PDF-Theproblemoftwo-dimensionalorthogonalrangesearchcanbede nedasfollows:l

Author : mitsue-stanley | Published Date : 2016-08-20

nintheworstcaseWerequirethatthemonotonicchainsshouldbeuntangledThatiswhensuccessiveverticesareconnectedbylinesegmentsthechainsshouldnotintersecteachotherThisrequirementdoesnotincreasetheminimaln

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Theproblemoftwo-dimensionalorthogonalran..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Theproblemoftwo-dimensionalorthogonalrangesearchcanbede nedasfollows:l: Transcript


nintheworstcaseWerequirethatthemonotonicchainsshouldbeuntangledThatiswhensuccessiveverticesareconnectedbylinesegmentsthechainsshouldnotintersecteachotherThisrequirementdoesnotincreasetheminimaln. 2RenGuometricforwhichtheEuclideanstraightlinesaregeodesics.HilbertgeometrygeneralizesKlein'smodelofhyperbolicgeometry.LetKbeaboundedopenconvexsetinRn(n2)TheHilbertmetricdKonKisde nedasfollows.Foranyx Achainmapf:C!Dinducesahomomorphismf:Hp(C)!Hp(D)forallp,de nedasfollows:Letx2Zp(C)representanelement[x]2Hp(C).Thendf(x)=fd(x)=f(0)=0sof(x)2Zp(D).De nef([x]):=[f(x)]:Ifx;x0representthesameelementofHp( c=max(maxfv(x)jx2Ng;maxfc(x;y)j(x;y)2A;c(x;y)1g):TheresidualnetworkG(f)correspondingtoa\rowfisde nedasfollows.Wereplaceeacharc(x;y)2Abytwoarcs(x;y)and(y;x).Thearc(x;y)has 1170L.CIUPALA costb(x;y)andr ourmodelbyderivingthelikelihoodf(P)ofanobservedsetofphotostreamsP.Basedontheassumption(A1)and(A2),thelikelihoodf(P)isdenedasfollows.f(P)=LYl=1f(Pl);f(Pl)=f(xl1;tl1)LlYi=2f(xli;tlijxli1;tli1)(1)wher Denition1.ThesizeofanELconceptDisdenedasfollows:–forD2sig(T),s(D)=1;–forD=9r:C,s(D)=s(C)+1wherer2sigR(T)andCisanarbitraryconcept;–forD=C1uC2,s(D)=s(C1)+s(C2)whereC1;C2arearbitraryconc GiventhemodelM=hW;(Rr)r2Rel;V;Siandw2W,thesemanticsforthedi erentoperatorsisde nedasfollows:M;wj=p()w2V(p);p2PropM;wj=:p()w62V(p);p2PropM;wj='^ ()M;wj='andM;wj= M;wj='_ ()M;wj='orM;wj= M;wj=hri'()ther min(ki;kj)+1jaijj;(2)wherekiandkjdenotetheconnectivitiesofnodesiandj:ki=Xu6=ij~auij:(3)Incontrast,unsignedTOMisde nedasfollows(notethedi erenceintheplacementofabsolutevaluesinthenumerator):TOMij=jaij F0=0; F1=1; Fn=Fn-1+Fn-2(n2). Theyoccur(forexample)inbiology.Therstfeware:0,1,1,2,3,5,8,13,21,34,55,... CalculatingtheFibonaccinumbersImaginewewanttocalculatethen'thFibonaccinumberFn.Thefollowingalg TheinterpretationofthecrucialconstructsinapointedKripkestructureisde nedasfollows|inthisde nition,thesymbolj=ismoreproperlyaforcingandnotalogicalconsequencesymbol,buttheconventioninepistemiclogicistoa AbstractProductsearchisaveryimportantpartofmostretailerwebsitesWhilesearchingforproductstheenduserexpresseshisintentviasearchqueriesHowevermatchingrelevantproductstoexplicituserintentasformulatedbythe

Download Document

Here is the link to download the presentation.
"Theproblemoftwo-dimensionalorthogonalrangesearchcanbede nedasfollows:l"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents