PDF-2IntegrationforcontinuousfunctionTheorem2.1.Letf:[a;b]!Rbecontinuouson

Author : myesha-ticknor | Published Date : 2016-04-29

nx2a2ba nxnbgThenZbaflimn1UfPnlimn1LfPnProofItsucestoshowthatlimn1UfPnLfPn0sinceexercise295in1willthenimplytheresultLet0begivenSincefisuniformlycontinuouson

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "2IntegrationforcontinuousfunctionTheorem..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

2IntegrationforcontinuousfunctionTheorem2.1.Letf:[a;b]!Rbecontinuouson: Transcript


nx2a2ba nxnbgThenZbaflimn1UfPnlimn1LfPnProofItsucestoshowthatlimn1UfPnLfPn0sinceexercise295in1willthenimplytheresultLet0begivenSincefisuniformlycontinuouson. Asaconsequence,compositionofcontinuousmapsde nesafunction[X;Y][Y;Z]![X;Z];([f];[g])7![gf]:2.HomotopyequivalencesDe nition2.1.Letf:X!Ybeacontinuousmap.Thenfissaidtobehomotopyequivalenceifthereexistsa 4Note:Apolynomialofdegree4mayhavenozeros,butstillfactor(asaproductofquadraticorhigher-degreepolynomials).Tocheckforquadraticorhigher-degreefactors,uselongdivisionwitheachofthepotentialfactors(hopeful Nowthesethreeconditionsareveri edtoshowthatagiventotalextensionxof isneitherr.e.traceablenorautocomplex.Assumearecursiveboundhbegiven.Letf(m)=C(x2h(m+1)+m+4).Choosem;nsuchthath(m)+m+3nh(m+1)+m+4and 4KEITHCONRADProof.Letf(T)2OK[T]beEisensteinatsomeprimeideal.Iff(T)isreducibleinK[T]thenf(T)=g(T)h(T)forsomenonconstantg(T)andh(T)inK[T].We rstshowthatgandhcanbechoseninOK[T].Asfismonic,wecanassumegand permutationsinSnisdenotedbyAn.CorollaryA.4.Thefollowinghold:(1)AnisasubgroupofSn.(2)Theindex[Sn:An]=2(assumingn2).ThisisequivalenttosayingthatexactlyhalfofallpermutationsinSnareeven.Proof.(1)Thisfoll ; x]andy=[y ; y],theinclusionisde nedbyxvy,y 6x ^ x6 y:Theinclusionisthenrelatedtothedualintervalbyxvy,dualxwdualy.Definition1.Letf:Rn!Rbeacontinuousfunctionandx2IKn,whichwecandecomposeinxA2IRpandxE2( NIPandVCdimensionILetFbeafamilyofsubsetsofasetX.IForasetBX,letF\B=fA\B:A2Fg.IWesaythatBXisshatteredbyFifF\B=2B.ITheVCdimensionofFisthelargestintegernsuchthatsomesubsetofSofsizenisshatteredbyF(otherw 1.Letf(x;y):=F(y)(yx).ThenyisasolutionofVVIi thesystemS(y)isimpossible.2.Letf(x;y):=F(x)(yx).ThenyisasolutionofMVVIi thesystemS(y)isimpossible.Lemma1.Iff(y;y)=0,thenS(y)isimpossiblei yisasol 1.Background1.1.Letf:X!Ybeacontinuousmap.WeassumethatX;Yarelocallyconnectedspaces.Thisimpliesuniquedecompositionintosheetsoversucientlysmallevenlycoveredopensets.Apropertyofthemapfsuitabletoreplacelo x;sincef1(f(x))=3p x3=xandf(f1(x))=(3p x)3=x: 3.Letf(x)=2x;thenf1(x)=1 2x;sincef1(f(x))=1 2(2x)=xandf(f1(x))=21 2x=x: 5.Letf(x)=7x+2;thenf1(x)=x2 7;sincef1(f(x))=7x+22 7=xandf(f1(x))=7x2 sn=f(x1;:::;xn)g(x1;:::;xn) sn(x1;:::;xn)Itisoflowertotaldegreethantheoriginalf.Byinductionontotaldegree(fg)=snisexpressibleintermsoftheelementarysymmetricpolynomialsinx1;:::;xn.===[1.0.3]Remark:The 1.Letf(x;y):=F(y)(yx).ThenyisasolutionofVVIi thesystemS(y)isimpossible.2.Letf(x;y):=F(x)(yx).ThenyisasolutionofMVVIi thesystemS(y)isimpossible.Lemma1.Iff(y;y)=0,thenS(y)isimpossiblei yisasol De nition22. De nition23. LetF:A!Bbeafunctor.WesaythatFpreservesdirectlimitsifforeverydirectedsetIandfunctorG:I!A,iftheobjectCtogetherwithmorphismsG(i)!CisacolimitforGthentheobjectF(C)andmorphismsF CONTENTSvChapter16.APPLICATIONSOFTHEINTEGRAL12116.1.Background12116.2.Exercises12216.3.Problems12716.4.AnswerstoOdd-NumberedExercises130Part5.SEQUENCESANDSERIES131Chapter17.APPROXIMATIONBYPOLYNOMIALS1

Download Document

Here is the link to download the presentation.
"2IntegrationforcontinuousfunctionTheorem2.1.Letf:[a;b]!Rbecontinuouson"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents