetapersequencesdependcruciallyonthekhistheDirichletkernelwhen=1,andweusethemtocharacterizeanextendedclassoftapers.ythatanon-negativsymmetric(around andnormalized(sup=1)sequenceofdatatapersisofifthefollowingtoconditionsaresatis ed: np1sin[p] =2]p;(5)wherea()isacomplexfunction,whosemodulusisboundedandboundedayfromzero,1derives,allboundedforor;orsome1,limbellpropertiestapersAppendixtaperingtaperedperiodogramwithataperoforderwillbedenotedasAssuggestedbyareferee,summationbypartsyields,foradi erentiabletaperwhicattheboundaries,withderiv 1eiwt(Xtt (mod2explainingwhtlysmoothtapertapertlyhigh)candealwitharbitrarylevelsofmemory,justifyingalsode nition(2).Infact,handRaandVecanobtainSolo's(1992)ersioncalculation)inthenonstationarycase, taperedperiodogramnonstationaryseriesatFourierfrequencies=0(mod),nottooclosetotheorigin,thoughbetAppendixurthermore,using(5)foradatataperoforder;:::;psotapersalsoremoepolynomialtrendsintheobservedsequenceaswhene.g.themeanifweconcentrateonthesamesetoffrequencies=0(modoestimateeuseapossiblytaperedversionofHannan's(1973)discretefrequency-domainWhittleobjectivefunction Xj(p)Ip(j) isasumop;:::;nassumingforsimplicitythatisanineomitzerofrequency,formean-correctionpurposesinthestationarycase,whiletheexclusionoffrequenciesbet;:::;isfor(polynomial)trendcorrectionandtoguaranboundednessofperiodogramexpectationundernonstationaritreplacedbyanintegral,correspondingtotheconuousWhittleobjectivefunction,butinancasethediscreteformiscomputationallymorecontandmakesmoredirectuseofthefastouriertransformandfunctionalformforTheomissionoffrequencieswhen1couldbeaoidedtoacegreatereciency,forexampleifitisknownthat =0.AsinHannan(1973)edonotrequireGaussianiteestimate=argminandestimate upperdependsonthetaperingapplied.InourstatementsofTheorems1and2werefertoassumptionslistedinAppendixA. 2cp�dowhen=0o1 2],b!poandb2!p2oasn6 taperedationsandan1,butonlyifuscoeringnonstationarybut"mean-revdata( 1)withoutdrift.=0weneedanincreaseddegreeoftaperingtoeliminatedeterministictrend taperingobtainaperiodogramwithboundedexpectationin(6)whenthepsddivInanycasemoretaperingisneededtoobtainasymptoticallynormallydistributedDependingonthede nitionof,intheproofwehaetoconsiderseparatelythecaseswhereitispossiblethat andthosewhere ,becauseofthenon-uniformbehaappearedGaussiansemiparametricestimationforstationaryandinertiblelongmemoryserieswith 2;1 Thisquestionalsoa ectsBeran's(1995)treatmentofnonstationaryfractionalARIMAmodels.consideredtimedomainapproumlikelihood(ML)tapereddata,whensta-iscorrectlyhisestimatespropertieselihoodbeingprocessesdi ersfromours:forthecaseofasimplefractionallydi erenced(0;d;model,heconsidersiswhitenoise,whereaswetak;:::; HeconsideredtheobjectivefunctionUnder(7)thisisandforconsistencyonehastoconsideruniformconyargumentswithrespecttothewholeparameterspacesofadmissible,andexistenceofanasymptoticglobalminimumatThisinesconsiderationoftheprocesses(1harestationaryfor�dd andnonstationaryotherwise.Infactitistheneighbourhoodof hcausesmostdicultybecause(1isatthestationary/nonstationaryborder.processes,tapers,TheTtencyseemstobecircularsincethe(1)errorintheexpansionfor)isonlyjusti edbourhoodpresupposesprooftapering able4:BiasofractionalARIMA(2,,0)Models=512=200 .6.91.11.4-.4.41.11.4 Notaper, dG-SEM-.037-.041-.036-.023-.078-.350-.206-.105-.267-.006.002.002-.025-.137-.395-.023W-2S.002-.003-.014-.033-.002.004.004-.004-.028-.030-.012 aper, dG-SEM-.068-.064-.059-.048-.059-.261-.253-.037-.026-.023-.018.017-.076-.071W-2S-.009-.013-.016-.007-.031-.033-.006.007.005.030-.010-.011 beloulationssupporthisinsighestimatesoffractionalmodelshaetheclassical ,asymptoticnormalityande-ciencyproperties.Indeed,itisconsistentwithRobinson's(1994b) ndingsthatscoretestsforaunitrootandmanotherstationaryandnonstationarynullhypotheses,whendirectedagainstdependsononlythenulldi erenceddata.Bycontrastunitroottestsagainstautoregressivealternativenonstandardasymptotics(seee.g.Solo,1984).enowdiscusstheasymptoticnormalityof 2o3 (ii)Assumption 2c, Theasymptoticvarianceformulaisthesameasforstationaryseries,with k(;o) anditmaybeshownthat nn1Xj@ (j;b) isaconsistentestimateofisthetapervariancein ationfactor,=lim)with,whichtakesthevalues1.05000,1.00354and1.00086 able5:rddeviationofractionalARIMA(2,,0)Models=512=200 -.4.91.11.4.6.91.4 Notaper, dG-SEM(.079).088.097.102.086.087.124.178.174.172.081W-p(.046).049.053.056.119.065.093.141.135.132.191.048.056.051.217.049.090.126.089.089.237ML-2S(.046).049.054.055.120.045.088.129.097.099.196 aper, dG-SEM(.112).165.151.152.143.165.201.203.200.199.199W-p(.069).078.081.080.074.065.146.147.146.145.146.049.052.051.049.045.089.091.088.088.094ML-2S(.046).058.058.059.059.055.099.100.103.106.110 urbenkodatatapersrespectivimplyingmodestarianceof5%,.35%and.09%foreachofthedatatapers(apartfromtheextrafactordueto;:::;nbetheusualtaperingvariancecorrection(seee.g.Dahlhaus,1985)and=1byorthogonalitofthesineandcosinefunctions.Thesameresultholdsforthecosinebelltaper(4)when =0(or foran)areknown,whereinthiscaseitispossibletoincludeallfrequencies2,inifactually=1,obtaining Thisaccounforareductionof33%fromsettingas3,inolvingthenonlyasymptoticallyuncorrelatedperiodogramordinates(seeTheorem4inAppendixA).models,becausemodelingbehad;corresponding,forexample,toanARMAorBloom eld(1973)exponentialmodel(see(9)belotheasymptoticoftheisfreeyoftheobservedtimeseries(apartfromthee ectsoftaperingifused),andagainisconsistentwiththenatureofthescoretestsofRobinson(1994b).Initialdi erencingimproasymptoticeciencyonlyifaloerordertaperisused(withsmaller,sincethecontributionofisoflesssigni cance),butthismakesallestimatesmoresensitivetopeaksornonstationaritatotherfrequencies(seetheconclusionsofHauser(1999)forstationaryfractionalARIMAmodelsmethodsincludingtapered-Whittleycase,steeper)at=0,i.e.theorsethe able6:BiasofractionalARIMA(2,,0)Models=512=200 -.4.4.61.4-.41.4 Notaper, 1W-p-.004-.004-.005-.081.011.047-.003.001-.004.003.015.014-.007-.003-.001.006.015.004.0092W-p.003.006.001.390.585.008.003.005-.004.002.002.007.007.000.002-.008.000-.002.002.002 aper, 1W-p.010.014.013.002.048.042.038.003.005.002.015.017.013-.005-.005-.004-.005.005.0032W-p-.001-.006-.005-.005.009.000.001.000-.001-.001.027.007.007.000-.003-.004-.004.002.001 canbeexpectedfor nitesamples.performanceandnonstationarydata.egeneratedindependentsamplesoftoGaussiantimeseriesmodelsrespectivcomponeneparameters6and=4,andBloom eld's(1973)exponenmodelasproposedinRobinson(1994a,p.73),withparametershcorresponds1intheusualparameterization),=5and3,leadingtotheFEXP(2)model cos2modelsshape,peakbeha4toanalyzeseriesclosetonon-in4,tocomparewiththestationarycase,nonstationarybutstillmean-revertingseries,anddi erencestationary=0). able7:rddeviationofractionalARIMA(2,,0)Models=512=200 -.4.91.4.9 Notaper, 1W-p(.044).043.047.043.187.088.101.107.106.043.048.041.043.046.077.077.077(.044).043.048.043.042.044.079.080.0812W-p(.036).036.039.037.188.065.075.081.081.036.038.036.036.031.059.059.059(.036).035.038.036.035.030.058.058.058 aper, 1W-p(.066).063.071.070.063.215.115.115.115.043.046.046.043.197.077.077.076(.044).045.049.049.046.190.083.083.0842W-p(.054).054.050.050.054.061.082.082.082.036.031.031.036.128.059.059.059(.036).035.031.030.035.058.058.058.058 andthenberofexponentialmodels(9),modeltheappropriatevalueofortheshortmemorysimulationoftheexponentialmodelsweusedautocoariancesobtainedbumericalintegrationofthesd.Non-tapered(=1)andtapered(withZhurbenkotaperoforder=2)datawereconsidered.Alsothecosinebelltaper(4)wasusedbuttheresultsweresimilartothetaperwith=2andarenotreportedhere.Theestimatescomparedarethefollo1999b)withbandwidthnbers=30(20fortheFEXPmodel)and40foreachsampleWhittleestimatestaperingisapplied,butonlytforasymptoticallynormalfor iftheraisused.UsingtheWhittlememoryestimatesfromW-p,itispossibletotoaceapproximateshortmemorystationarityandthenusestandarduntapered able8:BiasofrBloom eldFEXP(2)Models=512=200 1.4 Notaper, dG-SEM-.072.169.258-.144-.480-.149-.009.093-.397-.623W-2S-.121-.380-.639 aper, dG-SEM-.130-.117-.205-.179-.074-.064-.208-.239W-2S-.054-.144-.176 methodspossiblytaperednonstationaryinputs.eproposetoalternativo-step(asymptoticallyequivprocedures,wherethesecondstep'sinputisinbothcasestheuntaperedW-2S:Two-StepWhittleestimates,wherethesecondstepisWhittle(stationary)estima-=1.wherethesecondstepisimplementedbytheS-PLUSfunctionHaslettandRaftery,1989).Allparametricestimatesthrough4.)wn)truemodel,sinceotherwisetheestimatesofarenotguaranteedconsistentforthesecondstep(evenifenoughtaperingwapplied),andtaperingisonlyusedforthe rststepestimates,sinceitishopedthatdi erencingesstationarityofthesecondstepinputs.usingthereportbiasandstandarderrortthetaperingappliedandassumingthattheto-stepestimateshaetheMLasymptoticmodelsables6and7fortheestimatesof able9:rddeviationofrBloom eldFEXP(2)Models=512=200 -.4.4.61.4-.4.91.4 Notaper, dG-SEM(.079).192.020.024.171.162.158.198W-p(.070).167.027.018.193.190.176.216.133.106.187.200.184.204.368 aper, dG-SEM(.119).141.150.158.292.290.278.285W-p(.102).113.131.149.267.266.251.277.147.177.105.263.203.216.193 Whennotaperingisapplied(=1)theestimationofbreaksdownifbutevthesevaluesofthememoryparametertheto-stepproceduresgiveconsistentestimatesbecausetheWhittleproceduretendstoreport1,sothedi erencedserieswiththeseinitialestimatesarestationaryThebiasinTable4decreasesforallestimatesinsamplesize,andthelargebandwidthcgoodtapereddeviationsaretlylargerexpected.ThisincrementinvyoftaperedWhittleleadstoanincreaseinthevarianceofthetstepMLestimates,butnotoftheto-stepWhittleestimates,sotimedomainestimationseemsmoresensitivetopreviousfractionaldi erencing.InTable6taperedWhittleestimationprovidesbetterresultsfortheshortmemoryARMAparametersthanforthememoryparameter,withveryclosebehaviourtothatofthetproceduresintermsofbias,whileinTable7thestandarddeviation,thoughlarger,isverywtaperedproducemethodstaperedproceduresyieldtestimates).sizetheasymptotictheorygivesagoodapproximationtothe nitesamplebehaviourofWhittlebeha able10:BiasofrBloom eldFEXP(2)Models=512=200 -.4.41.1.4.6 Notaper, 1W-p-.725-2.119-3.605-4.703-4.858-4.944-.752-1.074-1.365-2.364-1.813-3.001W-2S-.753-.823-.717-3.648-.909-1.127-1.356-1.589-1.235-2.813b2W-p.9051.6532.4682.9492.9893.0181.1501.5271.7572.3451.7081.793W-2S.961.924.9091.1071.5912.3871.3501.5721.7761.8681.6062.167 aper, 1W-p.132.113.099-3.580-1.031-1.155-1.302-1.691-1.479-1.435-2.024-2.4572.008b2W-p.040.032.029-1.142W-2S2.088.9571.0251.2311.5441.1782.3881.5511.5501.8442.1591.583 ExponenmodelsInTables8to11wereporttheresultsforexponentialmodelswiththesamevaluesofasusedbefore.Theconclusionsfor=200andforalluntaperedestimatesofarerathernegative,withlargebiases(Table8)andvy(Table9)relatingtotheasymptoticvalue,probablyduetoadicultdistinctionbeteentheshortmemoryandlongmemorycomponentsofthisparticularmodel.ertheless,taperedWhittleestimationfor=512producesforallreasonablebiasesandstandarddeviations,thesmallestacrossallmethodsandquiteclosetotheasymptoticones,whilebothtestimationsbreakdowninmanycases.ThesuperiorityoftaperedWhittle"W-p"estimatesforthememoryparameteroffractionalexponenBloom eldmodelstaperedproceduresmodelyparametervaluecombinations(Tables10and11).HereZhurbenktswith=2fortaperedestimatesappearsuperiorthanthecosinebellintermsofbiasformostvaluesofOursimulationsagreewithDahlhaus'(1988) ndingthattaperingisdesirableinestimatingshortmemoryparameterswhenthesdhaspeaksduetoARrootsclosetotheunitcircle,whicaresimilartothezerofrequencysingularityofthepsdoffractionallyintegratedprocesses.Processemperaturereadings(SeriesC)andChemicalProcessConcentrationreadings(SeriesA)fromxandJenkins(1976),whicharealsoamongtheseriestowhichRobinson(1994b)appliedhis able11:rddeviationofrBloom eldFEXP(2)Models=512=200 -.4.61.4.4.91.4 Notaper, W-p(.166)W-2S(.166)W-p(.113)W-2S(.113) aper, W-p(.249)W-2S(.166)W-p(.170)W-2S(.113) able12:CHEMICALSERIES-C.ARFIMA(;d; G-SEMW-pW-2S d.99281.0400.9788.9930(.100)(.091)-(.137)- b1-.1157.8237-.8389.7973-.8263.8128-(.116)---(.143)- b2-.3171.0186-.0162.0189-.0150.0187 scoretestsagainstfractionalalternativeusethesameestimatesasinthesimulations(urbenko's(=2)andcosinetapers.taperswithnonstationaryserieswith=0,butonlytaperingoforder=2allowsserieswithlineardrift. ndingofabout=1inseriesC,thesevaluesobtainedbyconsideringonlyintegerdegreesofdi erencing.allproceduresinmodelfoundvaluesofdistinguishablefrombothtaperedabouthmayexplainwhythetaperedsemiparametricestimateslargerestimatesof(clearlyaboe1)thanthecorrespondingparametricmethods.Whittleandsemipara-tapering able13:CHEMICALSERIES-C.Robinson's(1994)TestsofNonstationa q3.075129.426026.212920.010511.7572q14.426112.67052.8689-2.8529q8.06807.42091.2513-.6660-2.0282-2.9065q4.81374.4391.3854-.9920-2.0581-2.7742 originaldata).modelsbestproducedaboutmodels,ealsousedRobinson's(1994b)scoretestinTable13(usingthesameBloom eldexponentialmodelstoexplainhighfrequencybehaviour),completinghisresultsforanextendedullvreportedwithstandardasymptoticdistribution.Thescoretestsalwysrejectthehypothesis=2,against2,andypothesis=1,wasimilarpatterntoFEXPWhittleestimates,whichcontrastswiththeARIMAmodellinginTable12,butagreeswiththesemiparametrictaperedestimates.able14:CHEMICALSERIES-C.Memoryestimates W-2SW-2S 1.75221.7510(.052)(.052)(.073)(.052) q1.52311.6183(.083)(.083)(.116)(.083) q1.37031.4125(.106)(.106)(.147)(.106) q1.21261.3286(.125)(.125)(.174)(.125) smaller,about0.45asestimatedforanARFIMA(0,,1)model(Table15)andnowallestimatesareexpectedtobeconsistent(Beran,1995,reportedThetaperedWhittle(=2)andthesemiparametric(cosinebell)estimatesreportedslightlylargervaluesthanotherprocedures.HeretheMA(1)parameterseemsinsigni cant(exceptperhapsfortheWhittleestimatewith=2,whichisthemethodwithahighestestimateofandlargesttrade-o betandthe able15:CHEMICALSERIES-A.ARFIMA(;d; W-pW-2SG-SEMW-pW-2S bd.4237.4408.4572.4674.5502.4592.5178.4515.4578(.100)(.067)-(.140)(.096)- b 1-.0183.0570-.1839.0500-.1116.0577-(.061)---(.086)- b2-.0994.0972-.0819.0974-.0868.0971 able16:CHEMICALSERIES-A.Robinson's(1994)TestsofNonstationa q4.5696-1.5296-4.0191-5.8752-6.6391-6.8677q2.9196-.5299-2.5009-4.0131-4.0675-4.3663q1.7333-.9173-2.6523-4.1686-4.7653-4.7765q1.1621-.6467-2.0962-3.5145-3.9798-3.7932 shortmemorypartofthemodel).IfweeliminatetheparameterinareducedARIMA(0,modelaboutable17:CHEMICALSERIES-A.ARFIMA(;d; W-2S d.4286.4179.3692.4207(.056)-(.078)- b2.0994.0983.0872.0973 Robinson's(1994b)testsalwysreject=1and75and ndsomeevidenceinsupportresultsforWhittleestimatesmodelbetAppendix)withrespecttoshouldbeunderstoodelemenTheyaresimilartothoseinCondi-tionsAofFxandTaqqu(1986)orinDahlhaus(1989)forparametricestimatesorinRobinson able18:CHEMICALSERIES-A.Memoryestimates W-pW-2SW-2S .4217.4171.4179.3692.4207(.056)(.056)(.078)(.056) q.4571.5645.4554.4623.4582(.089)(.089)(.124)(.089) q.4323.4198.4208.3206.4255(.113)(.113)(.158)(.113) q.4470.4397.4469.2704.4301(.134)(.134)(.187)(.134) modelstionalARIMA's,fractionalGaussiannoiseorfractionalexponentialmodels(see1994a,andBeran,1994). (;; @@)andsoonforanallesguemeall;all;all;Thedi erenywithrespecttoisrequiredtoapproximatediscretesumsbyin)hasasingularityattheorigin.describethestationarydi erencedserieswtroducethefollowinglinearprocessassumptionwhichistakenfromRobinson(1995b),andiseinthelinearityitimposes,butnototherwise.otherwise.tjFt1]=002tjFt1]=1,a.s.,t=0;1;:::,andFtisthe- eldofeventsgenerdby,andeexistsar,suchthatall periodogramsmoothnessWhennotaperisappliedwewillimpose:all; Assumption5impliesthedi erenyof)asstatedinAssumption2.Thisconditionimposedmodelstaperingpropertiesweassumestrongersmoothnessconditions.all;Inparticular,with1,Assumption6impliesthat,for2,0= 0,whichisthebasisforthetaperingbiasreduction.ortheasymptoticdistributionoftheestimatesandrelatedquadraticformsweneedalsoanextraconditionaboutthefourthmomenthelinearinnoations,againtakRobinson(1995b),andtadditionalconditionstoximatetheasymptoticcoariancematrixofof3tjFt1]=3,E[4tjFt1]=4;a.s.,t=0;1;:::Assumption8k(;)hastwocontinuousderivativesinatall(;,with,andthesederivativesarall;)+loganbontinuouslydi erdtwice(withr)undersignand(tapered)possiblynonstationarywingconditionsholdunderAssumptions1and2,wereassumedinthesepapers. 2,s=bd+1 2c,fU(s)()=Gjj2(ds)+o(jjs))!0:19 all 2,s=bd+1 2c,d ]as 2;=01 log(+1) )]=1+log(+1)++v(j)v(j)]=log(+1)+ v(j)v(k)]=orv1theperiodogramisnotasymptoticallyunbiasedforaperingwsareductionintheorderofmagnitudeofboundsinTheorempossibletheximationofpsdwithlargerus,withthecosinebelltapersimilarresultsgothroughforan Othertapersreduceevenmorethebiasandallowconsiderationofv taperssmoothnessconditionsonallentiableand satis esaLipschitzconditionofdeforall,andfor;E 2,s=bd+1 ,asThisconditionholdsunderAssumption6for1(seealso(10)).econsidernowthefullcosinebelltaper(4)andde nethenormalizedcosine-taperedDFTDFTCosinebell 2;3 2)=0ifd1 log(+1) )]=1++vcos(j)vcos(j)]= vcos(j)vcos(k)]=alltruewith )]= 3+Oj1+ j;j,(c")E[vcos(j) )]= enowanalyzethecoariancematrixofthe(normalized)taperedDFTwithtapersoforderperiodogram teger,buttaperingdestroystheorthogonalityofthesineandcosinetransformsatclose ps+1if6=0],foranysequencesofpkjlog(+1) )]=1++vp(jp)vp(jp)]=log(+1)+ vp(jp)vp(kp)]=In(c)thetermlogonlyappearsif=2.Theorem4'sboundsaresimilartoTheorem5's belltaperpropertieswithtapersoforder=3,thoughitcannot lteroutpolynomialtrends.discreteaeragesofperiodogramordinatesofpossiblynonstationary(andtapered)observhcanbeseenasspeci cquadraticformsof;:::;nAllfunctionsarebeperiodicofperiod2ProofsarecollectedinAppendixB.Lemma6all dp=n 2c[onlydo1 Lemma7all;allp=nThen,underAssumptions1,2and4, 2c[onlyifo1 Theconditionon)inLemma2restrictsthepermittedvaluesofinthecompactsetThenextlemmaanalyzestheasymptoticdistributionoftheperiodogramaLemma8small, Lemma9 p=n Lemma10;:::;p=nLemma11 )cos)cosLemma12 2c�doifo1 +(2p=np=nIp(j)f(j)]+)=Lemma13=Lemma14isaoforn,as AppendixProofsProofefollowtheproofintostepsofTheorem1inRobinson(1995b).Firststepand ,orotherwise forsome0 =argmin)andnonstochthatforall0thereexists0suchthatinfandalsoSincethereisauniqueminimumof)atfromtheidenwsbecausesup0usingLemmas2[)]and5[)]toapproximateuniformlyintegralswithsums,andusingthislastlemmawgetthatsup0asRecallthat 2+r1o1 2ootherwise.o1 de nerg,or setting"=do1 )withbecin(0 22=fd:r1o1 if=andthetheoremisproConsidernowthesituationwhereisnotemptttoshowthatoran ;underAssumption1.thatthe rstprobabilityin(11)isnegligible,notethat Xj(p)Ip(j)k1(j;)2 Thelastsumconinprobability(seeLemmas4and5again)to 2Xj(p)f(j)jjj2(do+"1=2)=2 22 2Xj(p)k(j)jjj2"12 2Zk()jj2"12 2c1 c2Zjj2"1d=2 2c1 c22" )canbemadeaslargeasdesiredforan0andthen0suchthat,de nesothe rsttermin(11)tozeroasandthTheconsistencyofwsfromthatofandLemma2.Proofand7andthatProofximatingtheperiodogramof(possi-blytapered)observedseriesbythatofthe(possiblytapered)linearinnoroot;:::;p=nsousingTheorems3and5inAppendixA,andevennessofallfunc- Ip(jp)2f(jp)Ip;(jp)]+ (n=p)1]=2c.Wenowdistinguishthecaseswithandwithouttapering.tapering proofproof toshowthattj1=2(logj)1=2+jdo1(logj)1=2]);we ndfrom(12)that,using),0his(1)ifTheexpectationofiswithLemma5,usingtheconyof)andandtheinyoffHn]=(2=nd,asw,bysummationbyparts,forapositiveconstan nn?X1f(j) (j)f2(j)1g C nn?Xrf(r) (r)f(r (r+1)j rXj2(j)1g +C wingthediscussioninRobinson(1995b,pp.1637-8),eobtainthat,for1andusingthepropertiesof)andandthemeanvaluetheorem,(13)aperingeringp�1].Weobtainedintheproofconditionsofthislemma,lemma,j1=2+jdop(logj)1=2]);0�pdexpectationof1iscalculatedasforecanwrite Ph2tnXt2t(2t1)(15)+1 cos(=lim,therighthandsideof(15) Ph2t(1 nnXth2t2t hhPh2t n);24 his(1)because fromTheorem1ofHeydeandSeneta(1972)proofyconditionsasbecause1and=lim h2t2tjFt1]�0a.s.Next,weconsiderthecontributionof(16).or0=)andj;kcos(cos(j;kThen,changingvariablesandusingtrigonometricidentities(seealsoLemma7ofVelasco,1999b),j;k +cos+cosUsingLemmas8and9,thisis so(17)isTherefore(14)holdsfor1andtheLemmafollowaswhen=1using(13).ProofofLemma2.wsfromthepoinwiseconergenceinLemma1andanequicontusingthecompactnessofandthedi erenyof;)withrespecttoHannan,1973).Proofconsideronlythescalarcase,theargumentforthevcasebeingstocwthesameprocedureasintheproofofLemma1.taperingringp=1].Usingthesecondmomentsoftheperiodogrampp.1648-51procedure,inLemma1inVelasco(1999b), e ndthat f(j)2(j))=Opr1=3(logn)2=3+r1=2n1=4+r1=(54do)(logr)2=4do)25 w,usingthesameargumentsandhis)ifapering[InVelasco(1999b)itisobtainedthat,1,1rn= +logsoadaptingtheproof,of,n+n1 =2+ndop+1(logn)1=2]=op(n1=2)ifultaneouslythestressingthetaperingsituation,theuntaperedcasebeingsimplersincemanyboundsareexactlyzeroduetotheexactp=n),fromLemma5,and nXj=1g(f2(1g:ThenE[H?n]=0 n=pH )cos(methodproofasinRobinson(1995b),wtheyofFirstweneedtoshowthatThelefthandsideisThe rsttermin(19)is(1),sinceithaszeromeanandv,andfromRobinson(topofp.1646),weobtainusingsummationbyparts,foran,and for1ByLemma6Thesecondtermin(19)canbeshowntobeusingthesameargument(seealsoV1999b,Lemma6),becauseithaszeromeanandvbecausethewaresymmetricaroundUsingtheboundsforsincesupthe rsttermis(1)andthesecondhasabsolutevalueboundedandthisisus(18)isproFinallyweneedtowthatthatz2tI(jztj�)]!0forforwhicecancthesuciensucienz4t]!0:FollowingRobinson(1995b),(1995b),z4t]CnPn1c2s2=O(n21)=o(1)andthecentrallimittheoremfolloProoftionsofLemma1,with1,0ProofLemma5.ThisfollowsfromthediscussioninRobinson(1994a),p.75.ProofLemma6.First,usingtrigonometricidentitieswehaethat nnXj=1nXk=1g(g( nX1h2t!21 +cosandusingLemma9andthisis nnXjXk(g(nh2((j+k)p2((jk)p)o;(20)27 Lemma8,andwith)foranthetermin)of(20)is nnXj=1g2(Xk:jjkh2((jk)p)+O0@n21nXjXk:jjkj�jjkj2p1A+n1nXjkjkjjg(jO jsupjjkjg(g(jjjkj2p!byLemmais,usingjjkjjg(g(j=Ojg(jjkj1jkjj+jg(jjjj1jkjj,)2p �kalltheerrortermsbeing(1)onchoosing,e.g., ,withProofofLemma7.Bythede nitionof=(2p=nItfollowsbythemeanvaluetheoremthat),where=(2p=nnIp(j)f(j)]=)fromLemma3,=(2p=nandthethrowofisthethrowofthematrix)=(2p=n)evhisinthelinesegmentbetThelemmafollowsif(1)and boundundertherespectforLemma1(tosubstitute),andapproximatingsumsbyintegralswithLemma5,largeenoughthatwithprobabilityapproaching1andthTheboundforwsbythepreviousargumenusingLemmas1and5esare)and)asrespectiv,forsomeProofpropertiestaperelasco(1999b),andthatProofLemma9.Thisispart(B)ofLemma7inVAlekseev,V.G.(1996),kson-andJacypekernelsandtheirproba-yapplications,",41,137-142.Beran,J.(1994),NewYChapman&Hall.Beran,J.(1995),"Maximumlikelihoodestimationofthedi erencingparameterforinshort-andlong-memoryARIMAmodels,"JournaloftheRoyalStatisticalSociety,SeriesB,57,Beran,J.,R.J.BhansaliandD.Ocer(1998),"Onuni edmodelselectionforstationaryandnonstationaryshort-andlong-memoryautoregressiveprocesses,"85,921-934.Bloom eld,exponenmodelspectrum,60,217-226.HoldenDaDahlhaus,R.(1985),"Asymptoticnormalityofspectralestimates,",16,412-431.Dahlhaus,R.(1988),"Smallsamplee ectsintimeseriesanalysis:anewasymptotictheoryandanewestimate,",16,808-841.processes,",14,517-532.vies,R.B.andD.S.Harte(1987),estsfortheHurste ect,",74,95-101.x,R.andM.S.Taqqu(1986),"Large-samplepropertiesofparameterestimatesforstronglydependentstationaryGaussiantimesseries,",14,517-532.timeseriesmodels,"TimeSeries,4,221-238. Giraitis,L.andD.Surgailis(1990),"Acentrallimittheoremforquadraticformsinstronglydependen,86,87-104.models,"10,130-145.Haslett,J.andRaftery,A.E.(1989),"Space-timemodelingwithlong-memorydependence:assessingIreland'swindpoerresource(withdiscussion),",38,1-50.Hauser,M.A.(1999),"MaximumlikelihoodestimatesforARFIMAmodels:AMonteCarlo,80,229-255.Y.(1996),"Thequasi-likelihoodapproachtostatisticalinferenceonmultipletime-serieswithlong-rangedependence,",73,217-236.Y.andM.Thi(1982),trallimittheoremforstationaryprocessesandtheparameterestimationoflinearprocesses,",10,132-153.tionaryornoninertiblefractionallyintegratedprocesses,"ofTimeSeriesA,16,Ling,S.andW.K.Li(1997),"Onfractionallyintegratedautoregressivemoeragetimeseriesmodelswithconditionalheteroscedasticit,92,1184-1194.Robinson,P.M.(1978),emodelsforstationarystochasticprocesses,"8,141-152.,19,240-250.dependence",yPress.Robinson,P.M.(1994b),"Ecienttestsofnonstationaryhypotheses,"JournaloftheA,89,1420-1437.Robinson,P.M.(1995a),"Log-periodogramregressionoftimeserieswithlongrangedepen-,23,1048-1072."Gaussiansemiparametricestimationlongrangedependence,"ofStatistics23,1630-1661.models,",79,Solo,V.(1989),"Asymptoticsofquadraticformsfortimeseries",unpublishedmanSolo,V.(1992),"Intrinsicrandomfunctionsandtheparadoxof1/fnoise",SIAMJournalof,52,270-291. troductionspectrum,ed.B.Harris,pp.NewYelasco,C.(1999a),"Non-stationarylog-periodogramregression,"JournalofEc91,325-371,SeriesAurbenko,I.G.(1979),"Ontheeciencyofestimatesofaspectraldensit,6,49-56. AbstractWhittle pseudo-maximum likelihood estimates of parameters for stationarytime series have been found to be consistent and asumptotically normal in thepresence of long-range dependence. Generalizing the definition of thememory parameter , we extend these results to include possiblynonstationary (0.5 1) or antipersistent (-0.5 0) observations. Usingadequate data tapers we can apply this estimation technique to any degree ofnonstationarity          We analyse the performance of the estimates on simulated and real data.Long-range dependence; nonstationary long memory time series;nonstationary fractional models; frequency domain estimation; tapering.JEL No.: C22by the authors. All rights reserved. Short sections of text, not to exceed twoparagraphs, may be quoted without explicit permission provided that fullcredit, including © notice, is given to the source. WHITTLE PSEUDO-MAXIMUM LIKELIHOOD ESTIMATIONFOR NONSTATIONARY TIME SERIESCarlos VelascoUniversidad Carlos III, MadridPeter M RobinsonLondon School of Economics and Political ScienceContents: 1. Introduction2. The Model and the DiscreteFourier Transform3. Whittle Estimates4. Simulation Results5. Illustrative Examples6. Appendix A: Technical Assumptionsand Results7. Appendix B: ProofsReferencesThe Suntory CentreSuntory and Toyota International Centresfor Economics and Related DisciplinesLondon School of Economics and PoliticalScienceDiscussion PaperHoughton StreetNo. EM/00/391London WC2A 2AEMay 2000Tel.: 020-7405 7686 The research of the first author was supported by Spanish Direccion General deEnsenanza Superior, Ref. No. PB98-0025. The second author’s research wassupported by ESRC Grant No. R000235892, and a Leverhulme Trust PersonalProfessorship. The authors thank the editor, the associate editor and the referees forvery helpful comments.