/
minimumnumberq=q(k;)ofqueriesrequiredforanyalgorithmAto-testk-juntas minimumnumberq=q(k;)ofqueriesrequiredforanyalgorithmAto-testk-juntas

minimumnumberq=q(k;)ofqueriesrequiredforanyalgorithmAto-testk-juntas - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
388 views
Uploaded On 2016-06-18

minimumnumberq=q(k;)ofqueriesrequiredforanyalgorithmAto-testk-juntas - PPT Presentation

kqueriesandconjecturedthatthetruequerycomplexityfornonadaptivealgorithmsisk2queriesChocklerandGutfreund8improvedthelowerboundfortestingjuntasbyshowingthatallalgorithmsadaptiveornonadaptivefo ID: 367274

k)queriesandconjecturedthatthetruequerycomplexityfornon-adaptivealgorithmsisk2=queries.ChocklerandGutfreund[8]improvedthelowerboundfortestingjuntasbyshowingthatallalgorithms{adaptiveornon-adaptive{fo

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "minimumnumberq=q(k;)ofqueriesrequiredfo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

minimumnumberq=q(k;)ofqueriesrequiredforanyalgorithmAto-testk-juntas?Background.The rstresultrelatedtotestingjuntaswasobtainedbyBellare,Goldreich,andSudan[2]inthecontextoftestinglongcodes.ThatresultwasgeneralizedbyParnas,Ron,andSamorodnitsky[18]toobtainanalgorithmfor-testing1-juntaswithonlyO(1=)queries.Thenextimportantstepintestingk-juntaswastakenbyFischer,Kindler,Ron,Safra,andSamorodnitsky[10],whodevelopedmultiplealgorithmsfortest-ingk-juntaswithpoly(k)=queries.Thosealgorithmswereparticularlysignif-icantforshowingexplicitlythattestingjuntascanbedonewithaquerycom-plexityindependentofthetotalnumberofvariables.Themostquery-ecientalgorithmstheypresentedrequire~O(k2)=queries1to-testk-juntas.Fischeretal.[10]alsogavethe rstnon-triviallowerboundonthequerycomplexityforthetestingjuntasproblem.Theyshowedthatanynon-adaptivealgorithmfor-testingk-juntasrequiresatleast~ (p k)queriesandconjecturedthatthetruequerycomplexityfornon-adaptivealgorithmsisk2=queries.ChocklerandGutfreund[8]improvedthelowerboundfortestingjuntasbyshowingthatallalgorithms{adaptiveornon-adaptive{for-testingk-juntasrequire (k)queries.Thisresultappliesforallvaluesof1=8,butthebounditselfdoesnotincreaseasdecreases.Ourresultsandtechniques.Ourmainresultisanimprovementontheupperboundforthequerycomplexityofthejuntatestingproblem.Theorem1.1.Thepropertyofbeingak-juntacanbe-testedbyanon-adaptivealgorithmwith~O(k3=2)=queries.Thenewalgorithmpresentedinthisarticleisthe rstfortestingjuntaswithanumberofqueriessub-quadraticink,anddisprovesthelowerboundconjectureofFischeretal.OuralgorithmisbasedonanalgorithmofFischeretal.fortestingjuntas[10,x4.2]).TheobservationthatledtothedevelopmentofthenewalgorithmisthatthealgorithmofFischeretal.canbebrokenupintotwoseparatetests:a\blocktest"andasimple\samplingtest".Inthisarticle,wegeneralizethesamplingtest,andweestablishastructuralLemmaforfunctionsthatare-farfrombeingk-juntastoshowhowthetwotestscanbecombinedto-testk-juntasmoreeciently.Oursecondresultisanimprovedlowerboundonthenumberofqueriesrequiredfortestingjuntaswithnon-adaptivealgorithms.Thenewboundisthe rstlowerboundforthequerycomplexityofthejuntatestingproblemthatincorporatestheaccuracyparameter. 1Hereandintherestofthisarticle,the~O()notationisusedtohidepolylogfactors.(i.e.,~O�f(x)=O�f(x)logcf(x)and~ �f(x)= �f(x) logcf(x)forsomec0.) TheIndependenceTest.AfunctionfissaidtobeindependentofasetS[n]ofcoordinatesifVrf(S)=0.Thede nitionofvariationsuggestsanat-uraltestforindependence:IndependenceTest[10]:Givenafunctionf:f0;1gn!f0;1gandasetS[n],generatetwoinputsx;y2f0;1gnindependentlyanduniformlyatrandom.Iff(x)=f(xSyS),thenaccept;otherwise,reject.Letusde neIndependenceTest(f,S,m)tobethealgorithmthatrunsminstancesoftheIndependenceTestonfandSandacceptsifandonlyifeveryinstanceoftheIndependenceTestaccepts.Bythede nitionofvariation,thisalgorithmacceptswithprobability�1�Vrf(S)m.Inparticular,thistestalwaysacceptswhenfisindependentofthesetSofcoordinates,andrejectswithprobabilityatleast1�whenVrf(S)ln(1=)=m.3TheAlgorithmforTestingJuntasInthissection,wepresentthealgorithmfor-testingk-juntaswith~O(k3=2)=queries.Thealgorithmhastwomaincomponents:theBlockTestandtheSamplingTest.WeintroducetheBlockTestinSection3.1andtheSam-plingTestinSection3.2.Finally,inSection3.3weshowhowtocombinebothteststoobtainanalgorithmfortestingjuntas.3.1TheBlockTestThepurposeoftheBlockTestistoacceptk-juntasandrejectfunctionsthathaveatleastk+1coordinateswith\large"variation.TheBlockTest rstrandomlypartitionsthecoordinatesin[n]intossetsI1;:::;Is.ItthenappliestheIndependenceTesttoblocksofthesesetstoidentifythesetsofcoordinatesthathavelowvariation.ThetestacceptsifallbutatmostkofthesetsI1;:::;Isareidenti edashavinglowvariation.ThefullalgorithmispresentedinFig.1.TheBlockTestisbasedonFischeretal.'snon-adaptivealgorithmfortestingjuntas[10,x4.2],whichusesaverysimilartest.3AsthefollowingtwoPropositionsshow,withhighprobabilitytheBlockTestacceptsk-juntasandrejectsfunctionswithk+1coordinateswithvariationatleast.Proposition3.1(Completeness).Fix�0,andletf:f0;1gn!f0;1gbeak-junta.ThentheBlockTestacceptsfwithprobabilityatleast1�.Proof.LetIjbeasetthatcontainsonlycoordinatesiwithvariationVrf(i)=0.Inagivenround,theprobabilitythatIjisincludedinBTandnoneofthesets 3Theprincipaldi erencebetweenourversionoftheBlockTestandFischeretal.'sversionofthetestisthatin[10],thesetTisgeneratingbyincludingexactlykindiceschosenatrandomfrom[s]. SamplingTest(f,k,l,,)Additionalparameters:r=d128k2ln(2=)=l2e,m=dln(2r=)=e1.Initializethesuccesscounterc 0.2.Foreachofrrounds,2.1.PickarandomsubsetT[n]byincludingeachcoordinateindependentlywithprobability1=k.2.2.IfIndependenceTest(f,T,m)accepts,setc c+1.3.Acceptfifc=r(1�1=k)k�l=16k;otherwiserejectf. Fig.2.Thealgorithmforthesamplingtest.3.2TheSamplingTestThepurposeoftheSamplingTestistoacceptk-juntasandrejectfunctionsthathavealargenumberofcoordinateswithnon-zerovariation.TheSamplingTest,asitsnameimplies,usesasamplingstrategytoesti-matethenumberofcoordinateswithnon-negligiblevariationinagivenfunctionf.ThesamplingtestgeneratesarandomsubsetT[n]ofcoordinatesineachround,andusestheIndependenceTesttodetermineiffisindependentofthecoordinatesinT.Thetestacceptswhenthefractionofroundsthatpasstheindependencetestisnotmuchsmallerthantheexpectedfractionofroundsthatpassthetestwhenfisak-junta.ThedetailsofthealgorithmarepresentedinFig.2.Proposition3.3(Completeness).Fix�0,l2[k].Letf:f0;1gn!f0;1gbeak-junta.ThentheSamplingTestacceptsfwithprobabilityatleast1�.Proof.Whenfisak-junta,theprobabilitythatthesetTinagivenroundcontainsonlycoordinatesiwithvariationVrf(i)=0isatleast(1�1=k)k.Whenthisoccurs,thesetTalsohasvariationVrf(T)=0.LettbethenumberofroundsforwhichthesetTsatis esVrf(T)=0.ByHoe ding'sbound,Prt r(1�1=k)k�l 16ke�2r(l=16k)2=2whenr128k2ln(2=)=l2.EverysetTwithvariationVrf(T)=0alwayspassestheIndependenceTest,soctandthecompletenessclaimfollows.utProposition3.4(Soundness1).Fix�0,l2[k].Letf:f0;1gn!f0;1gbeafunctionforwhichthereisasetS[n]ofsizejSj=k+lsuchthateverycoordinatei2ShasvariationVrf(i).ThentheSamplingTestrejectsfwithprobabilityatleast1�.Proof.Inagivenround,theprobabilitythattherandomsetTdoesnotcontainanyofthek+lcoordinateswithlargevariationis(1�1=k)k+l.Whenlk,(1�1=k)l1�l=2k,andwhenk2,(1�1=k)k1=4.Sotheprobabilitythat Fact3.8(Fischeretal.[10])Foranyfunctionf:f0;1gn!f0;1gandsetsofcoordinatesS;T[n],thefollowingtwopropertieshold:(i)Urf;S(T)Vrf(T),and(ii)Urf;S([n])=Vrf(S).WearenowreadytocompletetheproofofProposition3.5.Proof(ofProposition3.5).TherearetwowaysinwhichtheSamplingTestcanacceptf.Thetestmayacceptfifatleasta(1�1=k)k�1=16fractionoftherandomsetsThavevariationVrf(T).Alternatively,thetestmayalsoacceptifsomeofthesetsTwithvariationVrf(T)passtheIndepen-denceTest.Byourchoiceofmandtheunionbound,thislattereventhappenswithprobabilityatmost=2.SotheproofofProposition3.5iscompleteifwecanshowthattheprobabilityoftheformereventhappeningisalsoatmost=2.LettrepresentthenumberofroundswheretherandomsetThasvariationVrf(T).WewanttoshowthatPrt=r(1�1=k)k�1=16=2.Infact,since(1�1=k)k1=4forallk2,itsucestoshowthatPr[t=r3=16]=2.Inagivenround,theexpecteduniquevariationoftherandomsetTwithrespecttoSinfisE[Urf;S(T)]=Xi2[n]1 kUrf;S(i)=Urf;S([n]) k=Vrf(S) k 2k;wherethethirdequalityusesFact3.8(ii).ByProperty(i)oftheProposition,Urf;S(T)isthesumofnon-negativevariablesthatareboundedaboveby.SowecanapplyLemma3.6with=1=32HktoobtainPr[Urf(T)]e 2eke 32Hk�1:ByFact3.8(i)andthefactthate 2eke 32Hk�11=8forallk1,wehavethatE[t=r]=Pr[Vrf(T)]1=8:The nalresultfollowsfromanapplicationofHoe ding'sinequalityandthechoiceofr.utTheSamplingTestalgorithmmakes2mqueriestofineachround,sothetotalquerycomplexityofthealgorithmis2rm=O(k2log(k=l)=l2).3.3TheJuntaTestIntheprevioustwosubsections,wede nedtwotests:theBlockTestthatdistinguishesk-juntasfromfunctionswithk+1coordinateswithlargevariation,andtheSamplingTestthatdistinguishesk-juntasfromfunctionsthathavesomevariationdistributedoveralargenumberofcoordinates.ThefollowingstructuralLemmaonfunctionsthatare-farfrombeingk-juntasshowsthatthesetwotestsaresucientfortestingjuntas. andtheunionbound,k-juntasareacceptedbytheJuntaTestwithprobabilityatleast2=3.Letfbeanyfunctionthatis-farfrombeingak-junta.Iffsatis esProp-erty(i)ofLemma3.9withparametert=64,considertheminimumintegerl02[k]forwhichthereisasetS[n]ofsizek+l0suchthateverycoordinatei2ShasvariationVrf(i) 64Hkl0.Ifl0dk1=2e,thenbyProposition3.2,theBlockTestrejectsfwithprobability1�&#x]TJ/;༔ ; .96;& T; 10;&#x.758;&#x 0 T; [0;2=3.Ifl0k1=2,thenbyPropo-sition3.4,theSamplingTestwiththeparameterlthatsatis esll02lrejectsthefunctionwithprobability1�&#x]TJ/;༔ ; .96;& T; 10;&#x.758;&#x 0 T; [0;2=3.Iffsatis esProperty(ii)ofLemma3.9,byProposition3.5,thelastSam-plingTestrejectsthefunctionwithprobability1�&#x]TJ/;༔ ; .96;& T; 10;&#x.758;&#x 0 T; [0;2=3.SinceLemma3.9guaranteesthatanyfunction-farfrombeingak-juntamustsatisfyatleastoneofthetwopropertiesoftheLemma,thiscompletestheproofofsoundnessoftheJuntaTest.TocompletetheproofofTheorem1.1,itsucestoshowthattheJuntaT-estisanon-adaptivealgorithmandthatitmakesonly~O(k3=2)=queriestothefunction.Thenon-adaptivityoftheJuntaTestisapparentfromthefactthatallqueriestotheinputfunctioncomefromindependentinstancesoftheInde-pendenceTest.ThequerycomplexityoftheJuntaTestalsofollowsfromtheobservationthateachinstanceoftheBlockTestortheSamplingTestinthealgorithmrequires~O(k3=2)=queries.SincethereareatotalofO(logk)callstothosetests,thetotalquerycomplexityoftheJuntaTestisalso~O(k3=2)=.ut4TheLowerBoundInthissection,weshowthateverynon-adaptivealgorithmfor-testingk-juntasmustmakeatleastmin�~ (k=);2k=kqueriestothefunction.ToproveTheorem1.2,weintroducetwodistributions,DyesandDno,overfunctionsthatarek-juntasandfunctionsthatare-farfromk-juntaswithhighprobability,respectively.Wethenshowthatnodeterministicnon-adaptivealgo-rithmcanreliablydistinguishbetweenfunctionsdrawnfromDyesandfunctionsdrawnfromDno.Thelowerboundonallnon-adaptivealgorithmsfor-testingk-juntasthenfollowsfromanapplicationofYao'sMinimaxPrinciple[20].AcentralconceptthatweuseextensivelyintheproofofTheorem1.2isChocklerandGutfreund'sde nitionoftwins[8].De nition4.1.Twovectorsx;y2f0;1gnarecalledi-twinsiftheydi erex-actlyintheithcoordinate(i.e.,ifxi6=yiandxj=yjforallj2[n]nfig).Thevectorsx;yarecalledtwinsiftheyarei-twinsforsomei2[n].Wenowde nethedistributionsDyesandDno.TogenerateafunctionfromthedistributionDno,we rstde neafunctiong:f0;1gk+1!f0;1gbysettingthevalueg(x)foreachinputx2f0;1gk+1independentlyatrandom,withPr[g(x)=1]=6.Wethenextendthefunctionoverthefulldomainbyde ningf(x)=g(x[k+1])foreveryx2f0;1gn.ThedistributionDyesisde nedtobe ThedistributionsHjandHj�1arenearlyidentical.Theonlydi erencebe-tweenthetwodistributionsisthat jisconstrainedtotakethevalue jinHj,whileitisanindependent6-biasedrandomvariableinHj�1.SothestatisticaldistancebetweenHjandHj�1istwicetheprobabilitythat j6= jinHj�1.Thus,Py Hj(y)�Hj�1(y) 24(1�6)24andtheLemmafollows.utWithLemma4.3,wecannowboundthestatisticaldistancebetweentheresponsesobservedwhentheinputfunctionisdrawnfromDyesorDno.Lemma4.4.LetQbeasequenceofqqueriescontainingtpairsoftwins.LetRyesandRnobethedistributionsoftheresponsestothequeriesinQwhentheinputfunctionisdrawnfromDyesorDno,respectively.ThenXy2f0;1gq Ryes(y)�Rno(y) 24t k+1:Proof.SinceRyesisamixturedistributionoverR(1)yes;:::;R(k+1)yes,thenXy Ryes(y)�Rno(y) =Xy k+1Xi=1R(i)yes(y) k+1�Rno(y) 1 k+1k+1Xi=1Xy R(i)yes(y)�Rno(y) :ByLemma4.3,theaboveequationisupperboundedby1 k+1Pk+1i=124ti,wheretirepresentsthenumberofi-twinsinQ.Lemma4.4thenfollowsfromthefactthatt=Pk+1i=1ti.utThepreviousLemmaboundsthestatisticaldistancebetweentheresponsesobservedfromafunctiondrawnfromDyesorDnowhenwehaveaboundonthenumberoftwinsinthequeries.ThefollowingLemmashowsthatthenumberofpairsoftwinsinasequenceofqqueriescannotbelargerthanqlogq.Lemma4.5.Letfx1;:::;xqgf0;1gnbeasetofqdistinctqueriestoafunc-tionf:f0;1gn!f0;1g.Thenthereareatmostqlogqpairs(xi;xj)suchthatxiandxjaretwins.Proof.Anaturalcombinatorialrepresentationforaqueryx2f0;1gnisasavertexonthen-dimensionalbooleanhypercube.Inthisrepresentation,apairoftwinscorrespondstoapairofverticesconnectedbyanedgeonthehypercube.Sothenumberofpairsoftwinsinasetofqueriesisequaltothenumberofedgescontainedinthecorrespondingsubsetofverticesonthehypercube.TheLemmathenfollowsfromtheEdge-IsoperimetricInequalityofHarper[13],Bernstein[3],andHart[14](seealso[7,x16]),whichstatesthatanysubsetSofqverticesinthebooleanhypercubecontainsatmostqlogqedges.5utWecannowcombinetheaboveLemmastoproveTheorem1.2. 5TheresultofHarper,Bernstein,andHartisslightlytighter,givingaboundofPqi=1h(i),whereh(i)isthenumberofonesinthebinaryrepresentationofi. Acknowledgments.TheauthorwishestothankRyanO'Donnellformanyvaluablediscussionsandsuggestionsduringthecourseofthisresearch.TheauthoralsothanksAnupamGupta,YiWu,andtheanonymousrefereesformanyhelpfulsuggestionsonearlierdraftsofthisarticle.References1.AlpAtcandRoccoA.Servedio.Quantumalgorithmsforlearningandtestingjuntas.QuantumInformationProcessing,6(5):323{348,2007.2.MihirBellare,OdedGoldreich,andMadhuSudan.Freebits,PCPsandnon-approximability{towardstightresults.SIAMJ.Comput.,27(3):804{915,1998.3.ArthurJ.Bernstein.Maximallyconnectedarraysonthen-cube.SIAMJ.Appl.Math.,15(6):1485{1489,1967.4.AvrimBlum.Relevantexamplesandrelevantfeatures:thoughtsfromcomputa-tionallearningtheory.InAAAIFallSymposiumon`Relevance',1994.5.AvrimBlum.Learningafunctionofrrelevantvariables.InProc.16thConferenceonComputationalLearningTheory,pages731{733,2003.6.AvrimBlumandPatLangley.Selectionofrelevantfeaturesandexamplesinmachinelearning.Arti cialIntelligence,97(2):245{271,1997.7.BelaBollobas.Combinatorics.Cambridge,1986.8.HanaChocklerandDanGutfreund.Alowerboundfortestingjuntas.InformationProcessingLetters,90(6):301{305,2004.9.IliasDiakonikolas,HominK.Lee,KevinMatulef,KrzysztofOnak,RonittRubin-feld,RoccoA.Servedio,andAndrewWan.Testingforconciserepresentations.InProc.48thSymposiumonFoundationsofComputerScience,pages549{558,2007.10.EldarFischer,GuyKindler,DanaRon,ShmuelSafra,andAlexSamorodnitsky.Testingjuntas.J.Comput.Syst.Sci.,68(4):753{787,2004.11.MiraGonenandDanaRon.Onthebene tsofadaptivityinpropertytestingofdensegraphs.InProc.11thWorkshopRANDOM,pages525{539,2007.12.DavidGuijarro,JunTarui,andTatsuieTsukiji.FindingrelevantvariablesinPACmodelwithmembershipqueries.InProc.10thConferenceonAlgorithmicLearningTheory,pages313{322,1999.13.LarryH.Harper.Optimalassignmentsofnumberstovertices.SIAMJ.Appl.Math.,12(1):131{135,1964.14.SergiuHart.Anoteontheedgesofthen-cube.Disc.Math.,14:157{163,1976.15.Je Kahn,GilKalai,andNatiLinial.Thein uenceofvariablesonbooleanfunc-tions.InProc.29thSym.onFoundationsofComputerScience,pages68{80,1988.16.RichardJ.Lipton,EvangelosMarkakis,AranyakMehta,andNisheethK.Vishnoi.OntheFourierspectrumofsymmetricbooleanfunctionswithapplicationstolearningsymmetricjuntas.InProc.20thConferenceonComputationalComplexity,pages112{119,2005.17.ElchananMossel,RyanO'Donnell,andRoccoA.Servedio.Learningfunctionsofkrelevantvariables.J.Comput.Syst.Sci.,69(3):421{434,2004.18.MichalParnas,DanaRon,andAlexSamorodnitsky.Testingbasicbooleanformu-lae.SIAMJ.Discret.Math.,16(1):20{46,2003.19.RonittRubinfeldandMadhuSudan.Robustcharacterizationsofpolynomialswithapplicationstoprogramtesting.SIAMJ.Comput.,25(2):252{271,1996.20.AndrewC.Yao.Probabilisticcomputations:towardsauni edmeasureofcom-plexity.InProc.18thSym.onFoundationsofComput.Sci.,pages222{227,1977.