/
Ben  Burningham Brown dwarfs in large scale surveys Ben  Burningham Brown dwarfs in large scale surveys

Ben Burningham Brown dwarfs in large scale surveys - PowerPoint Presentation

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
371 views
Uploaded On 2018-02-04

Ben Burningham Brown dwarfs in large scale surveys - PPT Presentation

Brown dwarfs come of age Fuerteventura 21 st May 2013 Plan a bit of history the recent past the state of the art future challenges The first wide area surveys not digital relatively simple data pipeline ID: 628070

dwarf dwarfs 2000 survey dwarfs dwarf survey 2000 2008 brown surveys degs 2007 amp 2003 2mass 2002 photometric sdss

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Ben Burningham Brown dwarfs in large sc..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Ben Burningham

Brown dwarfs in large scale surveys

Brown dwarfs come of ageFuerteventura, 21st May 2013Slide2

Plan

a bit of historythe recent past the state of the artfuture challengesSlide3

The first wide area surveys

not digitalrelatively simple data pipelinec 1200 BC 36 stars

L5 dwarf @ ~100 au

T5 dwarf @ ~ 100 auSlide4

Greek pioneers

Timocharis & Aristillus c300BCHipparchus c135BC1022 starsm < 6updated in 964 (Sufi) and 1543 (Copernicus

)no brown dwarfs (but did discover precession of equinox)

L5 dwarf @ ~2000 au

T5 dwarf @ ~ 1000 auSlide5

The next 2000 years….

Tycho Brahe (1598):m < 61004 starsastrometric accuracy ~2’Lalande

et al (1801)50K starsm < 9Henry Draper (1918 – 1924)first spectroscopic surveyall sky

m

< 10

Bonner

Durchmusterung

  (1852

1859

); Cordoba

Durchmusterung

 (1892); Cape Photographic

Durchmusterung

(1896)

total 1 million stars 

all sky

m < 9 - 10

L5 dwarf @ ~10000 au

T 5dwarf @ ~2000 au Slide6

Photographic surveys

20th century dominated by three facilities:Palomar observatory:

POSS I (1949 – 1958) -27 to +90 degrees B ~ 21 POSS IIBj < 22.5, Rc < 20.8,

Ic

< 19.5

UK

&

ESO Schmidt telescopes:

ESO/SERC

Bj

~ 22.5,

Rc

~ 21

Ic

band

Ic

< 19

L5 dwarf @ ~20 pc

T5 dwarf @ ~ 4 pcSlide7

The first brown dwarfs - 1995

Rebolo

, Zapatero Osorio,& Martin, 1995

Nakajima et al 1995Slide8

Kelu - 1

L2 dwarf selected by proper motion1st epoch: ESO survey plates2nd epoch:

dedicated follow-up of 400 sq degsexamined with a blink comparatorRuiz et al (1997)Slide9

Legacy of photographic surveys

DSS I & IICatalogues from densitometer scans:GSC I & IIUSNOA, BsuperCOSMOSProper motion catalogues e.g. LHS, LSPM, PPMXL etc

identification of (ultra) cool >M7 dwarfsthe first L dwarf (Ruiz et al 1997)(the trickle before the flood)Slide10

The age of digital sky surveys

Facilitated by :new detectorsimprovements in data processing and storagefirst brown dwarfs identified in late 1990s (important: allows photometric selection)

New generation dominated by 3 surveys:DENIS2MASSSDSSSlide11

DENIS

Overviewsouthern sky (ESO 1m schmidt)i < 18.5, J < 16.5 , Ks < 14.0finished in 2001355 million sources

Results:49 L dwarfs: Delfosse et al (1997, 1999)Martin et al (1999)Bouy et al (2003)Kendall et al (2004)

Phan

-

Bao

et al (2008)

Martin et al (2010)

1 T dwarf

Artigua

et al (2010)

L5 dwarf @ ~40 pc

T5 dwarf @ ~ 20 pcSlide12

2MASS

All skyJHK (J < 16.5; H < 15.7; Ks < 15.2)>99% complete for J < 15.8, H < 15.1, Ks < 14.3game changer for substellar science

L5 dwarf @ ~45 pc T5 dwarf @ ~ 20 pcSlide13

Brown dwarfs in 2MASS

2MASS team searched via cross match of 2MASS against USNO for B+R band dropoutsvisual inspection to ensure no optical detectiondistinguished as L and T candidates based on JHK colourssubsequent searches cross matched 2MASS with e.g. SDSS, and included proper motion searches403 L dwarfs identified to-date:

Kirkpatrick et al (1999, 2000, 2008, 2010); Reid et al (2000, 2008); Gizis (2002); Gizis et al

(2000, 2003

);

Kendall

et al (

2003, 2007);

Cruz et al (2003, 2007);

Burgasser

et al (2003, 2004); Wilson et al (2003);

Folkes

et al (2007);

Metchev

et al (2008);

Looper

et al (2008) Sheppard & Cushing (2009); Scholz et al (2009); Geissler et al (2011)

55 T dwarfs:

Kirkpatrick et al (2000, 2010);

Burgasser

et al (1999, 2000, 2002, 2003, 2004, ); Cruz et al (2004)

Tinney

et al (2005);

Looper

et al (2007); Reid et al (2008) Slide14

SDSS

SDSS DR9: 14,555 square degrees932,891,133 “sources”1.7 million extragalactic spectra700K stellar spectraz’ < 20.8ish

“arguably the most successful scientific project ever undertaken”

L5 dwarf @ ~75 pc

T5 dwarf @ ~ 40 pcSlide15

Brown dwarfs in SDSS

381 L dwarfs to-date:photometric selection:Fan et al (2000) Hawley et al (2002); Geballe

et al (2002); Schneider et al (2002); Knapp et al (2004); Chiu et al (2006); Zhang et al (2009); Scholz et al (2009)

spectroscopic selection: Schmidt et al (2010)

highlights risky nature of photometric selection

57 T dwarfs:

Leggett et al (2000);

Geballe

et al (2002); Knapp et al (2004); Chiu et al (2006)Slide16

Highlights from the end of the beginning

definition of the “L” spectral class830 L dwarfs discoveredextended to halo population and young moving groupsdefinition of the “T” spectral class113 T dwarfs discoveredextended sequence to

Teff ~ 700K (T8)diversity of properties beyond Teff sequence apparentgravity?metallicity?dust properties?

Kirkpatrick et al 1999, 2000

Burgasser

et al 2006Slide17

Beyond stamp collecting

luminosity function of L dwarfs Cruz et al (2007)space density of T dwarfs  constraining the IMFAllen et al (2005)Metchev et al (2008)

binary statistics (e.g. Burgasser et al 2003)benchmarks (e.g. G570D, HD3651B)weather!!! (e.g. Radigan et al 2012; Buenzli

et al 2012)Slide18

Photometric survey exploitation cookbook

Select candidates from survey(s

) using colours

Follow-up photometry to remove contaminants

Spectroscopic confirmation

SCIENCE

e.g.

z

’ – J > 2.5

e.g. scattered M dwarfs;

SSOsSlide19

UKIRT Infrared Deep Sky Survey (UKIDSS)

Lawrence et al 2007

UKIDSS consists of 5 surveys

Large Area Survey (LAS)

3600

sq.

degs

, J = 19.6

2 epoch for ~1500 sq

degs

Galactic Plane Survey (GPS)

1800 sq.

degs

, K=19

Galactic Clusters Survey (GCS)

1400 sq.

degs

K=18.7

Deep Extragalactic Survey (DXS)

35 sq.

degs

, K=21.0

Ultra Deep Survey (UDS)

0.77 sq.

degs

, K=23.0

Casali et al 2007

L5 dwarf @ ~175 pc

T5 dwarf @ ~ 110 pcSlide20

171 T dwarfs identified

(Lodieu et al 2007; Pinfield et al 2008; Burningham et al (2008, 2009, 2010a,b, 2013)~70 (+) L dwarfs(Day-Jones et al 2013)

extended T sequence to Teff ~ 500K (Lucas et al 2011)halo T dwarfs (Smith et al – today!)more young L dwarfs (see

Marocco

et al poster)Slide21

CFBDS(IR)

~1000 sq degs in i & z (+NIR sections)early T8+ discovery (CFBDS 0059; Delorme et al 2008)L5 – T8 luminosit function (

Reyle et al 2010)extremely cool binary CFBDSIR J1458+1013AB (Liu et al 2011)planetary mass T dwarf CFBDSIR2149-0403 (Delorme et al 2012) Slide22

WISE – another leap forwards

all sky3.4, 4.6, 12, and 22 μmY dwarfs (Cushing et al 2011; Kirkpatrick et al 2012)

seriously, Teff ~ 300K brown dwarfs!!halo(?) T dwarfs (Gomes et al – today!)buckets of bright T dwarfs(Mace et al 2013)complementary data facilitating all sorts of cool science with UKIDSS, 2MASS etc

Kirkpatrick et al (2011)

L5 dwarf @ ~80 pc

T5 dwarf @ ~ 50 pc

Y dwarf @ ~12 pcSlide23

WISE vs UKIDSS – FIGHT!

J <18.3

18.3 < J <18.8Slide24

Survey league table

Survey L dwarfsT dwarfs

Y dwarfsDENIS49 1

0

2MASS

403

55

0

SDSS

381

57

0

UKIDSS

50

230

0

CFBDS(IR)

170(?)

45

1

WISE

10

176

14

VISTA-VHS

0

5

0 Slide25

The immediate future

VISTA:VISTA Hemisphere Survey (VHS)(Y)J(H)KsJ < 19.6 ~100K L0 – T5 ~2000 late-T dwarfs

VIKING1500 sq degsZYJHK J < 21.0Dark Energy Survey:

4000 sq

degs

grizy

(

z

< 24.7,

y

< 23.0)

PanStarrs

(+UKIRT Hemisphere Survey):

griz

(+J)

z

< 23.0 (+ J < 19.6)

L5 dwarf @ ~330 pc

T5 dwarf @ ~200 pc

~1 MILLION BROWN DWARFS!!!!

…and that’s before LSSTSlide26

What’s the point?

rare objects:benchmarkshalo T dwarfs/subdwarfsyoung objectsimproved space densityscale height for BDs (as a function of spectral type)

need kinematic data

need to use survey data for more than candidate selection Slide27

Photometric redshifts spectral types

Skrzypek

& Warren (poster here!) Slide28

Large scale spectroscopic surveys

EUCLID:VIS (<24.5 AB) + YJH (<24 AB) wide imaging survey over 15000 sq degYJH < 26.5 (AB) over 40 sq degs, slitless spectroscopy (J ~ 19?)

VLT-MOONS (proposed):500 sq arcminute, 500 object NIR MOSdeep survey key element of science casescale height for LT dwarfsc.f

SDSS for M dwarfs!Slide29

What do we want next?proper motions (

PanStarrs; LSST; 2nd epoch of VHS !?)deep spectroscopic survey (VLT-MOONS; EUCLID)what about photometric surveys? best colours for characterisation?