/
EXTENSIBLE AUTOMORPHISMS A POSSIBLE APPROACH VIPUL NAIK Abstract EXTENSIBLE AUTOMORPHISMS A POSSIBLE APPROACH VIPUL NAIK Abstract

EXTENSIBLE AUTOMORPHISMS A POSSIBLE APPROACH VIPUL NAIK Abstract - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
448 views
Uploaded On 2014-12-12

EXTENSIBLE AUTOMORPHISMS A POSSIBLE APPROACH VIPUL NAIK Abstract - PPT Presentation

It is easy to see that an inner automorphism of a group can always be extended to an inner automorphism of any group containing it Are inner automorphisms the only such automorphisms This is the problem of extensible automorphisms Here I discuss the ID: 22379

easy

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EXTENSIBLE AUTOMORPHISMS A POSSIBLE APPR..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1.2.Theoriginalproblemstatement.Thegeneralproblemstatementis:Problem1(Whichautomorphismsareextensible?).Anextensibleautomorphism(myownterminology)ofagroupisde nedasanautomorphismthatcanbeliftedtoanautomorphismforanyembeddingintoanothergroup.Whichautomorphismsofagroupareextensible?Thefollowingbasicfactsaredirect:Everyinnerautomorphism(thatis,conjugationbysomegroupelement)isextensible.Thus,thepropertyofbeinganinnerautomorphismisstrongerthanthepropertyofbeinganextensibleautomorphism.Thepropertyofextensibilityisclosedundercompositionandinversion.Thus,thesetofextensibleautomorphismsformsasubgroupofthegroupofallauto-morphisms.Itseems,fromexaminationofelementarycases,thatextensibleautomorphismsarepreciselytheinnerautomorphisms.Thisismyconjecture.1.3.Multipleextensions.Forconvenience,weusethenotation: where and arebothautomorphismproperties,toindicateasubgrouppropertywhereeveryautomorphismsatisfyingproperty inthesubgroupcanbeliftedtoanautomorphismsatisfying inthewholegroup.Then,itistruethat:Innerautomorphism Innerautomorphismisheldforeverysubgroup,thatis,theabovepropertyisthetautology.Ontheotherhand,theproperty:Innerautomorphism Automorphismisequivalenttothesubgroupbeingfullynormalized(infrequentlyusedterminology):theWeylgroupofthesubgroup2isthewholeautomorphismgroup.Theproperty:Automorphism Automorphismisnottrueforallsubgroups.Thispropertyofsubgroupsiscalledtheautomorphismextensionproperty.(myownterminology)Thetrivialsubgroupandthegroupitselfsatisfytheautomorphismextensionproperty,buttherearemanysubgroupswhichdonot.Forinstance,thereareautomorphismsofZ=pZZ=pZthatdonotlifttoautomorphismsofthegroupZ=pZZ=p2Z(inwhichitisembedded).Notethatallfullynormalizedsubgroupshavetheautomorphismextensionproperty.Ontheotherhand,ifthepropertyontherightisstrengthenedsomewhat,weget:Automorphism ExtensibleautomorphismThisistrueforeverysubgroup.Thisisbecause,byde nition,anextensibleautomor-phismisonethatliftstoanautomorphismforeveryembedding. 2TheWeylgroupofasubgroupisthequotientofitsnormalizer(inthegroup)byitscentralizer(inthegroup),embeddednaturallyintheautomorphismgroupofthesubgroup.Ingeometriccontexts,itoftenarisesforselfcentralizingsubgroups(suchastori)inwhichcaseitbecomesthequotientofthenormalizerofthesubgroup2 2.4.GroupswithAbeliansplinchers.WhatarethegroupsthatpossessAbeliansplinchers?Reversingthequestion,constructallcentralfactorsofautomorphismgroupsofAbeliangroups,wheretheAbeliangroupischaracteristicinthesemidirectproduct.Clearly,inordertostudythisproblemitisnecessaryto rstunderstandthestructureofautomorphismgroupsofAbeliangroups.Morespeci cally,wecanbeginbyunder-standingthestructureoftheautomorphismgroupsofAbeliangroupsofprimepowerorder.LetusbeginwiththeelementaryAbeliangroups.TheautomorphismgroupofanelementaryAbeliangroupoforderpkisthegenerallineargroupoforderkoverFp,typicallydenotedasGLn(Fp).Weprovethat:Claim5.EveryelementaryAbeliangroupischaracteristicinitssemidirectproductwithitsautomorphismgroup.Proof.ClearlytheelementaryAbeliangroupisaminimalnormalsubgroupofthesemidi-rectproduct(becausethereisalineartransformationmappinganysubspaceofittoan-othersubspacewiththesamedimension).Thus,ifthereisanyautomorphismthatdoesnottakeittoitself,itmusttakeittosomeotherminimalnormalsubgroupintersectingittrivially.Butthenthetwonormalsubgroupswouldcommuteelementwise,andweknowthatnoelementoutsidetheelementaryAbeliangroupcommuteswitheveryelementofit.So,everyautomorphismmusttaketheelementaryAbeliangrouptoitself.ThusGLn(Fp)possessesanAbeliansplincher.2.5.DirectproductsofAbelianandlineargroups.Combiningtheideasobtainedsofar,wecanconcludethat:Claim6.Adirectproductofgenerallineargroupsoverdi erentprimes,andanAbeliangroupwhoseorderisrelativelyprimetoallthegenerallineargroupsandtheirunderlyingprimes,hasanAbeliansplincher.2.6.Completegroups.Therearesomegroupsforwhichsplinchersarenotneededtoestablishthattheysatisfytheconditionsofproblem5.Thesearethegroupswhereeveryautomorphismisinner.Clearly,forsuchgroups,theproblemconditionsaretriviallysatis ed.Centerlessgroupswhereeveryautomorphismisinneraretermedcompletegroups.Inparticular,thesymmetricgroupsSnwheren6=2;6arecomplete.3.Furtherquestions3.1.Onsplinchers.Wehaveseenthefollowingproperties,eachimplyingtheonebelowit:(1)ThepropertyofhavinganAbeliansplincher(2)Thepropertyofhavingasplincher,orofbeingsplinchable(3)Thepropertyofsatisfyingtheconditionsofproblem5(4)Thepropertyofsatisfyingtheconditionsofproblem3(5)Thepropertythateveryextensibleautomorphismofthegroupisinner(6)Thepropertythatevery!extensibleautomorphismofthegroupisinnerConjecturescanbeformulatedatvariouslevels.WemayconjecturethatallgroupshaveAbeliansplinchers,whichisthestrongestpossiblestatement.Wemayconjecturethatallgroupsaresplinchable,whichissomewhatweaker.Wemayconjecturethatallgroupssatisfytheconditionofproblem5,whichisstillweaker.8 3.4.AnalogousquestionforthevarietyofAbeliangroups.ThequestionforthevarietyofAbeliangroupsisasfollows:\whataretheautomorphismsofanAbeliangroupthatlifttoautomorphismsofallAbeliangroupscontainingit?"Notethattheproblemwehavesolvedforthecaseofgroupsistheautomorphismsthatlifttoautomorphismsofallgroupscontainingit,whiletheproblemwenowconsiderisofautomorphismsthatextendtoautomorphismsofallAbeliangroupscontainingit.Inthiscase,themultiplicationmapsareconditionallyendomorphing,thoughnotcon-ditionallyautomorphing.Thisquestionisinterestingandpossiblyeasiertosolve.SomeprogresshasbeenmadeonitthatIamnotdiscussinghere.3.5.Generalhomomorphisms.Wehavesofarbeeninterestedindeterminingthoseautomorphismsthatgaverisetoautomorphismsforembeddingsintoothergroups.Em-beddingsarejustinjectivehomomorphisms.Thus,wehavelookedatautomorphismsthatgiverisetoautomorphismsoverinjectivehomomorphisms.Amoregeneralquestionmightbeto ndautomorphismsthatgaverisetoautomorphismsforallhomomorphisms.Thatis:Problem6.FindallautomorphismsofagroupG,suchthatforanyhomomorphismfromGtoagroupH,thereisanautomorphism0onHsuchthat0:=:.Ifwerequiretobeinjective,thenwegetpreciselythede nitionofextensibleauto-morphism.Thustheabovepropertyisapriorisomewhatstrongerthanthatofbeingextensible.Weshallcallautomorphismsthatsatisfytheconditionsoftheaboveproblemhomomorphismtransferable.(myownterminology)Itiseasytoseethatanautomorphismishomomorphismtransferableifandonlyifitisextensibleanditsatis estheaboveconditionforsurjectivehomomorphisms.Automorphismsthatsatisfytheconditionforsurjectivehomomorphismshallbecalledquotientableautomorphisms.(myownterminology)Clearly,innerautomorphisms,orautomorphismsarisingviaconditionallyautomorph-ingformulas,arehomomorphismtransferable.Whatcanwesayaboutquotientableautomorphisms?Indeed,therearequotientableautomorphismsthatarenotinner.Thisfollowsfromtheobservationbelow.Claim7.Anyautomorphismthatcanbedescribedbysome\algebraicformula"intermsoftheuniversalalgebraoperationsusingoneormoreparameters,isquotientable.Infact,theautomorphismonthequotientisgivenbythesamealgebraicformulawiththeparametersbeingtheimagesoftheoriginalparametersviathequotientmap.Callanautomorphismalgebraicallyformulable(myownterminology)ifitcanbeexpressedviaanalgebraicformula.Notethatthesetofalgebraicallyformulableauto-morphismsisclosedundercompositionthoughitisnotclearwhetheritisclosedunderinversion.Thisgivesrisetothe nalproblemthatneedstobeexplored:Problem7.Givenagroup,whatcanbesaidaboutthecollectionofquotientableauto-morphisms?Iseveryquotientableautomorphismalgebraicallyformulable?4.Inspirationandacknowledgement4.1.Inspirationfortheproblem.TheproblemcametomethroughaformalismIhavedevelopedcalledpropertytheory,wherebygrouppropertiesandsubgrouppropertiesaresubjectedtomanipulationandstudiedunderthesemanipulations.Forinstance,expressingsubgrouppropertiesusingthe notation(introducedinsection1.3)helpsustouncoversomefactsaboutthem.10 4.2.Thepartialsolutionsofar.ThesolutionuncoveredsofarhaslargelybeenduetothekindhelpprovidedbyDr.I.M.Isaacs,whofurnishedthe rstexampleofthenon-Abeliangroupoforder21,andalsoprovidedtheexampleofGL3(F2).Healsosuggestedsomeapproachestogeneralizingtheproblemandhissuggestionsledtomyformulatingproblems4and5.HegavetheproofforthecaseofcyclicgroupsandencouragedmetosettlethecaseforAbeliangroupsbeforetryingtoproceedfurther.Theconversionofthespeci cproofs(fortheAbeliancase)intogeneralideasofsplinch-ersandcentralfactorswasdonebymetodeterminehowtheapproachcanbegeneralized.4.3.Alternativeapproaches.PriortodiscussingtheproblemwithDr.Isaacs,IalsodiscusseditwithProfessorRamanan,whotriedanalternativeapproachusingcharactertheory.However,theapproachmetwithsomeroadblocks.Theroughideawastousethefactthattwoelementsnotinthesameconjugacyclassdi erforsomeclassfunctionandhencewecanobtainacharacterwheretheytakedi erentvalues.Startingwiththisobservation,wetrytoconstructagroup,byaslightvariationofthegenerallineargroup,wherethereisnoautomorphismtakingoneelementtotheother.Ihaveworkedonthisapproachaswellwithoutmuchsuccess.However,ithasledmetoreformulatetheapproachinamannerthatcanbereconciledwiththesplincherapproach.Thiswillbediscussedlaterseparately.11 Indexalgebraicformulaconditionallyautomorphing,9algebraicformula,10automorphism,2!extensible,3kextensible,3algebraicallyformulable,10extensible,2homomorphismtransferable,10inner,1,2quotientable,10automorphismextensionproperty,2centralfactor,5conjugation,1extension,1groupAbelian,7complete,8cyclic,7elementaryAbelian,8holomorph,3lift,1semidirectproduct,5,8splincher,5StructureTheoremforAbeliangroups,7subgroupcharacteristic,5fullynormalized,2,3havingautomorphismextensionproperty,2minimalnormal,8normal,9transform,1Weylgroup,212