/
Angle-domain common image gathers by wave-equation migration Angle-domain common image gathers by wave-equation migration

Angle-domain common image gathers by wave-equation migration - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
370 views
Uploaded On 2018-07-20

Angle-domain common image gathers by wave-equation migration - PPT Presentation

MarieLPruchaandBiondoLBiondiStanfordUniversityWilliamWSymesRiceUniversitySUMMARY ShotandoffsetdomaincommonimagegathersencounterproblemsincomplexmediaTheycanplaceeventsthatcomefromdifferentpo ID: 94440

MarieL.Prucha*andBiondoL.Biondi StanfordUniversity WilliamW.Symes RiceUniversitySUMMARY Shot-andoffset-domaincommonimagegathersencounterproblemsincomplexmedia.Theycanplaceeventsthatcomefromdifferentpo

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Angle-domain common image gathers by wav..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Angle-domaincommonimagegathersbywave-equationmigration MarieL.Prucha*andBiondoL.Biondi,StanfordUniversity,WilliamW.Symes,RiceUniversitySUMMARY Shot-andoffset-domaincommonimagegathersencounterproblemsincomplexmedia.Theycanplaceeventsthatcomefromdifferentpointsinthesubsurfaceatonesubsurfacelocationbasedonidenti-calarrivaltimesandhorizontalslownesses.Angle-domaincommonimagegathersuniquelyde®neraycouplesforeachpointinthesubsur-face,thereforeeacheventinthedatawillbeassociatedwithonlyonesubsurfacelocation.Itispossibletogenerateangle-domaincommonimagegatherswithwave-equationmigrationmethodsandtheseangle-domaincommonimagegathersmaybeusedforvelocityanalysisandamplitude-versus-angleanalysis.INTRODUCTIONCurrentdepthimagingtechnologyworksverywellinareasthathaveslowvelocityvariationsbutmayfailinmorecomplexareas(Claer-bout,1985)foravarietyofreasons,suchasmultiplere¯ections,badvelocities,andspatialaliasing.Onepotentialcauseofimagingfailureisre¯ectorlocationambiguityduetomultipathingofre¯ectedenergy:itispossiblethatasingleeventrecordedinthedataatonesurfacelocationcouldcomefromre¯ectorsattwoormoresubsurfaceloca-tions.Besidescontributingtoimagingartifacts,re¯ectorambiguitycontributesnon-¯ateventstocommonimagegathers,thusrenderingvelocityanalysisambiguous(NolanandSymes,1996).Severalauthorshavesuggestedangledomainimagingasasolutionforthere¯ectorambiguity(Xuetal.,1998;Brandsberg-Dahletal.,1999).Angledomainsectionscollecttheenergyinadatasetwhichhasscatteredoveraspeci®cre¯ection(ªopeningº)angle .Wewillarguebelowthataneventinananglesectionuniquelydeterminesaraycouple,whichinturnuniquelylocatesthere¯ector.Thusimagingartifactsandvelocityupdateambiguityduetomultipathingareeliminatedinthisdomain.Multipathingisbetterhandledbywave-equationmigrationmethodsthanKirchhoffones,thereforetheformerareanaturalchoiceforpro-ducingangle-domaincommonimagegathers(CIGs).WepresentasimplemethodforextractingCIGsfrom3-DprestackdatadownwardcontinuedusingtheDoubleSquareRootequation(DSR).Themethodisbasedonaslant-stackdecompositionofthedownwardcontinuedwave®eldateachdepthlevel.OurmethodisthusdifferentfromthemethodproposedbyOttoliniandClaerbout(1984),thatappliestheDSRtodownwardcontinueprestackdataslant-stackedatthesurface.Inlayeredmediathetwomethodsshouldproduceequivalentresults,butinpresenceoflateralvelocityvariationsplane-wavedownwardcon-tinuationisnotstrictlyvalidandtrueangle-domainCIGscanonlybeproducedbywave®elddecompositionatdepth.MigrationmethodsbasedonDSRoperatorshavebeenappliedto2-Dprestackmigrationforlongtime(Claerbout,1985).However,thedirectapplicationofDSRmigrationmethodsto3-Dprestackdatahavebeenpreventedbythetremendouscomputationalcost.Onlyrecentlycomputationallyef®cientmethodstocontinue3-Dprestackdatahavebeenpresented(BiondiandPalacharla,1996;Mosheretal.,1997).Inparticular,common-azimuthmigrationisanattractivealternativetoKirchhoffmigrationforsub-saltimagingbecauseofitsrobustnesswithrespecttothecomplexmultipathingthatisinducedbysaltbodies.Thisabstractwillexplainhowsomewidelyusedcommonimagegatherscancontainre¯ectorambiguityduetomultipathingandwhyangledomaincommonimagegatherswillnot.Thenwewilldemonstratetheconstructionofangle-domaincommonimagegathersfromwaveequationdownwardcontinueddataforuseinvelocityanalysisandamplitude-versus-re¯ectionangleanalysis.KINEMATICSOFMULTIARRIVALSINTHESHOTANDOFFSETDOMAINSThekinematicsofshotdomaincommonimagegathersandoffsetdo-mainimagegathersarewellunderstoodinconstantvelocityand z media.Dif®cultiesarisewhenwebeginconsideringcomplexsub-surfaceswithrapidlateralvelocityvariations.Evenin2-Ditiseasytoconstructamodelforwhichanindividualcommonshotgatherorcommonoffsetgathercancontaintwoeventsfromtwopointsinthesubsurfacethatarriveatthesametimeandareindistinguishable.Letusinvestigateparticularcasesoftheseoccurrences.Anindividualcommonshotgatherisparameterizedbythereceiverlo-cationr.Iftworaypathsbetweenthesamesourceandreceiverexistsuchthattheyhavethesamereceiverhorizontalslownessprandthetwo-waytraveltimealongeachisthesame,itisimpossibletodistin-guishbetweenthetwore¯ectorlocations(NolanandSymes,1996).Figure1showsaverysimplecaseofthis. Figure1:Individualshotgather:thecircularlensisalowvelocityanomalysothetraveltimesandprareidentical.Anindividualcommonoffsetgatherisparameterizedbymidpointm.Supposethatthehorizontalmidpointslownesspm ps pristhesamefortworaypathswiththesametraveltimes.Onceagain,thetworaypathsrepresentthesameevent,andthelocationofthere¯ectorcausingthiseventiscompletelyambiguous.Figure2showsacasewhereps1 pr1andps2 pr2sothatpm1 pm2 0.ByshootingafanforraysfrombothxlocationsinFigure2,itispossibletoobtaintraveltimecurvesforacommonoffset.ThesecurvesareshowninFigure2.Thetraveltimecurveforthediffractorinsidetheanomalyisnicelyhyperbolic.Thecurveforthedeeperdiffractorisdiscontinuousduetotheshadowzonesthatoccurabovetheedgesoftheanomalybutthesymmetricaltriplicationscanbeseen.Atthisoffset,thetraveltimesforbothcurvesareidenticalforthemidpointdirectlyabovethediffractors.Fromthegeometryofthemodel,itisclearthatthemidpointslownessesarethesame,thereforetheeventsinthedatawillbeindistinguishable.KINEMATICSOFMULTIARRIVALSINTHEANGLEDO-MAINWecon®neourdiscussiontothe2Dcase;the3Dcaseissimilar,pro-videdthatcompletesurfacecoverageisavailable.Specularre¯ec-tionconnectsare¯ectorelement,consistingofasubsurfaceposition Re¯ectionanglegathers Figure2:Individualoffsetgather:thecircularlensisalowvelocityanomalysothetraveltimesareidenticalandthemidpointslownessesareequal. Figure3:TraveltimecurvesforthemodelinFigure2.Thethickcurveisforthedeeperre¯ectorandisdiscontinuousduetoshadowzones. Figure4:Simplere¯ection:thevector isnormaltothere¯ector, isone-halfthere¯ectionangle,and isrelatedtothedipangle.xcontainingthemidpointlocationmandthedepth zanddipvector representingthere¯ectornormalatthatpositionwithaneventele-ments px r pr tconsistingofsourceandreceiverpositionssandr,sourceandreceiverhorizontalslownessespsandpr,andtwowaytimet.Theconnectionviaincidentandre¯ectedraysisdepictedinFigure4,whichalsoshowstheopeningangle .Notethatgivenx, ,and ,theincidentandre¯ectedraysandtheeventelements ps r pr tarecompletelydetermined:thereforethelatterarefunctionsofx, ,and .Theangletransformofadataset d s r t isa x d x d s r t Theprincipleofstationaryphaseshowsthataneventinasingleanglepanel,i.e.apositionyandanangledomaindipvector ,arisewhenincidentandre¯ectedraysmeetatyandarebisectedby ;theseraysdetermineonceagainaneventelements ps r pr t,andthiseventmusthavebeenpresentinthedatafortheeventinquestiontobepresentintheangledomain.Ofcoursetheeventelements ps r pr tcompletelydeterminestheraysinthesubsurfacecarryingtheenergyoftheevent.WeassumetheTraveltimeInjectivityCondition(tenKroodeetal.,):apairofraysandatotal(two-way)timedeterminesatmostonere¯ectorelement.Inthatcase,theeventintheangledomainiscompatiblewithatmostonere¯ectorelement.Notethecontrastwiththeconstantoffsetdomainasdescribedintheprecedingsectionwhereaneventelementinthedatacouldcorrespondkinematicallytomorethanonere¯ectorelement.Thevelocity®eldusedtogeneratetheraysusedintheformationoftheangletransformdoesnotnecessarilyneedtobethesameasthevelocity®eldwhichgaverisetothemoveoutinthedata-whichisfortunate,aswedon'tknowthelatterattheoutsetofthemigration/velocityanalysisprocess,andhaveonlyanapproximationofitattheend!Whenthetwovelocity®eldsaredifferent,theangletransformeventswillnotnecessarilymatchthere¯ectorsintheEarth:thetwowilldifferbyaresidualmigration.Whenthetwovelocity®eldsarethesame,theimageisperfect,i.e. x y .ANGLE-DOMAINCIGBYWAVE-EQUATIONMIGRATIONIntheprevioussectionswediscussedtheadvantagesofangle-domainCIGsoveroffset-domainCIGswhenacomplexvelocityfunctionin-ducesmultipathingandeventtriplication.Inthissectionweshowhowtoextractangle-domainCIGsfromdownward-continuedprestackdata.Recorded3-Dseismicdatacanbeorganizedasafunctionofmidpointcoordinates(m)andoffsetcoordinates(h).Prestackdataareef®cientlydownwardcontinuedusingtheDSRequationinthefrequency( )do-main.Furthermore,sinceweeitheruse2-Ddownwardcontinuationor3-Dcommon-azimuthdownwardcontinuation,theoffsetspaceisrestrictedtothein-lineoffsethx,andthusweexpresstherecordedwave®eldasP m hx z 0 ,wherezisdepthandz=0indicatesdatarecordedatthesurface.Theprestackwave®eldatdepthisobtainedbydownwardcontinuingtherecordeddatausingtheDSR,andisimagedbyextractingthevaluesatzerotimeP m hx z 0 DSR P m hx z (1)P m hx z Imaging P t 0 m hx z (2)Thedownward-continuationprocessfocusesthewave®eldtowardszerooffset(leftpanelinFigure5)andifthecontinuationvelocityiscorrect,amigratedimagecanbeobtainedbyextractingthevalueofthewave®eldatzerooffset.However,thezero-offsetwave®eldhas Re¯ectionanglegathers Figure5:Left:Offsetpanelafterdownwardcontinuation.Right:Angle-domainCIGlimiteddiagnosticinformationforvelocityupdating,andnoinforma-tionontheamplitudeofthere¯ectionsversusre¯ectionangle(AVA).Wethereforeperformaslantstackalongtheoffsetaxisbeforeimagingandobtainanimageasafunctionoftheoffsetrayparameter phx,asP m hx z 0 DSR P m hx z (3)P m hx z Slantstack P m phx z (4)P m phx z Imaging P 0 m phx z (5)(6)Angle-domainCIGsaresubsetsofP 0 m phx z at®xedmid-pointlocation.TherightpanelinFigure5showstheangle-domainCIGgathercorrespondingtothedownward-continuedoffsetgathershownintheleftpanel.Noticethatbecauseindownward-continuedoffsetgatherstheenergyisconcentratedaroundzerooffset,theslantstackdecompositiondoesnotsufferfromtheusualartifactscausedbytheboundaryconditions.Strictlyspeaking,theCIGgathersobtainedbytheproposedprocedurearefunctionoftheoffsetrayparametersphxandnotoftheapertureangle .However,phxislinkedto bythefollowingsimpletrigono-metricrelationshipphx 2sin cos V z m (7)where isthegeologicaldipalongthein-linedirectionandV z m isthevelocityfunction.Angle-domainCIGandvelocityAngle-domainCIGscanbeusedtoupdatethevelocityfunctionaftermigrationsimilarlytothewaythatoffset-domainCIGsarecurrentlyused(Brandsberg-Dahletal.,1999)orforwave-equationMigrationVe-locityAnalysis(BiondiandSava,1999).Asforoffset-domainCIGs,ifthevelocityfunctioniscorrectthere¯ectionsarealignedalongtheangleaxis.Ifthevelocityfunctionistoolowthere¯ectionswillsmileupward;ifthevelocityfunctionistoohighthere¯ectionswillfrowndownward.Thisbehaviorisdemonstratedbytheanalysisofthegath-ersinFigure6.Thegatherswereextractedfroma3-Dprestackwave-®eldfocusedusingcommon-azimuthdownwardcontinuation.Theleftgatherwasobtainedusingthecorrectvelocity.Therightgatherwasobtainedusingalowconstantvelocity.Figure7showstheinlinemi-gratedsectionthatpassesthroughthegathershowninFigure6.NoticethattheCIGgathersshowonlythe®rstkilometeroftheimage. Figure6:Left:Angle-domainCIGwithcorrectvelocity.Right:Angle-domainCIGwithtoolowconstantvelocity. Figure7:In-linesectionof3-Dmigratedcube Re¯ectionanglegathers Figure8:Right:Angle-domainCIGobtainbywave-equationmigra-tion.Left:Offset-domainCIGgatherobtainedbyKirchhoffmigrationAngle-domainCIGandAVAAngle-domainCIGcanalsobeusedtoanalyzethere¯ectivityasafunctionofthere¯ectionangletoestimaterockand¯uidpropertiesinthesubsurface.ThispotentialuseisillustratedbythegathersshowninFigure8.Theleftpanelshowsanangle-domainCIGgatherwhiletherightpanelshowsthecorrespondingoffset-domainCIGgatherobtainedbyanamplitudepreservingKirchhoffmigration(Eckeretal.,1996).Theamplitudebehaviorasafunctionofoffsetrayparameter(leftpanel)isinqualitativeagreementwiththetheamplitudebehaviorasafunctionofoffset(rightpanel).CONCLUSIONSAngle-domainCIGgathershaveattractivepropertieswhenacomplexvelocitymodelcausesmultipathingofre¯ectedenergy.Theyarefreeoftheimagingartifactscausedbyre¯ector-positionambiguitythatdegradetheimageobtainedfromeithershotgathersorcommon-offsetgathers.Wepresentedasimplemethodforextractingangle-domainCIGsfromtheprestackwave®elddownward-continuedusingthewaveequation.Ourmethodproduceshigh-qualityCIGgathersthatcanbereadilyusedforeithervelocityanalysisorAVAanalysis.REFERENCESBiondi,B.,andPalacharla,G.,1996,3-Dprestackmigrationofcommon-azimuthdata:Geophysics,61,1822±1832.Biondi,B.,andSava,P.,1999,Wave-equationmigrationvelocityanal-ysis:69thAnnualInternat.Mtg.,Soc.Expl.Geophys.,ExpandedAbstracts,submitted.Brandsberg-Dahl,S.,deHoop,M.V.,andUrsin,B.,1999,Sensitivitytransforminthecommonscattering-angle/azimuthdomain:EAGE61stAnnualConference,ExpandedAbstracts,submitted.Claerbout,J.F.,1985,ImagingtheEarth'sInterior:BlackwellScien-ti®cPublications.Ecker,C.,Dvorkin,J.,andNur,A.,1996,Sedimentswithgashydrates:Internalstructurefromseismicavo:67thAnnualInternat.Mtg.,Soc.Expl.Geophys.,ExpandedAbstracts,1767±1770.Mosher,C.C.,Foster,D.J.,andHassanzadeh,S.,1997,Commonangleimagingwithoffsetplanewaves:67thAnnualInternat.Mtg.,Soc.Expl.Geophys.,ExpandedAbstracts,1379±1382.Nolan,C.J.,andSymes,W.W.,1996,Imagingandconherencyincomplexstructure:Proc.66thAnnualInternationalMeeting,359±363.Ottolini,R.,andClaerbout,J.F.,1984,Themigrationofcommon-midpointslantstacks:Geophysics,49,no.03,237±249.tenKroode,A.P.E.,Smit,D.-J.,andVerdel,A.R.,Linearizedinversescatteringinthepresenceofcaustics:WaveMotion.Xu,S.,Chauris,H.,Lambare,G.,andNoble,M.,1998,Commonangleimagegather-astrategyforimagingcomplexmedia:DepthImagingofReservoirAttributes,X012.