/
andevenmoreimportant,wecanadditionallydisproveoutermosttermination.The andevenmoreimportant,wecanadditionallydisproveoutermosttermination.The

andevenmoreimportant,wecanadditionallydisproveoutermosttermination.The - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
347 views
Uploaded On 2015-08-16

andevenmoreimportant,wecanadditionallydisproveoutermosttermination.The - PPT Presentation

longernilysfalselongerconsxxsniltruelongerconsxxsconsyyslongerxsysthentheresultingTRSR2isnotoutermostterminatinglongerzeroszerosoR2longercons0zeroszerosoR2longerco ID: 108589

longer(nil;ys)!falselonger(cons(x;xs);nil)!truelonger(cons(x;xs);cons(y;ys))!longer(xs;ys)thentheresultingTRSR2isnotoutermostterminating.longer(zeros;zeros)o!R2longer(cons(0;zeros);zeros)o!R2longer(co

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "andevenmoreimportant,wecanadditionallydi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

andevenmoreimportant,wecanadditionallydisproveoutermosttermination.Therefore|asfarastheauthorknows|wepresentthe rstautomaticmethodfordisprovingoutermosttermination.Thepaperisstructuredasfollows.InSect.2werecapitulatetherequiredno-tionsoftermrewriting.TheninSect.3ourtransformationispresented.Sound-nessandcompletenessofthetransformationareproveninSect.4andSect.5,respectively.AnimprovedversionofthetransformationispresentedinSect.6.Finally,adiscussiononrelatedworkandexperimentaldataisgiveninSect.7.2PreliminariesWereferto[2]forthebasicsoftermrewriting.Wealwaysassumeacountablein nitesetofvariablesV.WewriteT(;V)forthesetoftermsoversomesignature.Foreachf2wewritear(f)forthearityoff.ATRSRoverisasetofrules`!rwhere`;r2T(;V),`=2V,andV(`)V(r).Here,V(t)isthesetofvariablesoccurringinatermt.Werestrictourselvesto niteTRSsandoftenomitthesignatureifitisclearfromthecontext.ForaTRSthede nedsymbolsaretherootsymbolsoftheleft-handsidesoftherules.Theremainingsymbolsofareconstructors.Apositionp2Pos(t)iseithertheemptyposition"orp=iqwheret=f(t1;:::;tn),1in,andq2Pos(ti).Positionpisstrictlyabovepositionq(orqisstrictlybelowp)i pisaproperpre xofq.AcontextisatermCwithaholeatsomepositionp2Pos(C).WewriteC[t]pasthetermwheretheholeofCisreplacedbyt.AtermtcanbereducedwithRtosatpositionp,writtent!R;psi t=C[`]pands=C[r]pforsomerule`!r2Randsubstitution.Thereductionisanoutermostreduction,writtento!R;psi thereisnoqstrictlyabovepsuchthatt!R;qs.Itisaninnermostreduction,writtenti!R;psi thereisnoqstrictlybelowpsuchthatt!R;qs.TherewriterelationofRisde nedast!Rsi t!R;psforsomepositionp.Theouter-andinnermostrewriterelationso!Randi!Rarede nedaccordinglyviao!R;pandi!R;p.Atermtisinnormalformw.r.t.Ri thereisnossuchthatt!Rs.ATRSis(outermost/innermost)terminatingi !R(o!R/i!R)iswell-founded.Example1.ConsiderthefollowingTRSR1whichgeneratesalistofzeros.Here,thesecondruleisusedtostopthereductionifaconsappearsattheoutside.zeros!cons(0;zeros)(1)cons(x;xs)!terminate(2)Itisneitherterminatingnorinnermostterminatingduetothein nitereductionzerosi!R1cons(0;zeros)i!R1cons(0;cons(0;zeros))i!R1::::However,R1isoutermostterminatingascons(0;zeros)mustbeoutermostre-ducedtoterminatebecauseofrule(2).Butifweaddthefollowingrulestocomparethelengthsoftwolists2 longer(nil;ys)!falselonger(cons(x;xs);nil)!truelonger(cons(x;xs);cons(y;ys))!longer(xs;ys)thentheresultingTRSR2isnotoutermostterminating.longer(zeros;zeros)o!R2longer(cons(0;zeros);zeros)o!R2longer(cons(0;zeros);cons(0;zeros))o!R2longer(zeros;zeros)o!R2:::3ThetransformationTostudytheoutermostterminationbehaviorofaTRSwetakeatransforma-tionalapproach.TheideaistotransformagivenTRSintoanotherTRSsuchthatoutermostterminationoftheoriginalTRScanbeconcludedfromtermina-tionofthetransformedTRS.Transformationalapproachestoproveterminationarequitecommonforextensionsofplainrewriting,e.g.,therearevarioustrans-formationsforconditionalTRSsandcontext-sensitiveTRSs[14].Anoverviewoverthesetransformationsisgivenin[15]and[5].Thegeneralstructureofourtransformationissimilartothestructureofthecompletetransformationforcontext-sensitiveTRSs[5].(Thisstructureisalsousedin[18].)First,eachtermoftheoriginalsignatureismappedtoacorrespondingtermoveranenrichedsignaturewhichcontainsadditionalsymbols(alsocalledmarkers).Thesymboltopwillbeusedtomarkthetopoftheoriginaltermandthesymbolreduceandgo upareusedtoindicatethepositionofthereduction.Thenonesimulatesareductionto!R;psoftheoriginalTRSinthreephases.First,inthetermtop(reduce(t))thereduce-markerismovedtopositionp.Second,thereductiontosissimulatedbyapplyingthecorrespondingrewriterulethatisusedinthereductionto!R;ps.Moreover,thereduce-markerischangedintoago up-marker.Third,thego up-markerismovedbackfrompositionptothetopofthetermyieldingtop(go up(s)),and nallygo upisconvertedintothereduce-markertobeabletoperformanupcomingreduction.Tosimulateoutermostrewritingwiththisscheme,themostdicultpartisthe rstphase.Here,therulesofthetransformedsystemsmustensurethatreducecanbemovedtoallvalidpositionsw.r.t.outermostrewritingtoensurethateveryoriginalreductioncanbesimulated.Moreover,itisalsodesirablethatreducecannotbemovedtoanyoftheremainingpositionsinordertoobtainaprecisesimulation.Indetail,onehastoinvestigatethesetofpositionsofatermt=f(t1;:::;tn)whichareallowedw.r.t.outermostrewriting,andmovethereduce-markerinthetermreduce(t)accordingly.(Thetop-markerisnotimportantforthispart.)3 Therearetwopossibilities.Eithertitselfisaredex.Thenitisnotallowedtoreduceanyoft'ssubtermsandtherefore,thereduce-markershouldnotbemoved.Orotherwise,tisnotaredex.Inthatcaseitmustbepossibleinthetransformedsystemtorewritereduce(t)toC[reduce(ti)]whereCissomecontextwhichalsohastostoref;t1;:::;ti�1;ti+1;:::;tn.Applyingthisidealeadstothefollowingtransformationwhichwillbedis-cussedindetaildirectlyafterwards.De nition2(TransformationofoutermostTRSs).LetRbeaTRSover.Wede netheextendedsignatureas0=]ftop;reduce;go up;resultg]fcheckf;redexf;inf;ijf2;1iar(f)g.Moreover,wede nethetrans-formedsystemR0over0toconsistofthefollowingrulesreduce(f(x1;:::;xn))!checkf(redexf(x1;:::;xn))(3)checkf(redexf(x1;:::;xn))!inf;i(x1;:::;reduce(xi);:::;xn)(4)redexf(`1;:::;`n)!result(r)(5)checkf(result(x))!go up(x)(6)inf;i(x1;:::;go up(xi);:::;xn)!go up(f(x1;:::;xn))(7)top(go up(x))!top(reduce(x))(8)where(3)and(6)areforallf2,(4)and(7)areforallf2,1iar(f),and(5)isforallf(`1;:::;`n)!r2R.Rulesf(3);(5);(6)gandf(7);(8)gcanbeusedtoperformthenecessaryre-ductionsinthesecondandthirdphaseofthetransformationscheme.Toil-lustratethis,considerR1ofEx.1.Onecansimulatetheoutermostreductionzeroso!R1cons(0;zeros)byapplyingtherules(3);(5);(6);(8).top(reduce(zeros))i!R01top(checkzeros(redexzeros))(9)i!R01top(checkzeros(result(cons(0;zeros))))i!R01top(go up(cons(0;zeros)))i!R01top(reduce(cons(0;zeros)))The rstphaseneedssomemoreexplanation.Onemightthinkofaproblemthatalsonon-outermostreductionscanbesimulatedinthetransformedTRSsinceeverytermreduce(f(t1;:::;tn))canberewrittentoC[reduce(ti)]withrules(3)and(4).However,thisproblemdoesnotarisesinceinnermostrewritingisconsideredforthetransformedTRS:wheneverf(t1;:::;tn)isaredexw.r.t.Rthenanapplicationofrule(4)onthetermcheckf(redexf(t1;:::;tn))isprohib-itedbyrule(5)asthelatterruleimposesaredexatadeeperposition.Thiscanalsobeseenwhencontinuingintheexample.Afterthereductiontop(reduce(cons(0;zeros)))i!R01top(checkcons(redexcons(0;zeros)))itisnotallowedtoapplyrule(4),butonehastorewritetheinnersubterm.top(checkcons(redexcons(0;zeros)))i!R01top(checkcons(result(terminate))Afterwardsitisonlypossibletorewritetoanormalform.Thefollowingmain4 theoremstatesthatourtransformationindeedcharacterizesoutermosttermina-tionoftheoriginalTRS,i.e.,thetransformationisbothsoundandcomplete.Theorem3.Risoutermostterminatingi R0isinnermostterminating.TheavailabletechniquesforinnermostterminationanalysisincombinationwithThm.3cannowsuccessfullyhandletheTRSsofEx.1.Moreprecisely,outermostterminationofR1andoutermostnon-terminationofR2areprovenfullyautomatically.Beforewediscusstheempiricalresultsindetail,weprovebothdirectionsofThm.3separatelyintheupcomingtwosections.4SimulationofoutermostreductionsToprovesoundnessofthetransformationwewillshowthateveryoutermostre-ductionoftheoriginalTRScanbesimulatedbyaseriesofinnermostreductionsinthetransformedTRS(Lemma5).Tothisend,we rstmakethefollowingobservationthateachtermoftheoriginalsignaturecannotbereducedwiththetransformedTRS.Thisobservationwillbeusefultoarguethatinthesimulationweonlyperforminnermostreductions.Lemma4.Ift2T(;V)thentisanormalformw.r.t.R0.Proof.Obvious,sinceeveryf2isaconstructorofR0.utLemma5.Ift2T(;V)andto!Rsthenreduce(t)i!+R0go up(s).Proof.Sincetisreducibleitisnotavariable,solett=f(t1;:::;tn).Weperforminductiononthepositionoftheredexinto!R;ps.Ifp="thent=`!r=sforsomerule`=f(`1;:::;`n)!r2Rwhereti=`iforalli.Thus,wecanbuildthefollowinginnermostreduction:reduce(f(t1;:::;tn))i!R0checkf(redexf(t1;:::;tn))i!R0checkf(result(r))=checkf(result(t))i!R0go up(t)NotethatallthesereductionsareindeedinnermostreductionsduetoLemma4.Ifp=iqthentio!Rsiands=f(t1;:::;si;:::;tn).Fromtheinductionhypothesisweconcludereduce(ti)i!+R0go up(si).Thus,itispossibletobuildthedesiredreductionasfollows:reduce(f(t1;:::;tn))i!R0checkf(redexf(t1;:::;tn))i!R0inf;i(t1;:::;reduce(ti);:::;tn)i!+R0inf;i(t1;:::;go up(si);:::;tn)i!R0go up(f(t1;:::;si;:::;tn))=go up(s)Here,thesecondreductionisindeedaninnermoststep.ThereasonisthatbyLemma4weonlyhavetoguaranteethatthetermredexf(t1;:::;tn)isnotaredexofR0.However,ifthistermwerearedexofR0,thenbythede nitionofR0thetermf(t1;:::;tn)=twouldbearedexofR.Butthisisincontradiction5 tothefactthattisreducedbelowtherootusingoutermostrewriting.utWiththehelpofLemma5itisnoweasytoproveonedirectionofThm.3.Corollary6.IfR0isinnermostterminatingthenRisoutermostterminating.Proof.IfRwerenotoutermostterminatingthentherewouldbeanin nitereductiont1o!Rt2o!Rt3o!R:::whereallti2T(;V).Lemma5andLemma4directlyyieldthefollowingin niteinnermostreductionofR0.top(reduce(t1))i!+R0top(go up(t2))i!R0top(reduce(t2))i!+R0:::ut5ExtractingoutermostreductionsInthissectionweprovecompletenessofourtransformation.Tothisend,weshowthatoutermostterminationoftheoriginalTRSimpliesinnermostterminationofthetransformedTRS.Thisisachievedbyextractinganin niteoutermostreductionofRfromeveryin niteinnermostreductionofR0.Herewehavetodealwithanewproblemwhichdidnotariseintheprevioussection:forinnermostterminationwehavetoconsideralltermsoftheextendedsignature,i.e.,weevenhavetoconsidertermswhichcontainmultipleoccurrencesoftop-andreduce-markersandwehavetoconsiderallpossiblereductions.Tosolvethisproblemweshowtwomainlemmas(7and10).Inthe rstlemmaweprovethatwheneverthetransformedTRSisnotinnermostterminatingthentherealsoisareductionofaspecialformwhichissimilartotheonethatwehaveconstructedinthesoundness-proof.Theninthesecondlemmaweshowhowonecanextractanoutermostreductionfromthisspecialreduction.Combiningbothlemmasthendirectlyyieldscompletenessofourtransformation.Lemma7.IfR0isnotinnermostterminatingthenthereisanin niteinner-mostreductionofthefollowingformwherealltiareinnormalformw.r.t.R0.1top(go up(t1))i!R0;"top(reduce(t1))i!R0�;"top(go up(t2))i!R0;":::(?)ToprovethislemmawemakeuseofDependencyPairs[1],apowerfultech-niquetoanalyzeinnermostterminationofTRSs.Essentially,insteadofanalyzingtherewriterelationi!R0directly,oneconsiderstwoTRSsPandR0incombi-nationandinvestigatessocalledinnermost-(P;R0)-chainswhicharereductionsofthefollowingform.s1i!P;"t1i!R0�;"s2i!P;"t2i!R0�;"s3i!P;"t3i!R0�;":::Themainresultof[1]statesthatR0isinnermostterminatingi therearenoin niteinnermost-(DP(R0);R0)-chains.2Here,DP(R0)isthefollowingTRSconsistingofallDependencyPairsofR0. 1Therelationi!R0�;"islikei!R0exceptthatitisnotallowedtorewriteattheroot.2FormoredetailsandfurtherextensionsofDependencyPairswereferto[1,7,11,13].6 top](go up(x))!top](reduce(x))(10)top](go up(x))!reduce](x)(11)reduce](f(x1;:::;xn))!check]f(redexf(x1;:::;xn))(12)reduce](f(x1;:::;xn))!redex]f(x1;:::;xn)(13)check]f(redexf(x1;:::;xn))!in]f;i(x1;:::;reduce(xi);:::;xn)(14)check]f(redexf(x1;:::;xn))!reduce](xi)(15)Wecannowprovethateveryinnermostnon-terminatingTRSR0entailsanin nitereductionoftheformin(?).Proof.IfR0isnotinnermostterminatingthenthereisanin niteinnermost(DP(R0);R0)-chain.Toinvestigatetheformofpossiblein nitechainswecom-paretheroot-symbolsoftheDependencyPairsandobtainthefollowingDepen-dencyGraph[1].(10)33 // (11)//  (12)// OO (14)(13)(15)oo Thisgraphcontainstwostronglyconnectedcomponentsf(10)gandf(12);(15)g.Therefore,everyin niteinnermostchainwillendineitheranin niteinnermost(f(10)g;R0)-or(f(12);(15)g;R0)-chain.Wenowshowthattherearenochainsofthelatterkind.Thereasonisthatforthefollowingpolynomialorder,both(12)and(15)arestrictlydecreasingandtheonlyusablerules2(5)areweaklydecreasing.[reduce]](x)=[check]f](x)=1+x[f](x1;:::;xn)=1+x1++xnforallf2[redexf](x1;:::;xn)=x1++xn[result](x)=0Thus,theremustbeanin niteinnermost(f(10)g;R0)-chain.Butthisdirectlycorrespondstothein nitereduction(?):onejusthastoreplacetop]bytop.utWiththehelpofLemma7itisnowpossibletoextractthein niteinnermostreduction(?)fromeverynon-innermostterminatingtransformedTRS.Recallthattheaimistoextractanin niteoutermostreductionoftheoriginalTRSfrom(?).Thenaturalideaistojusttakethetermst1;t2;t3;:::andthentoshowthattheseleadtoanoutermostreductionofR.Butherewehavetofaceonemoreproblem:in(?)thetermst1;t2;t3;:::aretermsovertheextendedsignature0,butweneedtoextracttermsovertheoriginalsignature.Tothisendweusethefollowingmappingwhichalwaysyieldstermsovertheoriginalsignature.De nition8.ThemappingO:T(0;V)!T(;V)isde nedfollows:7 O(f(t1;:::;tn))=f(O(t1);:::;O(tn))forallf2O(t)=xt,otherwiseForeachsubstitutionthesubstitutionO()isde nedasxO()=O(x).Beforewestateandprovethesecondmainlemma,weneedsomepropertiesofOaboutmatching.Lemma9.If`2T(;V)thenO(`)=`O()forallsubstitutions.IfO(t)=`forsomesubstitutionthent=`forsomesubstitution.Proof.Straightforwardstructuralinductionon`.FirstnotethatOisinjective.Hence,theinversemappingO�1isproperlyde nedwhichcanagainbeliftedtoamappingfromsubstitutionstosub-stitutionswhereO�1()isde nedasxO�1()=O�1(x).Weshowthatt=`O�1()byinductionon`,i.e.,wechoose=O�1().If`isavariablexthenO(t)=xandthus,t=O�1(O(t))=O�1(x)=xO�1()=`O�1().Otherwise,`=f(`1;:::;`n).Thus,O(t)=`=f(`1;:::;`n)impliesthatt=f(t1;:::;tn),f2,andO(t)=f(O(t1);:::;O(tn)).Hence,O(ti)=`iforalliandbyinductionweobtainti=`iO�1().Butthisdirectlyyieldst=f(`1O�1();:::;`nO�1())=f(`1;:::;`n)O�1()=`O�1().utWewillnowprovethesecondmainlemmatoachievecompletenessofourtransformation,namelythataninnermostreductionreduce(ti)i!R0go up(ti+1)in(?)correspondstoanoutermostreductionoftheoriginalsystem.Lemma10.Lets;t2T(0;V)wheretisinnormalformw.r.t.R0.Wheneverreduce(t)i!R0go up(s)thenO(t)o!RO(s)andsisinnormalformw.r.t.R0.Proof.Weperforminductiononthelengthofthereduction.Ifreduce(t)reducestogo up(s)the rststepmustbedonewith(3)sincetisinnormalform.Hence,t=f(t1;:::;tn)forsomef2andnormalformst1;:::;tnandmoreover,thereductionmuststartwithreduce(t)i!R0checkf(redexf(t1;:::;tn)).Fromthenewtermcheckf(redexf(t1;:::;tn))thereareonlytwopossiblewaystocontinuethereductiontogo up(s),eitherusing(5)orusing(4).Intheformercaseweobtainthereductioncheckf(redexf(t1;:::;tn))i!R0checkf(result(s0)).Hence,theremustbesomef(`1;:::;`n)!r2Rsuchthatti=`iands0=r.Asisanormalizedsubstitutionandasr2T(;V)isaconstructortermw.r.t.R0,weknowthats0isinnormalform.Moreover,asadditionallyeach`i2T(;V)wecanapplyLemma9andobtainO(t)=O(f(`1;:::;`n))=f(`1;:::;`n)O()o!RrO()=O(r)=O(s0):Fromcheckf(result(s0))i!R0go up(s)andthefactthattheonlypossiblereduc-tionofcheckf(result(s0))isviarule(6)togo up(s0)weconcludethats0=s.Hence,byourpreviousresultswehaveprovenO(t)o!RO(s0)=O(s)andthats=s0isinnormalform.This nishesthe rstcase.Inthesecondcasethereductionofcheckf(redexf(t1;:::;tn))isperformed8 byrule(4)whichyieldsthenewterminf;i(t1;:::;reduce(ti);:::;tn).Notethatthereisonlyonewaytoreachthetermgo up(s)fromthisnewterm:onemust rstreducereduce(ti)tosometermgo up(si).SincethisreductionisshorterthanthewholereductionwecanapplytheinductionhypothesistoobtainO(ti)o!RO(si)andconcludethatsiisinnormalform.Moreover,thereisonlyonewaytocontinuethereductiontowardsgo up(s):onehastoreduceinf;i(t1;:::;go up(si);:::;tn)togo up(f(t1;:::;si;:::;tn))withrule(7).However,sincethislasttermisinnormalform|f2isaconstructorofR0|weknowthatsmustbethenormalformf(t1;:::;si;:::;tn).Hence,O(t)=f(O(t1);:::;O(ti);:::;O(tn))!Rf(O(t1);:::;O(si);:::;O(tn))=O(f(t1;:::;si;:::;tn))=O(s)Itonlyremainstoprovethattheabovereductionisindeedanoutermost-reduction.SinceweknowthatO(ti)o!RO(si)weonlyhavetoprovethatO(t)isnotaredexofR.So,supposeO(t)isaredex.Hence,thereissomerule`!r2RsuchthatO(t)=`.ByLemma9weknowthatthent=f(t1;:::;tn)=`andthus,ti=`iforalli.Hence,thetermredexf(t1;:::;tn)isnotinnormalformw.r.t.R0.However,thisisacontradictiontothefactthatcheckf(redexf(t1;:::;tn))wasinnermostreducedattop-level.utWiththehelpofLemmas7and10completenessofourtransformationiseasilyestablished.Corollary11.IfRisoutermostterminatingthenR0isinnermostterminating.Proof.AssumethatR0isnotinnermostterminating.ThenbyLemma7thereisthein niteinnermostreductiontop(go up(t1))i!R0;"top(reduce(t1))i!R0�;"top(go up(t2))i!R0;":::whichbyLemma10directlyleadstothein niteoutermostreductionO(t1)o!RO(t2)o!R::::ut6ImprovedTransformationInthissectionwepresentanimprovedvariantofourtransformation.Theideaisthatthecheckforanoutermost-redexissuper uousiftheoutermostsymbolisaconstructor.Moreover,wheneveraconstantisreduced,thenthereductioncanonlybeatthetop-level.Hence,inthatcasetherealsoisnoneedforthecheck.TheseideasleadtoanimprovedtransformationwhichproducesasmallerTRSthanthetransformationofDef.2.Moreover,eachoutermoststepoftheoriginalTRScanbesimulatedbylessinnermoststepsofthetransformedTRS.De nition12(ImprovedtransformationofoutermostTRSs).LetRbeaTRSover.Wede netheimprovedtransformedsystemR00over0toconsistofrulesf(3)�(8)gwiththefollowingadditionalrules.9 reduce(f(x1;:::;xn))!inf;i(x1;:::;reduce(xi);:::;xn)(16)reduce(f)!go up(r)(17)However,indi erencetoDef:2,(3)and(6)areonlyforde nedsymbolsfwithar(f)�0,(4)isonlyforde nedsymbolsf,and(5)isonlyforrulesf(`1;:::;`n)!r2Rwithar(f)�0.Thenewrule(16)isforallconstructorsfand1iar(f),andthenewrule(17)isforallde nedconstants,i.e.,forallrulesf!r2Rwherear(f)=0.Toillustratethatanoutermostreductioncanbesimulatedbylessinnermostreductionsusingtheimprovedtransformation,recallthesimulationofzeroso!Rcons(0;zeros)ofEx.1.ThetransformationofDef.2needsfourstepstoreducetop(reduce(zeros))totop(reduce(cons(0;zeros))),cf.(9),whereastheimprovedtransformationonlyneedstwosteps.AsforthetransformationofDef.2,weobtainsound-andcompleteness.Theorem13.Risoutermosttermatingi R00isinnermostterminating.ThistheoremisproveninthesamewayasThm.3.7RelatedWorkandExperimentsTerminationofprogramminglanguageswithoutermoststrategyhasalsobeenstudiedin[10,16].However,incontrasttoourworktheiremphasisisonprogramswhichalsocontainnon-terminatingfunctions,andwherethegoalistoproveterminationofasetofstartingterms.Relatingourapproachtothedirecttechniqueof[12]toproveoutermostterminationofTRSs,weseethebene tofourapproachthatitcanalsobeusedtodisproveoutermosttermination.Sincethesuccessofourapproachheavilydependsonthetechniquestoanalyzeinnermosttermination,thebestwaytoinvestigatetherelativeprovingpowerisbyanextensiveempiricalcomparison.Unfortunately,afullyautomaticimplementationof[12]iscurrentlynotavailable.However,aby-hand-calculationonasmallsetofexampleshasshownthatinpracticeourtechniqueisofincomparablepowerto[12],i.e.,thereareexampleswhereonlyoneofbothtechniquesissuccessful.Themostsimilarworktooursisthetransformationof[18]toproveout-ermosttermination.Althoughthegeneralstructureofbothtransformationsissimilar,thereareimportantdi erences.Theadvantageof[18]isthattheirtrans-formationdoesnotrelyoninnermostrewriting.Therefore,moretechniquesareapplicableontheresultingTRSs.However,therearealsosomedrawbacksof[18]incomparisontoourtransformation.First,itisunknownwhetherthetransfor-mationof[18]iscomplete.Moreover,wedonothavethelimitationtoquasi-left-linearTRSsasin[18].And nally,ourtransformationiseasiertoimplementandcannotleadtoexponentiallylargerresultingTRSs.Empirically,ourtrans-formationisincomparable3to[18]. 3Althoughthedetailedexperimentsindicatethatourtransformationisstrictlymorepowerful,inpracticethisisnotthecaseifonetriesthetransformationof[18]withseveraldi erentproversasbackend:thenbothtransformationsareincomparable.10 Forourexperimentsweconsideredonlythose434TRSsfromthetermina-tionproblemdatabase4(TPDB4.0)wherefullterminationcouldnotalreadybeprovenbytheterminationproverAProVE[9].Weconsideredthreetransforma-tionstoanalyzeoutermostterminationwhereafterwardswealwaysusedAProVEasbackend.ForeachTRSandtransformationweusedatimeoutofoneminute.ThemachinewasanIntelCore2Duowith2.4GhzrunningunderMacOSX.Thedetailsofourexperimentscanbeviewedathttp://cl-informatik.uibk.ac.at/~thiemann/outermost.Thefollowingtablegivesasummary.Transformation R0 R00 [18]5 #ofTRSswhereoutermostterminationwasdisproven 39 40 0#ofTRSswhereoutermostterminationwasproven 7 7 6We rstconsiderdisprovingoutermosttermination.Notethatonly162TRSsofthe434TRSaredetectedtobenon-terminating.Herewecanseethesuccessofourtransformationasitisapplicableon40TRSswhereasweknowofnoothermethodthatcandisproveoutermostterminationautomatically.Fortheremaining122TRSstherearetwomajorreasonswhyoutermostterminationcannotbedisproven: rst,someoftheseTRSsareoutermostterminating.Andsecond,ourtransformationdestroysloopingreductions,i.e.,althoughtheoriginalTRSmightcontainaloopingoutermostreduction,thisdoesnotnecessarilycorrespondtoaloopinginnermostreductioninthetransformedTRS.Tosolvethisproblem,asfutureworkweplantodevelopadirectmethodfordisprovingoutermostterminationsimilartotheonein[19].Withtheseexperimentsonecanalsoillustratethebene toftheimprovedtransformation.ThereisoneTRSwhereonlytransformationR00isabletodis-proveoutermosttermination.Here,thefailureofR0isjustduetothelengthofthesimulation.TheloopingreductionofR00issomestepsshorterthanthecorrespondingreductioninR0.Thatthiscanbecrucialisduetothefactthatthecomplexityofsearchingforloopingreductionsisexponentialinthelengthofthereduction.Unfortunatelythenumbersforprovingoutermostterminationdonotlookthatgood.However,thisismainlyduetothefactthattherearehardlyanyexamplesintheTPDBwhicharedesignedforoutermostrewriting:thereareonlysix.Toconclude,wehavedevelopedasuccessfultransformationforprovingandespeciallyfordisprovingoutermostterminationofTRSs.Acknowledgments.WethankIsabelleGnaedigforherhelpfulfeedbackonquestionsabout[12]. 4Availableathttp://www.lri.fr/~marche/tpdb/.5Tobecomparablewealwaysaddedafreshconstanttothesignaturewhenusing[18].Thereasonisthatotherwise[18]onlyprovesoutermost-groundtermination.11 References1.T.ArtsandJ.Giesl.Terminationoftermrewritingusingdependencypairs.The-oreticalComputerScience,236:133{178,2000.2.F.BaaderandT.Nipkow.TermRewritingandAllThat.CambridgeUniversityPress,1998.3.A.Geser,D.Hofbauer,J.Waldmann,andH.Zantema.Ontreeautomatathatcertifyterminationofleft-lineartermrewritingsystems.InformationandCompu-tation,205(4):512{534,2007.4.J.GieslandT.Arts.Veri cationofErlangprocessesbydependencypairs.Appl.AlgebrainEngineering,CommunicationandComputing,12(1,2):39{72,2001.5.J.GieslandA.Middeldorp.Transformationtechniquesforcontext-sensitiverewritesystems.JournalofFunctionalProgramming,14(4):379{427,2004.6.J.Giesl,R.Thiemann,S.Swiderski,andP.Schneider-Kamp.Provingterminationbyboundedincrease.InProc.CADE'07,LNAI4603,pp.443{459,2007.7.J.Giesl,R.Thiemann,andP.Schneider-Kamp.Thedependencypairframework:Combiningtechniquesforautomatedterminationproofs.InProc.LPAR'04,LNAI3452,pp.301{331,2005.8.J.Giesl,R.Thiemann,andP.Schneider-Kamp.Provinganddisprovingtermina-tionofhigher-orderfunctions.InProc.FroCoS'05,LNAI3717,2005.216{231.9.J.Giesl,P.Schneider-Kamp,andR.Thiemann.AProVE1.2:Automatictermina-tionproofsintheDPframework.Proc.IJCAR'06,LNAI4130,pp.281{286,2006.10.J.Giesl,S.Swiderski,P.Schneider-Kamp,andR.Thiemann.Automatedtermina-tionanalysisforHaskell:Fromtermrewritingtoprogramminglanguages.InProc.RTA'06,LNCS4098,pp.297{312,2006.11.J.Giesl,R.Thiemann,P.Schneider-Kamp,andS.Falke.Mechanizingandim-provingdependencypairs.JournalofAutomatedReasoning,37(3):155{203,2006.12.I.GnaedigandH.Kirchner.Terminationofrewritingunderstrategies.ACMTransactionsonComputationalLogic,2008.Toappear.Availableathttp://tocl.acm.org/accepted/315gnaedig.ps.13.N.HirokawaandA.Middeldorp.TyroleanTerminationTool:Techniquesandfea-tures.InformationandComputation,205(4):474{511,2007.14.S.Lucas.Context-sensitivecomputationsinfunctionalandfunctionallogicpro-grams.JournalofFunctionalandLogicProgramming,1:1{61,1998.15.E.Ohlebusch.Terminationoflogicprograms:Transformationalmethodsrevisited.Appl.AlgebrainEng.,CommunicationandComputing,12(1-2):73{116,2001.16.S.E.PanitzandM.Schmidt-Schauss.TEA:Automaticallyprovingterminationofprogramsinanon-stricthigher-orderfunctionallanguage.InProc.SAS'97,LNCS1302,pp.345{360,1997.17.R.PlasmeijerandM.vanEekelen.FunctionalProgrammingandParallelGraphRewriting.AddisonWesley,1993.18.M.Ra elsieperandH.Zantema.Atransformationalapproachtoproveoutermostterminationautomatically.IninformalProc.WRS'08,pp.76{89,2008.Avail-ableastechnicalreportRISC-Linz08-09athttp://www.risc.uni-linz.ac.at/publications/download/risc_3452/wrs2008.pdf.19.R.Thiemann,J.Giesl,andP.Schneider-Kamp.Decidinginnermostloops.InProc.RTA'08,LNCS5117,pp.366{380,2008.20.H.Zantema.Terminationoftermrewritingbysemanticlabelling.FundamentaInformaticae,24:89{105,1995.12

Related Contents


Next Show more