/
BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESLARSWINTHERCHRISTENSEN,DAVIDA.J BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESLARSWINTHERCHRISTENSEN,DAVIDA.J

BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESLARSWINTHERCHRISTENSEN,DAVIDA.J - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
444 views
Uploaded On 2015-11-15

BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESLARSWINTHERCHRISTENSEN,DAVIDA.J - PPT Presentation

DateOctober120102010MathematicsSubjectClassi cationPrimary16G1013D02Secondary16G6013C14KeywordsandphrasesBrauerThrallconjecturesexactzerodivisorGorensteinrepresentationtypemaximalCohen ID: 194033

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESL..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

BRAUER{THRALLFORTOTALLYREFLEXIVEMODULESLARSWINTHERCHRISTENSEN,DAVIDA.JORGENSEN,HAMIDREZARAHMATI,JANETSTRIULI,ANDROGERWIEGANDAbstract.LetRbeacommutativenoetherianlocalringthatisnotGoren-stein.Itisknownthatthecategoryoftotallyre exivemodulesoverRisrepresentationin nite,providedthatitcontainsanon-freemodule.Themaingoalofthispaperistounderstandhowcomplexthecategoryoftotallyre exivemodulescanbeinthissituation.Localrings(R;m)withm3=0arecommonlyregardedasthestructurallysimplestringstoadmitdiversecategoricalandhomologicalcharacteristics.Forsuchringsweobtainconclusiveresultsaboutthecategoryoftotallyre exivemodules,modeledontheBrauer{Thrallconjectures.Startingfromanon-freecyclictotallyre exivemodule,weconstructafamilyofindecomposabletotallyre exiveR-modulesthatcontains,foreveryn2N,amodulethatisminimallygeneratedbynelements.Moreover,iftheresidue eldR=misalgebraicallyclosed,thenweconstructforeveryn2Nanin nitefamilyofindecomposableandpairwisenon-isomorphictotallyre exiveR-modules,eachofwhichisminimallygeneratedbynelements.Themodulesinbothfamilieshaveperiodicminimalfreeresolutionsofperiodatmost2.Contents1.Introductionandsynopsisofthemainresults22.Totallyacycliccomplexesandexactzerodivisors43.Familiesofindecomposablemodulesofdi erentsize74.Brauer{ThrallIovershortlocalringswithexactzerodivisors125.Exactzerodivisorsfromtotallyre exivemodules146.Familiesofnon-isomorphicmodulesofthesamesize177.Brauer{ThrallIIovershortlocalringswithexactzerodivisors218.Existenceofexactzerodivisors249.Shortlocalringswithoutexactzerodivisors|Anexample2910.Familiesofnon-isomorphicmodulesofin nitelength32Acknowledgments33References33 Date:October1,2010.2010MathematicsSubjectClassi cation.Primary:16G10;13D02.Secondary:16G60;13C14.Keywordsandphrases.Brauer{Thrallconjectures,exactzerodivisor,Gorensteinrepresenta-tiontype,maximalCohen{Macaulaymodule,totallyre exivemodule.ThisresearchwaspartlysupportedbyNSAgrantH98230-10-0197(D.A.J.),NSFgrantDMS0901427(J.S.),andbyaUNLFacultyDevelopmentFellowship(R.W.).1 2L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND1.IntroductionandsynopsisofthemainresultsTherepresentationtheoreticpropertiesofalocalringbearpertinentinformationaboutitssingularitytype.AnotableillustrationofthistenetisduetoHerzog[10]andtoBuchweitz,Greuel,andSchreyer[3].TheyshowthatacompletelocalGorensteinalgebraisasimplehypersurfacesingularityifitscategoryofmaximalCohen{Macaulaymodulesisrepresentation nite.Amodulecategoryiscalledrepresentation niteifitcomprisesonly nitelymanyindecomposablemodulesuptoisomorphism.TypicalexamplesofmaximalCohen{MacaulaymodulesoveraCohen{Macaulaylocalringarehighsyzygiesof nitelygeneratedmodules.OveraGorensteinlocalring,allmaximalCohen{Macaulaymodulesariseashighsyzygies,butoveranarbitraryCohen{Macaulaylocalringtheymaynot.Totallyre exivemodulesarein nitesyzygieswithspecialdualityproperties;theprecisede nitionisgivenbelow.Onereasontostudythesemodules|infact,theonediscoveredmostrecently|isthattheya ordacharacterizationofsimplehypersurfacesingularitiesamongallcompletelocalalgebras,i.e.withoutanyaprioriassumptionofGorensteinness.Thisextensionoftheresultfrom[3,10]isobtainedin[5].Itisconsonantwiththeintuitionthatthestructureofhighsyzygiesisshapedpredominantlybythering,andthesameintuitionguidesthiswork.Thekeyresultin[5]assertsthatifalocalringisnotGorensteinandthecategoryoftotallyre exivemodulescontainsanon-freemodule,thenitisrepresentationin nite.Themaingoalofthispaperistodeterminehowcomplexthecategoryoftotallyre exivemodulesiswhenitisrepresentationin nite.Ourresultssuggestthatitisoftenquitecomplex;Theorems(1.1)and(1.4)belowaremodeledontheBrauer{Thrallconjectures.Fora nitedimensionalalgebraA,the rstBrauer{ThrallconjectureassertsthatifthecategoryofA-modulesof nitelengthisrepresentationin nite,thenthereexistindecomposableA-modulesofarbitrarilylargelength.Thesecondcon-jectureassertsthatiftheunderlying eldisin nite,andthereexistindecomposableA-modulesofarbitrarilylargelength,thenthereexistin nitelymanyintegersdsuchthattherearein nitelymanyindecomposableA-modulesoflengthd.The rstconjecturewasprovedbyRoter(1968);thesecondconjecturehasbeenver-i ed,forexample,foralgebrasoveralgebraicallyclosed eldsbyBautista(1985)andBongartz(1985).Inthissection,Risacommutativenoetherianlocalring.Thecentralquestionsaddressedinthepaperare:Assumingthatthecategoryoftotallyre exiveR-modulesisrepresentationin niteandgivenanon-freetotallyre exiveR-module,howdoesoneconstructanin nitefamilyofpairwisenon-isomorphictotallyre- exiveR-modules?And,canonecontrolthesizeofthemodulesinthefamilyinaccordancewiththeBrauer{Thrallconjectures?A nitelygeneratedR-moduleMiscalledtotallyre exiveifthereexistsanin nitesequenceof nitelygeneratedfreeR-modulesF:�!F1�!F0�!F�1�!;suchthatMisisomorphictothemoduleCoker(F1!F0),andsuchthatbothFandthedualsequenceHomR(F;R)areexact.Thesemoduleswere rststudiedbyAuslanderandBridger[1],whoprovedthatRisGorensteinifandonlyifeveryR-modulehasatotallyre exivesyzygy.OveraGorensteinring,thetotallyre exive BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES3modulesarepreciselythemaximalCohen{Macaulaymodules,andthesehavebeenstudiedextensively.IntherestofthissectionweassumethatRisnotGorenstein.Everysyzygyofanindecomposabletotallyre exiveR-moduleis,itself,indecom-posableandtotallyre exive;aproofofthisfolkloreresultisincludedinSection2.Thusifoneweregivenatotallyre exivemodulewhoseminimalfreeresolutionisnon-periodic,thenthesyzygieswouldformthedesiredin nitefamily;thoughonecannotexerciseanycontroloverthesizeofthemodulesinthefamily.Inpractice,however,thetotallyre exivemodulesthatonetypicallyspotshaveperiodicfreeresolutions.Toillustratethispoint,considertheQ-algebraA=Q[s;t;u;v]=(s2;t2;u2;v2;uv;2su+tu;sv+tv):Ithassomeeasilyrecognizabletotallyre exivemodules|A=(s)andA=(s+u)forexample|whoseminimalfreeresolutionsareperiodicofperiodatmost2.Italsohasindecomposabletotallyre exivemoduleswithnon-periodicfreeresolutions.However,suchmodulesaresigni cantlyhardertorecognize.Infact,whenGasharovandPeeva[8]didso,itallowedthemtodisproveaconjectureofEisenbud.ThealgebraAabovehasHilbertseries1+4+32.Inparticular,Aisalocalring,andthethirdpowerofitsmaximalidealiszero;informallywerefertosuchringsasshort.Fortheserings,[14]givesaquantitativemeasureofhowchallengingitcanbetorecognizetotallyre exivemoduleswithnon-periodicresolutions.Shortlocalringsarethestructurallysimplestringsthataccommodateawiderangeofhomologicalbehavior,and[8]and[14]arebuttwoarmationsthatsuchringsareexcellentgroundsforinvestigatinghomologicalquestionsinlocalalgebra.Fortherestofthissection,assumethatRisshortandletmbethemaximalidealofR.Notethatm3iszeroandsete=dimR=mm=m2.AreadersoinclinediswelcometothinkofastandardgradedalgebrawithHilbertseries1+e+h22.Thefamiliesoftotallyre exivemodulesconstructedinthispaperstartfromcyclicones.Overashortlocalring,suchmodulesaregeneratedbyelementswithcyclicannihilators;HenriquesandSega[9]calltheseelementsexactzerodivisors.Theubiquityofexactzerodivisorsinshortlocalalgebrasisalong-standingempiri-calfact.ItstheoreticalunderpinningsarefoundinworksofConca[7]andHochsterandLaksov[11];weextendtheminSection8.ThemainresultsofthispaperareTheorems(1.1){(1.4).ItisknownfromworkofYoshino[19]thatthelengthofatotallyre exiveR-moduleisamultipleofe.InSection4weprovetheexistenceofindecomposabletotallyre exiveR-modulesofeverypossiblelength:(1.1)Theorem(Brauer{ThrallI).IfthereisanexactzerodivisorinR,thenthereexistsafamilyfMngn2Nofindecomposabletotallyre exiveR-moduleswithlengthRMn=neforeveryn.Moreover,theminimalfreeresolutionofeachmoduleMnisperiodicofperiodatmost2.OurproofofthisresultisconstructiveinthesensethatweexhibitpresentationmatricesforthemodulesMn;theyarealluppertriangularsquarematriceswithexactzerodivisorsonthediagonal.Yet,thestrongconversecontainedinTheo-rem(1.2)cameasasurprisetous.Itillustratesthepointthatthestructureoftheringisrevealedinhighsyzygies. 4L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(1.2)Theorem.Ifthereexistsatotallyre exiveR-modulewithoutfreesum-mands,whichispresentedbyamatrixthathasacolumnorarowwithonlyonenon-zeroentry,thenthatentryisanexactzerodivisorinR.Thesetworesults|thelatterofwhichisdistilledfromTheorem(5.3)|showthatexistenceoftotallyre exivemodulesofanysizeisrelatedtotheexistenceofexactzerodivisors.Onedirection,however,isnotunconditional,andinSection9weshowthatnon-freetotallyre exiveR-modulesmayalsoexistintheabsenceofexactzerodivisorsinR.Ifthisphenomenonappearspeculiar,someconsolationmaybefoundinthenexttheorem,whichisprovedinSection8.Foralgebraicallyclosed elds,itcanbededucedfromresultsin[7,11,19].(1.3)Theorem.Letkbeanin nite eld,andletRbeagenericstandardgradedk-algebrawhich(1)hasHilbertseries1+h1+h22,(2)isnotGorenstein,and(3)admitsanon-freetotallyre exivemodule.ThenRhasanexactzerodivisor.Iftheresidue eldR=misin nite,andthereisanexactzerodivisorinR,thentherearein nitelymanydi erentones;thisismadepreciseinTheorem(7.6).TogetherwithacoupleofotherresultsfromSection7thistheoremyields:(1.4)Theorem(Brauer{ThrallII).IfthereisanexactzerodivisorinR,andtheresidue eldk=R=misalgebraicallyclosed,thenthereexistsforeachn2NafamilyfMng2kofindecomposableandpairwisenon-isomorphictotallyre exiveR-moduleswithlengthRMn=neforevery.Moreover,theminimalfreeresolutionofeachmoduleMnisperiodicofperiodatmost2.ThefamiliesofmodulesinTheorems(1.1)and(1.4)comefromaconstructionthatcanprovidesuchfamiliesoveragenerallocalring,contingentontheexistenceofminimalgeneratorsofthemaximalidealwithcertainrelationsamongthem.ThisconstructionispresentedinSection2andanalyzedinSections3and6.ToestablishtheBrauer{Thralltheorems,weproveinSections4and7thatthenecessaryele-mentsandrelationsareavailableinshortlocalringswithexactzerodivisors.TheexistenceofexactzerodivisorsisaddressedinSections5,8,and9.InSection10wegiveanotherconstructionofin nitefamiliesoftotallyre exivemodules.Itappliestocertainringsofpositivedimension,anditdoesnotdependontheexistenceofexactzerodivisors.2.TotallyacycliccomplexesandexactzerodivisorsInthispaper,Rdenotesacommutativenoetherianring.ComplexesofR-modulesaregradedhomologically.AcomplexF:�!Fi+1@Fi+1����!Fi@Fi���!Fi�1�!of nitelygeneratedfreeR-modulesiscalledacyclicifeverycycleisaboundary;thatis,theequalityKer@Fi=Im@Fi+1holdsforeveryi2Z.IfbothFandthedualcomplexHomR(F;R)areacyclic,thenFiscalledtotallyacyclic.ThusanR-moduleistotallyre exiveifandonlyifitisthecokernelofadi erentialinatotallyacycliccomplex.TheannihilatorofanidealainRiswritten(0:a).Forprincipalidealsa=(a)weusethesimpli ednotation(0:a). BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES5Recallfrom[9]thenotionofanexactzerodivisor:anon-invertibleelementx6=0inRiscalledanexactzerodivisorifoneofthefollowingequivalentconditionsholds.(i)Thereisanisomorphism(0:x)=R=(x).(ii)ThereexistsanelementwinRsuchthat(0:x)=(w)and(0:w)=(x).(iii)ThereexistsanelementwinRsuchthat(2.0.1)�!Rw��!Rx�!Rw��!R�!isanacycliccomplex.Foreveryelementwasabove,onesaysthatwandxformanexactpairofzerodivisorsinR.IfRislocal,thenwisuniqueuptomultiplicationbyaunitinR.(2.1)Remark.Foranon-unitx6=0theconditions(i){(iii)aboveareequivalentto(iv)ThereexistelementswandyinRsuchthatthesequenceRw��!Rx�!Ry�!Risexact.Indeed,exactnessofthissequenceimpliesthatthereareequalities(0:y)=(x)and(0:x)=(w).Thusthereisanobviousinclusion(y)(w)and,therefore,aninclusion(0:w)(0:y)=(x).Asxannihilatesw,thisforcestheequality(x)=(0:w).Thus(iv)implies(ii)and,clearly,(iv)followsfrom(iii).Startingfromthenextsection,weshallassumethatRislocal.Weusethenotation(R;m)to xmastheuniquemaximalidealofRandthenotation(R;m;k)toalso xtheresidue eldk=R=m.AcomplexFoffreemodulesoveralocalring(R;m)iscalledminimalifonehasIm@FimFi�1foralli2Z.LetMbea nitelygeneratedR-moduleandletFbeaminimalfreeresolutionofM;itisuniqueuptoisomorphism.TheithBettinumber, Ri(M),istherankofthefreemoduleFi,andtheithsyzygyofMisthemoduleCoker@Fi+1.(2.2)Remark.Thecomplex(2.0.1)isisomorphictoitsowndual,soifitisacyclic,thenitistotallyacyclic.ThusifwandxformanexactpairofzerodivisorsinR,thenthemodules(w)=R=(x)and(x)=R=(w)aretotallyre exive.Moreover,itfollowsfromcondition(iv)thatatotallyacycliccomplexoffreemodules,inwhichfourconsecutivemoduleshaverank1,hastheform(2.0.1).Thismeans,inparticular,thatoveralocalringR,anytotallyre exivemoduleMwith Ri(M)=1for06i63hastheformM=R=(x),wherexisanexactzerodivisor.FormodulesovershortlocalringsweproveastrongerstatementinTheorem(5.3).Thenextlemmaisfolklore;itisprovedforGorensteinringsin[10].(2.3)Lemma.LetRbelocalandletTbeaminimaltotallyacycliccomplexof nitelygeneratedfreeR-modules.Thefollowingconditionsareequivalent:(i)ThemoduleCoker@Tiisindecomposableforsomei2Z.(ii)ThemoduleCoker@Tiisindecomposableforeveryi2Z.Inparticular,everysyzygyofanindecomposabletotallyre exiveR-moduleisin-decomposableandtotallyre exive.Proof.Foreveryi2ZsetMi=Coker@Ti.Byde nition,themodulesMiandHomR(Mi;R)aretotallyre exiveandonehasMi=HomR(HomR(Mi;R);R) 6L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDforeveryi2Z.Assumethatforsomeintegerj,themoduleMjisindecom-posable.Foreveryij,themoduleMjisasyzygyofMi,andeverysum-mandofMihasin niteprojectivedimension,asTisminimalandtotallyacyclic.ThusMiisindecomposable.Further,iftherewereanon-trivialdecompositionMi=KNforsomei&#x-530;j,thenthedualmoduleHomR(Mi;R)woulddecom-poseasHomR(K;R)HomR(N;R),wherebothsummandswouldbenon-zeroR-modulesofin niteprojectivedimension.However,HomR(Mj;R)isasyzygyofHomR(Mi;R),soHomR(Mj;R)wouldthenhaveanon-trivialdecompositionandsowouldMj=HomR(HomR(Mj;R);R);acontradiction.(2.4)Lemma.LetTandFbecomplexesof nitelygeneratedfreeR-modules.IfTistotallyacyclic,andthemodulesFiarezerofori0,thenthecomplexT RFistotallyacyclic.Proof.ThecomplexT RFisacyclicby[4,lem.2.13].AdjointnessofHomandtensoryieldstheisomorphismHomR(T RF;R)=HomR(F;HomR(T;R)).AsthecomplexHomR(T;R)isacyclic,soisHomR(F;HomR(T;R))by[4,lem.2.4].(2.5)De nition.Forn2NandelementsyandzinRwithyz=0,letLn(y;z)bethecomplexde nedasfollowsLn(y;z)i=(Rfor0&#x-530;i&#x-530;�n+10elsewhereand@Ln(y;z)i=(yforieven�zforiodd.IfwandxformanexactpairofzerodivisorsinR,andTisthecomplex(2.0.1),thenthedi erentialsofthecomplexT RLn(y;z)haveaparticularlysimpleform;seeRemark(2.7).InSections3and6westudymoduleswhosepresentationma-triceshavethisform.(2.6)Construction.Letn2N,letInbethennidentitymatrix,andletridenoteitsithrow.ConsiderthennmatricesIon,Ien,Jon,andJende nedbyspecifyingtheirrowsasfollows(Ion)i=(riiodd0ievenand(Ien)i=(0ioddriieven(Jon)i=(ri+1iodd0ievenand(Jen)i=(0ioddri+1ievenwiththeconventionrn+1=0.TheequalityIon+Ien=Inisclear,andthematrixJn=Jon+JenisthennnilpotentJordanblockwitheigenvaluezero.Forelementsw,x,y,andzinRletMn(w;x;y;z)betheR-modulewithpresen-tationmatrixn(w;x;y;z)=wIon+xIen+yJon+zJen;itisanuppertriangularnnmatrixwithwandxalternatingonthediagonal,andwithyandzalternatingonthesuperdiagonal:n(w;x;y;z)=0BBBBBBB@wy000:::0xz00:::00wy0:::000xz0000w..................1CCCCCCCA: BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES7Forn=1thematrixhasonlyoneentry,namelyw.Forn=2,thematrixdoesnotdependonz,sowesetM2(w;x;y)=M2(w;x;y;z)foreveryz2R.Notethatif(R;m)islocalandw,x,y,andzarenon-zeroelementsinm,thenMn(w;x;y;z)isminimallygeneratedbynelements.(2.7)Remark.AssumethatwandxformanexactpairofzerodivisorsinR,andletTbethecomplex(2.0.1),positionedsuchthat@T1ismultiplicationbyw.Letn2NandletyandzbeelementsinRthatsatisfyyz=0.ItfollowsfromLemma(2.4)thatthecomplexT RLn(y;z)istotallyacyclic.Itiselementarytoverifythatthedi erential@T RLn(y;z)iisgivenbythematrixn(w;x;y;z)forioddandbyn(x;w;�y;�z)forieven,cf.Construction(2.6).Inparticular,themoduleMn(w;x;y;z)istotallyre exive.3.FamiliesofindecomposablemodulesofdifferentsizeWithappropriatelychosenringelementsasinput,Construction(2.6)yieldsthein nitefamiliesofmodulesintheBrauer{ThralltheoremsadvertisedinSection1.Inthissectionwebegintoanalyzetherequirementsontheinput.(3.1)Theorem.Let(R;m)bealocalringandassumethatwandxareelementsinmnm2,thatformanexactpairofzerodivisors.Assumefurtherthatyandzareelementsinmnm2withyz=0andthatoneofthefollowingconditionsholds:(a)Theelementsw,x,andyarelinearlyindependentmodulom2.(b)Onehasw2(x)+m2andy;z62(x)+m2.Foreveryn2N,theR-moduleMn(w;x;y;z)isindecomposable,totallyre exive,andnon-free.Moreover,Mn(w;x;y;z)hasconstantBettinumbers,equalton,anditsminimalfreeresolutionisperiodicofperiodatmost2.Theproofof(3.1)|whichtakesupthebalanceofthesection|employsanaux-iliaryresultofindependentinterest,Proposition(3.2)below;itsproofisdeferredtotheendofthesection.(3.2)Proposition.Let(R;m)bealocalring,letnbeapositiveinteger,andletw,x,y,andzbeelementsinmnm2.(a)Assumethatw,x,andyarelinearlyindependentmodulom2.Ifniseven,thenMn(w;x;y;z)isindecomposable.Ifnisodd,thenMn(w;x;y;z)orMn(x;w;y;z)isindecomposable.(b)Ify=2(w;x)+m2andz=2(x)+m2hold,thenMn(w;x;y;z)isindecomposable.ProofofTheorem(3.1).Letnbeapositiveinteger;inviewofRemark(2.7),allweneedtoshowisthattheR-moduleMn(w;x;y;z)isindecomposable.(a):Assumethatw,x,andyarelinearlyindependentmodulom2.ByRe-mark(2.7)themoduleMn(w;x;y;z)isthe rstsyzygyofMn(x;w;�y;�z).IfthemoduleMn(x;w;y;z)isindecomposable,thensoistheisomorphicmoduleMn(x;w;�y;�z),anditfollowsfromLemma(2.3)thatMn(w;x;y;z)isinde-composableaswell.ThusbyProposition(3.2)(a)themoduleMn(w;x;y;z)isindecomposable.(b):Undertheassumptionsw2(x)+m2andy;z=2(x)+m2,theconditionsinProposition(3.2)(b)aremet,sotheR-moduleMn(w;x;y;z)isindecomposable. 8L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDProofofProposition(3.2).Letnbeapositiveintegerandletw,x,y,andzbeelementsinmnm2.Itisconvenienttoworkwithapresentationmatrixn(w;x;y;z)forM=Mn(w;x;y;z)thatoneobtainsasfollows.Setp=dn 2eandletbethennmatrixobtainedfromInbypermutingitsrowsaccordingto123456n1p+12p+23p+3:::p+p;with=0ifnisoddand=1ifniseven.Setn(w;x;y;z)=n(w;x;y;z)�1.Ifniseven,thennistheblockmatrixn(w;x;y;z)=wIpyIpzJpxIp;andifnisodd,thenn(w;x;y;z)isthematrixobtainedfromn+1(w;x;y;z)bydeletingthelastrowandthelastcolumn.ToverifythatMisindecomposable,assumethat"2HomR(M;M)isidempo-tentandnottheidentitymap1M.Thegoalistoshowthat"isthezeromap.TheonlyidempotentautomorphismofMis1M,so"isnotanisomorphism.Thus"isnotsurjective,asMisnoetherian.Set=n(w;x;y;z)andconsiderthecommutativediagramwithexactrows(1)Rn// B Rn// A M// " 0Rn// Rn// M// 0obtainedbylifting".LetA=(aij)and BbethennmatricesobtainedfromAandBbyreducingtheirentriesmodulom.Toprovethat"isthezeromap,itsucestoshowthatthematrixAisnilpotent.Indeed,ifAisnilpotent,thensoisthemap":M=mM!M=mM.As"isalsoidempotent,itisthezeromap.NowitfollowsfromNakayama'slemmathatthemap1M�"issurjectiveandhenceanisomorphism.As1M�"isidempotent,itfollowsthat1M�"istheidentitymap1M;thatis,"=0.Claim.IfthematrixAisuppertriangularwithidenticalentriesonthediagonal,i.e.a11=a22==ann,thenitisnilpotent.Proof.Since"isnotsurjective,thematrixAdoesnotrepresentasurjectivemapand,byNakayama'slemma,neitherdoesA.Therefore,thediagonalentriesofAcannotallbenon-zero,whencetheyareallzero,andAisnilpotent.Denoteby~w,~x,~y,and~ztheimagesofw,x,y,andzinm=m2,andletVbethek-subspaceofm=m2spannedby~w,~x,~y,and~z.Considerthefollowingpossibilities:(I)Theelements~w,~x,~y,and~zformabasisforV.(II)Theelements~x,~y,and~zformabasisforV,andk~w=k~xholds.(III)Theelements~w,~x,and~yformabasisforV.(IV)Theelements~xand~yformabasisforV,andonehask~w=k~xand~z=2k~x.Undertheassumptionsonw,x,andyinpart(a),oneoftheconditions(I)or(III)holds.Undertheassumptionsinpart(b),oneoftheconditions(I){(IV)holds.Indeed,ifVhasdimension4,then(I)holds.Ifthatisnotthecase,thenthedimensionofVis2or3.IncasedimkV=2,theelements~xand~yformabasisforV,whereas~wand~xcannotbelinearlyindependent;thus(IV)holds.Incase BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES9dimkV=3,condition(II)or(III)holds,dependingonwhetherornottheequalityk~w=k~xholds.Therestoftheproofissplitintwo,accordingtotheparityofn.ToprovethatMn(w;x;y;z)isindecomposable,itsucestoprovethatthematrixAisnilpotent.Thisishowweproceedundereachoftheconditions(I),(II),and(IV),andundercondition(III)whenniseven.Whennisodd,andcondition(III)holds,weshowthatoneofthemodulesMn(w;x;y;z)andMn(x;w;y;z)isindecomposable.Case1:niseven.Letedenotethematrixobtainedfrombyreducingtheentriesmodulom2.WriteAand BasblockmatricesA=A11A12A21A22and B=B11B12B21B22;whereAijandBijareppmatriceswithentriesfromk.By(1),theequalityA=Bholds;itimpliesanequalityofblockmatrices(2)~wA11+~zA12Jp~yA11+~xA12~wA21+~zA22Jp~yA21+~xA22=~wB11+~yB21~wB12+~yB22~zJpB11+~xB21~zJpB12+~xB22:Assume rstthatcondition(I)or(III)holds,sothattheelements~w,~x,and~yarelinearlyindependent.Thentheequalityoftheupperrightblocks,~yA11+~xA12=~wB12+~yB22,yieldsA11=B22andA12=0=B12:Fromtheblocksonthediagonals,onenowgetsA11=B11;A21=0=B21;andA22=B22:ThusthematrixAhastheform�A1100A11.Finally,theequalityofthelowerleftblocksyieldsA11Jp=JpA11.SinceJpisnon-derogatory,thisimpliesthatA11belongstothealgebrak[Jp]ofpolynomialsinJp.Thatis,thereareelementsc0;:::;cp�1inksuchthatA11=c0Ip+c1Jp++cp�1Jp�1p;see[13,thm.3.2.4.2].Inparticular,thematricesA11and,therefore,Aareupper-triangularwithidenticalentriesonthediagonal.ByClaim,Aisnilpotentasdesired.Undereithercondition(II)or(IV),theelements~xand~yarelinearlyindependent,~zisnotink~x,andtheequalityk~w=k~xholds.Inparticular,thereisanelementt6=0inksuchthatt~w=~x.Fromtheo -diagonalblocksin(2)oneobtainsthefollowingrelations:A11=B22tA12=B12andA22Jp=JpB11A21=tB21:(3)If(II)holds,thentheblocksonthediagonalsin(2)yieldA11=B11;A22=B22;andA21=0:ThusthematrixAhastheform�A11A120A11,andtheequalityA11Jp=JpA11holds.Asabove,itfollowsthatthematricesA11and,therefore,Aareupper-triangularwithidenticalentriesonthediagonal.Thatis,AisnilpotentbyClaim.Nowassumethat(IV)holds.Thereexistelementsrands6=0inksuchthat~z=r~x+s~y.Comparisonoftheblocksonthediagonalsin(2)nowyieldsA11+rtA12Jp=B11sA12Jp=B21andA22=rJpB12+B22A21=sJpB12:(4) 10L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDCombinetheseequalitieswiththosefrom(3)togetA=A11A12stJpA12A11+rtJpA12:ItfollowsfromtheequalitiesJpA12=t�1JpB12=(st)�1A21=s�1B21=A12Jp;derivedfrom(3)and(4),thatthematrixA12commuteswithJp;henceitbelongstok[Jp].Similarly,thechainofequalitiesJpA11=JpB11�rtJpA12Jp=JpB11�rJpB12Jp=A22Jp�rJpB12Jp=B22Jp=A11JpshowsthatA11isink[Jp].ThusallfourblocksinAbelongtok[Jp].Fornotationalbliss,identifyk[Jp]withtheringS=k[]=(p),wherecorrespondstotJp.Withthisidenti cation,Atakestheformofa22matrixwithentriesinS:fgsgf+rg:AsAisnotinvertible,thedeterminantf2+frg�sg2belongstothemaximalideal()ofS.Itfollowsthatfisin(),whenceonehasA2p=0asdesired.Case2:nisodd.Setq=p�1,wherep=dn 2e=n+1 2.Thepresentationmatrixtakestheform=wIpyHzKxIq;whereHandKarethefollowingblockmatricesH=Iq01qandK=�0q1Iq.Noticethatthereareequalities(5)HX=X01mandX0K=�0m01X0foreveryqmmatrixXandeverym0qmatrixX0.Furthermore,itisstraight-forwardtoverifytheequalities(6)HK=JpandKH=Jq:AsinCase1,writeA=A11A12A21A22and B=B11B12B21B22;where,now,AijandBijarematricesofsizemimj,form1=pandm2=q.Witheasde nedinCase1,therelationAe=e B,derivedfrom(1),yields:(7)~wA11+~zA12K~yA11H+~xA12~wA21+~zA22K~yA21H+~xA22=~wB11+~yHB21~wB12+~yHB22~zKB11+~xB21~zKB12+~xB22:Assume rstthatcondition(I)or(III)holds,sothattheelements~w,~x,and~yarelinearlyindependent.Fromtheequalityoftheupperrightblocksin(7)onegets(8)A11H=HB22andA12=0=B12:Inviewof(5),comparisonoftheblocksonthediagonalsnowyieldsA11=B11B21=0andA21H=0A22=B22:(9) BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES11Fromthe rstequalityin(8)andthelastequalityin(9)onegetsinviewof(5)(10)A11=A2201q;hereandinthefollowingthesymbol`'inamatrixdenotesanunspeci edblockofappropriatesize.Togleaninformationfromtheequalityofthelowerleftblocksin(7),assume rstthat~wand~zarelinearlyindependent.Thenonehas(11)A21=0andA22K=KB11:Combinethiswith(10)andthesecondequalityin(8)toseethatthematrixAhastheform(12)A=0@A2201q 0pq 0qp A221A:TheequalitiesA11Jp=A11HK=HB22K=HA22K=HKB11=JpA11andA22Jq=A22KH=KB11H=KA11H=KHB22=JqA22;derivedfrom(6),(8),(9),and(11),showthatA11isink[Jp]andA22isink[Jq].ItfollowsthatAisuppertriangularwithidenticalentriesonthediagonal.ThusAisnilpotent,andMn(w;x;y;z)isindecomposable.If,ontheotherhand,~zand~warelinearlydependent,then~zand~xarelinearlyindependent,as~wand~xarelinearlyindependentbyassumption.ItfollowsfromwhatwehavejustshownthatMn(x;w;y;z)isindecomposable.Undereithercondition(II)or(IV),theelements~xand~yarelinearlyindependent,~zisnotink~x,andtheequalityk~w=k~xholds.Inparticular,thereisanelementt6=0inksuchthatt~w=~x.Comparetheo -diagonalblocksin(7)togettA12=B12A11H=HB22andA21=tB21A22K=KB11:(13)If(II)holds,thenacomparisonoftheblocksonthediagonalsin(7)combinedwith(5)implies(14)A11=B11;A12=0=B21;andA22=B22:Itfollowsfrom(13)and(14)thatthematrixA21iszero.InviewoftheequalityA11H=HB22from(13),itnowfollowsthatAhastheformgivenin(12).Usingtheequalitiesin(13)and(14),onecanrepeattheargumentsabovetoseethatA11isink[Jp]andA22isink[Jq],andcontinuetoconcludethatAisnilpotent.Finally,assumethat(IV)holds.Thereexistelementsrands6=0inksuchthat~z=r~x+s~y.Comparisonoftheblocksonthediagonalsin(7)yieldsA11+rtA12K=B11sA12K=HB21andA21H=sKB12A22=B22+rKB12:(15)TheequalitysA12K=t�1HA21,obtainedfrom(13)and(15),shows,inviewof(5),thatthematricesA12andA21havethefollowingform:A12=EandA21=�0q1�; 12L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDwhereEand�areqqmatrices,andthelastrowofEiszero.Fromtheequalitiesin(6),(13),and(15)onegetsA21Jp=sKB12K=stKA12K=tKHB21=JqA21:Fromhereitisstraightforwardtoverifythat�commuteswithJq;i.e.�belongstok[Jq].Similarly,fromtheequalitiesA12Jq=s�1HB21H=(st)�1HA21H=t�1HKB12=JpA12;itfollowsthatEbelongstok[Jq].SincethelastrowinEiszero,allentriesonthediagonalofEarezero,andthematrixisnilpotent.The rstequalityin(15)cannowbewrittenasA11=B11�00q1rtE:Combinethiswiththelastequalityin(13)togetA=0@a11 0q1A22�rtE E 0q1� A221A:TheequalitiesA11Jp=HB22K=H(A22�rKB12)K=HA22K�rHKB12K=HKB11�rtHKA12K=JpA11showthatA11isink[Jp],andasimilarchainofequalitiesshowsthatA22isink[Jq].ItfollowsthatallentriesonthediagonalofAareidentical.Letbethematrixobtainedbydeletingthe rstrowand rstcolumninAandwriteitinblockform=A22�rtEE�A22:AsAisnotinvertible,onehas0=detA=a11(det).Ifa11isnon-zero,thenhasdeterminant0;inparticular,itisnotinvertible.Consideredasa22matrixovertheartinianlocalringk[Jq],itsdeterminant(A22)2�rtEA22��Ebelongstothemaximalideal(Jq).AsEisnilpotent,itbelongsto(Jq)andhencesodoesA22;thiscontradictstheassumptionthata11isnon-zero.Ifthediagonalentrya11is0,thenthematrixA22isnilpotent,whichimpliesthatisnilpotentand, nally,thatAisnilpotent.4.Brauer{ThrallIovershortlocalringswithexactzerodivisorsLet(R;m;k)bealocalring.TheembeddingdimensionofR,denotedemb:dimR,istheminimalnumberofgeneratorsofm,i.e.thedimensionofthek-vectorspacem=m2.TheHilbertseriesofRisthepowerseriesHR()=P1i=0dimk(mi=mi+1)i.Intherestofthissection(R;m)isalocalringwithm3=0.Themainresult,Theorem(4.4),togetherwith(4.1.1)andTheorem(3.1),establishesTheorem(1.1).TowardstheproofofTheorem(4.4),we rstrecapitulateafewfactsabouttotallyre exivemodulesandexactzerodivisors.IfRisGorenstein,theneveryR-moduleistotallyre exive;see[1,thm.(4.13)and(4.20)].IfRisnotGorenstein,thenexistenceofanon-freetotallyre exiveR-moduleforcescertainrelationsamonginvariantsofR.Thefactsin(4.1)areprovedbyYoshino[19];seealso[6]forthenon-gradedcase. BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES13(4.1)Totallyre exivemodules.AssumethatRisnotGorensteinandsete=emb:dimR.IfMisatotallyre exiveR-modulewithoutfreesummandsandminimallygeneratedbynelements,thentheequalities(4.1.1)lengthRM=neand Ri(M)=nforalli�0hold.Moreover,m2isnon-zeroandthefollowinghold:(4.1.2)(0:m)=m2;dimkm2=e�1;andlengthR=2e:Inparticular,eisatleast3,andtheHilbertseriesofRis1+e+(e�1)2.Letkbea eld.FortheGorensteinringR=k[x]=(x3),twooftherelationsin(4.1.2)fail.Thisringalsohasanexactzerodivisor,x2,inthesquareofthemaximalideal;forringswithembeddingdimension2orhigherthiscannothappen.(4.2)Exactzerodivisors.Sete=emb:dimRandassumee�2.SupposethatwandxformanexactpairofzerodivisorsinR.Asm2iscontainedintheannihilatorofm,thereisaninclusionm2(x),whichhastobestrict,as(w)=(0:x)isstrictlycontainedinm.Thusxisaminimalgeneratorofmwithxm=m2:Bysymmetry,wisaminimalgeneratorofmwithwm=m2.Letfv1;:::;ve�1;wgbeaminimalsetofgeneratorsform,thentheelementsxv1;:::;xve�1generatem2,anditiselementarytoverifythattheyformabasisform2asak-vectorspace.Itfollowsthattherelationsin(4.1.2)holdand,inaddition,thereisanequalitylengthR(x)=e:Notethatthesocle(0:m)ofRhasdimensione�1overk,soRisGorensteinifandonlyife=2.(4.3)Lemma.Assumethat(R;m)hasHilbertseries1+e+(e�1)2withe�2.Foreveryelementx2mnm2thefollowinghold:(a)Theideal(x)inRhaslengthatmoste.(b)Thereexistsanelementw2mnm2thatannihilatesx,andifwgenerates(0:x),thenwandxformanexactpairofzerodivisorsinR.(c)Iftheequalitieswx=0andwm=m2=xmhold,thenwandxformanexactpairofzerodivisorsinR.Proof.(a):Byassumption,thelengthofmis2e�1.Asxande�1otherelementsformaminimalsetofgeneratorsform,theinequality2e�1�lengthR(x)+e�1holds;whencelengthR(x)isatmoste.(b):AdditivityoflengthonshortexactsequencesyieldslengthR(0:x)=lengthR�lengthR(x)�e;som2isproperlycontainedin(0:x);chooseanelementwin(0:x)nm2.Thereisaninclusion(x)(0:w),andiftheequality(w)=(0:x)holds,thentwolengthcountsyieldlengthR(0:w)=lengthR�lengthR(w)=lengthR(x):Thus(x)=(0:w)holds;hencewandxformanexactpairofzerodivisorsinR.(c):Asbothideals(w)and(x)strictlycontainm2,theequalitieslengthR(x)=e=lengthR(w)holdinviewofpart(a).Aswandxannihilateeachother,simplelengthcountsshowthattheyformanexactpairofzerodivisorsinR. 14L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(4.4)Theorem.Let(R;m)bealocalringwithm3=0andemb:dimR�3.AssumethatwandxformanexactpairofzerodivisorsinR.Foreveryelementyinmn(w;x)thereexistsanelementz2mnm2suchthattheR-modulesMn(w;x;y;z)areindecomposableandtotallyre exiveforalln2N.Proof.By(4.2)theequalitiesin(4.1.2)holdforR.Letybeanelementinmn(w;x).ByLemma(4.3)(b)theideal(0:y)containsanelementzofmnm2.Sinceyisnotcontainedintheideal(w;x)=(w;x)+m2,theelementzisnotin(x)=(x)+m2.ThedesiredconclusionnowfollowsfromTheorem(3.1).ThekeytothetheoremisthatexistenceofanexactzerodivisorinRimpliestheexistenceofadditionalelementssuchthattheconditionsinTheorem(3.1)aresatis ed.Thisphenomenondoesnotextendtoringswithm4=0.(4.5)Example.LetFbea eldandsetS=F[x;y;z]=(x2;y2z;yz2;y3;z3);itisastandardgradedF-algebrawithHilbertseries1+3+52+33,andxisanexactzerodivisorinS.Setn=(x;y;z)Sandletvbeanelementinnn((x)+n2).Astraightforwardcalculationshowsthattheannihilator(0:v)iscontainedinn2.5.ExactzerodivisorsfromtotallyreflexivemodulesLet(R;m)bealocalringwithm3=0.IfRisnotGorenstein,thenacyclictotallyre exiveR-moduleiseitherfreeorgeneratedbyanexactzerodivisor.Indeed,ifitisnotfree,thenby(4.1.1)ithasconstantBettinumbers,equalto1,sobyRemark(2.2)itisgeneratedbyanexactzerodivisorinR.Thenextresultsimproveonthiselementaryobservation;inparticular,Corollary(5.4)shouldbecomparedtoRemark(2.2).(5.1)Lemma.Let(R;m)bealocalringwithm3=0andletF:F2�!F1 ��!F0'��!F�1beanexactsequenceof nitelygeneratedfreeR-modules,wherethehomomor-phismsarerepresentedbymatriceswithentriesinm.Let beanymatrixthatrepresents .Foreveryrow rof thefollowinghold:(a)Theidealr,generatedbytheentriesof r,containsm2.(b)Ifdimkm2isatleast2andHomR(F;R)isexact,then rhasanentryfrommnm2,theentriesin rfrommnm2generater,andmr=m2holds.Proof.Let andbethematricesfor andwithrespecttobasesB1,B0,andB�1forF1,F0,andF�1.Foreveryp�1,letfe1;:::;epgbethestandardbasisforRp.Thematrixisofsizelm,and isofsizemn,wherel,mandndenotetheranksofF�1,F0,andF1,respectively.Wemaketheidenti cationsF�1=Rl,F0=Rm,andF1=Rn,bylettingB�1,B0,andB1correspondtothestandardbases.Themap isnowleftmultiplicationbythematrix ,andisleftmultiplicationby.Foreveryx2m2andeverybasiselementeiinRmonehas'(xei)=0;indeed,hasentriesinm,theentriesofxeiareinm2,andm3=0holdsbyassumption.ByexactnessofF,theelementxeiisintheimageof ,and(a)follows.(b):Fixq2f1;:::;mgandlet qbetheqthrowof =(xij);westartbyprovingthefollowing: BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES15Claim.Everyentryfromm2in qiscontainedintheidealgeneratedbytheotherentriesin q.Proof.Assume,towardsacontradiction,thatsomeentryfromm2in qisnotintheidealgeneratedbytheotherentries.Afterapermutationofthecolumnsof ,onecanassumethattheentryxq1isinm2butnotintheideal(xq2;:::;xqn).Sincetheelementxq1eqbelongstoKer'=Im ,thereexistelementsaiinRsuchthat (Pni=1aiei)=xq1eq.Inparticular,onehasPni=1aixqi=xq1,whenceitfollowsthata1isinvertible.ThennmatrixA=0BBB@a100a210.........an011CCCAisinvertible,asithasdeterminanta1.The rstcolumnofthematrix A,whichisthe rstrowofthetransposedmatrix( A)T,hasonlyonenon-zeroentry,namelyxq1.As Arepresents ,thematrix( A)TrepresentsthedualhomomorphismHomR( ;R).ByassumptionthesequenceHomR(F;R)isexact,soitfollowsfrompart(a)thattheelementxq1spansm2.Thiscontradictstheassumptionthatm2isak-vectorspaceofdimensionatleast2.This nishestheproofofClaim.Suppose,forthemoment,thateveryentryof risinm2.Performingcolumnoperationson resultsinamatrixthatalsorepresents ,sobyClaimonecanassumethat risthezerorow,whichcontradictspart(a).Thus rhasanentryfrommnm2.Afterapermutationofthecolumnsof ,onemayassumethattheentriesxr1;:::;xrtareinmnm2whilexr(t+1);:::;xrnareinm2,wheretisinf1;:::;ng.Claimshowsthat|aftercolumnoperationsthatdonotalterthe rsttcolumns|onecanassumethattheentriesxr(t+1);:::;xrnarezero.Thustheentriesxr1;:::;xrtfrommnm2generatetheidealr.Finally,afteranotherpermutationofthecolumnsof ,onecanassumethatfxr1;:::;xrsgismaximalamongthesubsetsoffxr1;:::;xrtgwithrespecttothepropertythatitselementsarelinearlyindependentmodulom2.Nowusecolumnoperationstoensurethattheelementsxr(s+1);:::;xrnareinm2.Asabove,itfollowsthatxr1;:::;xrsgenerater.Toverifythelastequalityin(b),note rsttheobviousinclusionmrm2.Forthereverseinclusion,letx2m2andwritex=xr1b1++xrsbswithbi2R.Ifsomebiwereaunit,thenthelinearindependenceoftheelementsxrimodulom2wouldbecontradicted.Thuseachbiisinm,andtheproofiscomplete.Theconditiondimkm2�2inpart(b)ofthelemmacannotberelaxed:(5.2)Example.Letkbea eld;thelocalringR=k[x;y]=(x2;xy;y3)hasHilbertseries1+2+2.ThesequenceR2(xy)����!Rx�!R(xy)���!R2isexactandremainsexactafterdualization,buttheproduct(x;y)xiszero. 16L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(5.3)Theorem.Let(R;m)bealocalringwithm3=0ande=emb:dimR�3.Letxbeanelementofmnm2;thefollowingconditionsareequivalent.(i)TheelementxisanexactzerodivisorinR.(ii)TheHilbertseriesofRis1+e+(e�1)2,andthereexistsanexactsequenceof nitelygeneratedfreeR-modulesF:F3�!F2�!F1 ��!F0�!F�1suchthatHomR(F;R)isexact,thehomomorphismsarerepresentedbyma-triceswithentriesinm,and isrepresentedbyamatrixinwhichsomerowhasxasanentryandnootherentryfrommnm2.Proof.IfxisanexactzerodivisorinR,thenthecomplex(2.0.1)suppliesthedesiredexactsequence,andRhasHilbertseries1+e+(e�1)2;see(4.2).Toprovetheconverse,let =(xij)beamatrixofsizemnthatrepresents andassume,withoutlossofgenerality,thatthelastrowof hasexactlyoneentryx=xmqfrommnm2.ByLemma(5.1)(b)thereisanequalityxm=m2and,therefore,thelengthof(x)isebyLemma(4.3)(a).AsRhaslength2e,additivityoflengthonshortexactsequencesyieldslengthR(0:x)=e.Let(wij)beannpmatrixthatrepresentsthehomomorphismF2!F1.Thematrixequality(xij)(wij)=0yieldsxwqj=0forj2f1;:::;pg;itfollowsthattheidealr=(wq1;:::;wqp)iscontainedin(0:x).ByLemma(5.1)(b)someentryw=wqlisinmnm2,andthereareinclusions(1)(w)+m2r(0:x):Nowtheinequalitiese6lengthR((w)+m2)6lengthR(0:x)=eimplythatequalitiesholdthroughout(1);inparticular,(w)+m2=rholds.ThisequalityandLemma(5.1)(b)yieldwm=mr=m2;hencewandxformanexactpairofzerodivisorsbyLemma(4.3)(c).(5.4)Corollary.Let(R;m)bealocalringwithm3=0.IfRisnotGorenstein,thenthefollowingconditionsareequivalent:(i)ThereisanexactzerodivisorinR.(ii)Foreveryn2Nthereisanindecomposabletotallyre exiveR-modulethatispresentedbyanuppertriangularnnmatrixwithentriesinm.(iii)Thereisatotallyre exiveR-modulewithoutfreesummandsthatispresentedbyamatrixwithentriesinmandarow/columnwithonlyoneentryinmnm2.Proof.Sete=emb:dimR;itisatleast2asRisnotGorenstein.If(i)holds,theneisatleast3,see(4.2),so(ii)followsfromTheorem(4.4).ItisclearfromLemma(5.1)that(iii)followsfrom(ii).Toprovethat(iii)implies(i),let beapresentationmatrixforatotallyre exiveR-modulewithoutfreesummandsandassume|possiblyafterreplacing withitstranspose,whichalsopresentsatotallyre exivemodule|thatsomerowof hasonlyoneentryinmnm2.By(4.1)theHilbertseriesofRis1+e+(e�1)2,andeisatleast3,soitfollowsfromTheorem(5.3)thatthereisanexactzerodivisorinR. BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES17Thecorollarymanifestsastrongrelationbetweentheexistenceofexactzerodi-visorsinRandexistenceoftotallyre exiveR-modulesofanysize.Aqualitativelydi erentrelationisstudiedlater;seeRemark(8.7).Theserelationsnotwithstand-ing,totallyre exivemodulesmayexistintheabsenceofexactzerodivisors.InSection9weexhibitalocalring(R;m),whichhasnoexactzerodivisors,andatotallyre exiveR-modulethatispresentedbya22matrixwithallfourentriesfrommnm2.Thustheconditionontheentriesofthematrixin(5.4)(iii)issharp.6.Familiesofnon-isomorphicmodulesofthesamesizeInthissectionwecontinuetheanalysisofConstruction(2.6).(6.1)De nition.Let(R;m;k)bealocalring.GivenasubsetKk,asubsetofRthatcontainsexactlyoneliftofeveryelementinKiscalledaliftofKinR.(6.2)Theorem.Let(R;m;k)bealocalringandletLbealiftofkinR.Letw,x,y,y0,andzbeelementsinmnm2andletnbeaninteger.AssumethatwandxformanexactpairofzerodivisorsinRandthatoneofthefollowingholds.(a)n=2andtheelementsw,x,y,andy0arelinearlyindependentmodulom2;(b)n=2,theelementsx,y,andy0arelinearlyindependentmodulom2,andtheelementwbelongsto(x)+m2;(c)n�3,theelementsw,x,y,andy0arelinearlyindependentmodulom2,andthefollowinghold:z62(w)+m2,z62(x)+m2,and(y;y0)(0:z);or(d)n�3,theelementsx,y,andy0arelinearlyindependentmodulom2,andthefollowinghold:w2(x)+m2,z62(x)+m2,and(y;y0)(0:z).ThenthemodulesinthefamilyfMn(w;x;y+y0;z)g2Lareindecomposable,totallyre exive,andpairwisenon-isomorphic.Theproofof(6.2)takesupthebalanceofthissection;hereisthecornerstone:(6.3)Proposition.Let(R;m)bealocalringandletw,x,y,y0,andzbeelementsinmnm2.Assumethatthefollowinghold:z62(w)+m2;z62(x)+m2;y62(w;x)+m2;andy0=2(w;y)+m2:IfandareelementsinRwith�62m,andn�3isaninteger,thentheR-modulesMn(w;x;y+y0;z)andMn(w;x;y+y0;z)arenon-isomorphic.Thenextexampleshowsthattheconditionn�3in(6.3)cannotberelaxed.(6.4)Example.Let(R;m)bealocalringwithemb:dimR�3andassumethat2isaunitinR.Letw,x,andybelinearlyindependentmodulom2,andsety0=y�2�1x.Theequality110�1wy00x=wy0�2y0x100�1showsthattheR-modulesM2(w;x;0y+y0)andM2(w;x;�2y+y0)areisomorphic.TogetastatementsimilartoProposition(6.3)for2-generatedmodules,itsucestoassumethaty0isoutsidethespanofw,x,andymodulom2. 18L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(6.5)Proposition.Let(R;m)bealocalringandletw,x,y,andy0beelementsinmnm2.Assumethatoneofthefollowingconditionsholds:(a)Theelementsw,x,y,andy0arelinearlyindependentmodulom2.(b)Theelementsx,y,andy0arelinearlyindependentmodulom2,andtheele-mentwbelongsto(x)+m2.IfandareelementsinRwith�62m,thentheR-modulesM2(w;x;y+y0)andM2(w;x;y+y0)arenon-isomorphic.Proof.LetandbeinR.Assumethat(a)holdsandthattheR-modulesM2(w;x;y+y0)andM2(w;x;y+y0)areisomorphic.ItfollowsthatthereexistmatricesAandBinGL2(R)suchthattheequalityA(wIo+xIe+(y+y0)Jo)=(wIo+xIe+(y+y0)Jo)Bholds;herethematricesIo=Io2,Ie=Ie2,andJo=Jo2areasde nedinConstruc-tion(2.6).Thegoalistoprovethat�isinm.Afterreductionmodulom,theequalityaboveyields,inparticular,AJo�Jo B=0=AJo�Jo B;and,therefore,(�)Jo B=0.Asthematrix BisinvertibleandJoisnon-zero,thisimpliesthat�isinmasdesired.If(b)holds,thedesiredconclusionisprovedunderCase1inthenextproof.Proofof(6.3).LetandbeelementsinRandassumethatMn(w;x;y+y0;z)andMn(w;x;y+y0;z)areisomorphicasR-modules.ItfollowsthatthereexistmatricesAandBinGLn(R)suchthattheequality(1)A(wIo+xIe+(y+y0)Jo+zJe)=(wIo+xIe+(y+y0)Jo+zJe)Bholds;herethematricesIo=Ion,Ie=Ien,Jo=Jon,andJe=Jenareasde nedinConstruction(2.6).Thegoalistoprovethat�isinm.Case1:wisin(x)+m2.Underthisassumption,onecanwritew=rx+,where2m2,andrewrite(1)asx(r(AIo�IoB)+AIe�IeB)+y(AJo�JoB)+y0(AJo�JoB)+z(AJe�JeB)=;(2)whereisamatrixwithentriesinm2.Theassumptionsonw,x,y,andy0implyy=2(x)+m2andy0=2(x;y)+m2,sotheelementsx,y,andy0arelinearlyindependentmodulom2.Thereexistelementsvisuchthatv1;:::;ve�3;x;y;y0formaminimalsetofgeneratorsform.Writez=sx+ty+uy0+e�3Xi=1divi;substitutethisexpressioninto(2),andreducemodulomtoget0=r(AIo�Io B)+AIe�Ie B+s(AJe�Je B);(3)0=AJo�Jo B+t(AJe�Je B);(4)0=AJo�Jo B+u(AJe�Je B);and(5)0=di(AJe�Je B);fori2f1;:::;e�3g.(6) BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES19Theargumentsthatfollowusetherelationsthat(3){(6)inducebetweentheentriesofthematricesA=(aij)and B=(bij).Withtheconventionahl=0=bhlforh;l2f0;n+1g,itiselementarytoverifythatthefollowingsystemsofequalitiesholdforiandjinf1;:::;ngandelementsfandginR=m:(AIo�Io B)ij=8���&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:aij�bijiodd,jodd�bijiodd,jevenaijieven,jodd0ieven,jeven(7)(AIe�Ie B)ij=8���&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:0iodd,joddaijiodd,jeven�bijieven,joddaij�bijieven,jeven(8)(fAJo�gJo B)ij=8���&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:gb(i+1)jiodd,joddfai(j�1)�gb(i+1)jiodd,jeven0ieven,joddfai(j�1)ieven,jeven(9)(AJe�Je B)ij=8���&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:ai(j�1)iodd,jodd0iodd,jevenai(j�1)�b(i+1)jieven,jodd�b(i+1)jieven,jeven(10)Eachoftheequalities(3){(6)inducesfoursubsystems,whicharereferredtobysubscripts`oo',`oe',`eo',and`ee',where`oo'standsfor'ioddandjodd'etc.Forexample,(4)oereferstotheequalities0=ai(j�1)�b(i+1)j,forioddandjeven.Letn&#x]TJ ;� -1;.93; Td;&#x [00;2;thegoalistoprovetheequality=,asthatimplies�2m.Firstassumedi6=0forsomei2f1;:::;e�3g,then(6)yieldsAJe�Je B=0.From(4)and(5)onethengetsAJo�Jo B=0=AJo�Jo Bandthus(�)Jo B=0.As BisinvertibleandJoisnon-zero,thisyieldsthedesiredequality=.Henceforthweassumedi=0foralli2f1:::;e�3g.Byassumption,zisnotin(x)+m2,souortisnon-zero.Incaseuisnon-zero,(5)ooand(5)eoyieldbh1=0for1h6n.Iftisnon-zero,then(4)ooand(4)eoyieldthesameconclusion.Thematrix Bisinvertible,soeachofitscolumnscontainsanon-zeroelement.Itfollowsthatb11isnon-zero,andby(3)ooonehasa11=b11.From(4)oeand(5)oeonegetsa11=b22and(�)a11=0,whencetheequality=holds.Forn=2theargumentsaboveestablishtheassertioninProposition(6.5)underassumption(b)ibid.Case2:wisnotin(x)+m2.Itfollowsfromtheassumptiony=2(w;x)+m2thatw,x,andyarelinearlyindependentmodulom2,sothereexistelementsvisuchthatv1;:::;ve�3;w;x;yformaminimalsetofgeneratorsform.Writey0=pw+qx+ry+e�3Xi=1civiandz=sw+tx+uy+e�3Xi=1divi: 20L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDSubstitutetheseexpressionsinto(1)andreducemodulomtoget0=AIo�Io B+p(AJo�Jo B)+s(AJe�Je B);(11)0=AIe�Ie B+q(AJo�Jo B)+t(AJe�Je B);(12)0=AJo�Jo B+r(AJo�Jo B)+u(AJe�Je B);and(13)0=ci(AJo�Jo B)+di(AJe�Je B);fori2f1;:::;e�3g:(14)AsinCase1,setA=(aij)and B=(bij)sothattheequalities(7){(10)hold.Thesubscripts`oo',`oe',`eo',and`ee'areused,asinCase1,todenotethesubsystemsinducedby(11){(14).Letn�3;thegoalis,again,toprovetheequality=.Inthefollowing,handlareintegersinf1;:::;ng.First,noticethatifcm6=0forsomem2f1;:::;e�3g,then(14)oeimpliesa11=b22and,inturn,(13)oeyields(�)a11=0.Toconclude=,itmustbeveri edthata11isnon-zero.Tothisend,assume rstdm=0;from(14)eeand(14)oooneimmediatelygets(15)ah1=0=bh1forheven.Aszisinmnm2,oneofthecoecientsd1;:::;de�3;s;t;uisnon-zero.Ifuoroneofd1;:::;de�3isnon-zero,then(13)eoor(14)eoyieldsbh1=0forh�1odd.Ifsortisnon-zero,thenthesameconclusionfollowsfrom(15)combinedwith(11)eoorwith(12)eo.Nowthatbh1=0holdsforallh�2,itfollowsthatb11isnon-zero.Finally,(11)ooyieldsa11=b11,sotheentrya11isnotzero,asdesired.Nowassumedm6=0,then(14)ooand(14)eoimmediatelygivebh1=0forh�1.Asabove,weconcludethatb11isnon-zero,whencea116=0by(11)oo.Thisconcludestheargumentundertheassumptionthatoneofthecoecientsciisnon-zero.Henceforthweassumeci=0foralli2f1;:::;e�3g;itfollowsthatqisnon-zero,asy0=2(w;y)+m2byassumption.Ifdi6=0forsomei2f1;:::;e�3g,then(14)ooyieldsa12=0,asnisatleast3.From(12)oeonegetsa11=b22,andthen(13)oeimplies(�)a11=0.Toseethata11isnon-zero,noticethat(14)eoyieldsbh1=0forh�1odd,while(12)ooyieldsbh1=0forheven.Itfollowsthatb11isnon-zero,andthena116=0,by(11)oo.Thusthedesiredequality=holds.Thisconcludestheargumentundertheassumptionthatoneofthecoecientsdiisnon-zero.Henceforthweassumedi=0foralli2f1;:::;e�3g.To nishtheargument,wedealseparatelywiththecasesu6=0andu=0.Assume rstu6=0.Byassumptiononehasn�3,so(13)eoyieldsa22=b33,andthenitfollowsfrom(12)eothatb23iszero.From(13)ooonegetsa12=0,andthentheequalitya11=b22followsfrom(12)oe.Inturn,(13)oeimplies(�)a11=0.Toseethata11isnon-zero,noticethatthereareequalitiesbh1=0forh�1oddby(13)eoandbh1=0forhevenby(12)oo.Itfollowsthatb11isnon-zero,andtheequalitya11=b11holdsby(11)oo.Asaboveweconclude=.Finally,assumeu=0;theassumptionsz=2(w)+m2andz=2(x)+m2implythatsandtarebothnon-zero.From(13)eeand(13)ooonegets:(16)(+r)ah1=0=(+r)bh1forheven.Firstassumethat+riszero.If+riszero,thenthedesiredequality=holds.If+risnon-zero,then(16)givesah1=0forheven.Moreover,(13)oeimplies(+r)ah1=(+r)b(h+1)2=0,soah1=0forhoddaswell,whichisabsurdasAisinvertible.Nowassumethat+risnon-zero.From(16)onegets BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES21bh1=0forhevenand,inturn,(12)eoyieldsbh1=0forh�1odd.Itfollowsthatb11isnon-zero,andthenonehasa116=0by(11)oo.Byassumption,nisatleast3,so(13)oogives(+r)b23=0,whichimpliesb23=0.Now(12)ooyieldsa12=0,andthen(12)oeimpliesa11=b22.From(13)oeonegets(�)a11,whencetheequality=holds.Proofof(6.2).Undertheassumptionsinpart(a)or(b),itisimmediatefromTheorem(3.1)thatthemoduleM2(w;x;y+y0)isindecomposableandtotallyre exiveforevery2R.ItfollowsfromProposition(6.5)thatthemodulesinthefamilyfM2(w;x;y+y0)g2Larepairwisenon-isomorphic.Fixn�3.Proposition(6.3)showsthat,undertheassumptionsinpart(c)or(d),themodulesinthefamilyfMn(w;x;y+y0;z)g2Larepairwisenon-isomorphic.Moreover,forevery2R,onehas(y+y0)z=0,soitfollowsfromTheorem(3.1)themoduleMn(w;z;y+y0;z)istotallyre exiveandindecomposable.7.Brauer{ThrallIIovershortlocalringswithexactzerodivisorsInthissection(R;m;k)isalocalringwithm3=0.Together,(4.1.1)andthetheorems(3.1),(7.4),(7.6),and(7.8)establishTheorem(1.4).(7.1)Remark.AssumethatRhasembeddingdimension2.IfthereisanexactzerodivisorinR,thentheHilbertseriesofRis1+2+2,andtheequality(0:m)=m2holds;see(4.2).Therefore,RisGorenstein,andtheequalityxm=m2holdsforallx2mnm2;inparticular,everyelementinmnm2isanexactzerodivisorbyLemma(4.3)(c).Ontheotherhand,ifRisGorenstein,thenonehasHR()=1+2+2and(0:m)=m2.ItisnowelementarytoverifythattheequalitieslengthR(x)=2=lengthR(0:x)holdforeveryx2mnm2,soeverysuchelementisanexactzerodivisorinRbyLemma(4.3)(c).ItfollowsfromworkofSerre[18,prop.5]thatRisGorensteinifandonlyifitiscompleteintersection;thusthefollowingconditionsareequivalent:(i)ThereisanexactzerodivisorinR.(ii)Everyelementinmnm2isanexactzerodivisor.(iii)Riscompleteintersection.Incontrast,ifRhasembeddingdimensionatleast3,andkisalgebraicallyclosed,thenthereexistelementsinmnm2thatarenotexactzerodivisors.ThisfactfollowsfromLemma(7.3),anditisessentialforourproofofTheorem(7.4).(7.2)Remark.AssumethatRhasHilbertseries1+e+f2,andletxbeanelementinm.Theequalityxm=m2holdsifandonlyifthek-linearmapfromm=m2tom2givenbymultiplicationbyxissurjective.Letxbeamatrixthatrepresentsthismap;itisanfematrixwithentriesink,sotheequalityxm=m2holdsifandonlyifxhasrankf.Assumethatthe(in)equalitiesf=e�1�1hold.IfwandxareelementsinRwithwx=0,thentheyformanexactpairofzerodivisorsifandonlyifbothmatricesxandwhaveanon-zeromaximalminor;cf.Lemma(4.3)(c).(7.3)Lemma.Assumethat(R;m;k)hasHilbertseries1+e+f2andthatkisalgebraicallyclosed;setn=e�f+1.Ifonehas26f6e�1andv0;:::;vn2marelinearlyindependentmodulom2,thenthereexistr0;:::;rn2R,atleastoneofwhichisinvertible,suchthattheideal(Pnh=0rhvh)misproperlycontainedinm2. 22L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDProof.Letfx1;:::;xegbeaminimalsetofgeneratorsformandletfu1;:::;ufgbeabasisforthek-vectorspacem2.Forh2f0;:::;ngandj2f1;:::;egwritevhxj=fXi=1hijui;wheretheelementshijareink.Inthefollowing,rdenotestheimageinkoftheelementr2R.Forr0;:::;rninRandv=Pnh=0rhvhtheequalityvm=m2holdsifandonlyifthefematrixv= nXh=0rhhij!ijhasrankf;seeRemark(7.2).LetXbethematrixobtainedfromvbyreplacingr0;:::;rnwithindeterminates0;:::;n.Thenon-zeroentriesinXarethenho-mogeneouslinearformsin0;:::;n,andinthepolynomialalgebrak[0;:::;n]theidealIf(X),generatedbythemaximalminorsofX,hasheightatmostn;see[2,thm.(2.1)].AsIf(X)isgeneratedbyhomogeneouspolynomials,itfollowsfromHilbert'sNullstellensatzthatthereexistsapoint(0;:::;n)inkn+1nf0gsuchthatallmaximalminorsofthematrix(Pnh=0hhij)ijvanish.Letr0;:::;rnbeliftsof0;:::;ninR,thenatleastoneofthemisnotinm,andtheideal(Pnh=0rhvh)misproperlycontainedinm2.(7.4)Theorem.Let(R;m;k)bealocalringwithm3=0,emb:dimR�3,andkalgebraicallyclosed.IfwandxformanexactpairofzerodivisorsinR,thenthereexistelementsy,y0,andzinmnm2,suchthatforeveryliftLofknf0ginRandforeveryintegern�3themodulesinthefamilyfMn(w;x;y+y0;z)g2Lareindecomposable,totallyre exive,andpairwisenon-isomorphic.Proof.AssumethatwandxformanexactpairofzerodivisorsinR.By(4.2)theHilbertseriesofRis1+e+(e�1)2,soitfollowsfromLemma(7.3)thatthereexistsanelementz2mnm2suchthatzmisproperlycontainedinm2.Inparticular,onehaslengthR(z)eand,therefore,lengthR(0:z)&#x-297;ebyadditivityoflengthonshortexactsequences.Itfollowsthatthereexisttwoelements,callthemyandy0,in(0:z)thatarelinearlyindependentmodulom2.TheinequalitylengthR(z)eimpliesthatzisnotin(w)=(w)+m2andnotin(x)=(x)+m2.Ifyandy0werebothin(w;x)=(w;x)+m2,thenxwouldbein(y;y0),whichisimpossibleasz=2(w).Withoutlossofgenerality,assumey=2(w;x)+m2.Ify0werein(w;y)=(w;y)+m2,thenwwouldbein(y;y0),whichisalsoimpossible.NowletLbealiftofknf0ginRandletn&#x-282;3beaninteger.ItfollowsfromProposition(6.3)thatthemodulesinthefamilyfMn(w;x;y+y0;z)g2Larepairwisenon-isomorphic.Ifwisin(x)=(x)+m2,thenitfollowsfromTheorem(3.1)thatthemodulesinthefamilyfMn(w;x;y+y0;z)g2Lareindecomposableandtotallyre exive.Indeed,forevery2Rtheelementy+y0annihilatesz,whenceitisnotin(x)=(x)+m2.Ifwisnotin(x)=(x)+m2,thenitfollowsfromtheassumptiony=2(w;x)+m2thatw,x,andyarelinearlyindependentmodulom2.Thereexistelementsvisuch BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES23thatv1;:::;ve�3;w;x;yformaminimalsetofgeneratorsform.Writey0=pw+qx+ry+e�3Xi=1civi:Asyz=0holdsandtheelementsyandy0arelinearlyindependentmodulom2,wemayassumer=0.For2L,theelementsw,x,andy+y0arelinearlyindependent.Indeed,ifthereisarelationsw+tx+u(y+y0)=(s+up)w+(t+uq)x+uy+ue�3Xi=1civi2m2;thenuisinmas=2m,andthensandtareinmaswandxarelinearlyindependentmodulom2.NowitfollowsfromTheorem(3.1)thatthemodulesinthefamilyfMn(w;x;y+y0;z)g2Lareindecomposableandtotallyre exive.(7.5)Remark.AssumethatRhasembeddingdimension3andthatmisminimallygeneratedbyelementsv,w,andx,wherewandxformanexactpairofzerodivisors.Letyandy0beelementsinmandletLbeasubsetofR.ItiselementarytoverifythateachmoduleinthefamilyfM2(w;x;y+y0)g2LisisomorphictoeitherR=(w)R=(x)ortotheindecomposableR-moduleM2(w;x;v).Thustherequirementn�3inTheorem(7.4)cannotberelaxed.Wenowproceedtodealwith1-and2-generatedmodules.(7.6)Theorem.Let(R;m;k)bealocalringwithm3=0,emb:dimR�2,andkin nite.IfthereisanexactzerodivisorinR,thenthesetN1=fR=(x)jxisanexactzerodivisorinRgoftotallyre exiveR-modulescontainsasubsetM1ofcardinalitycard(k),suchthatthemodulesinM1arepairwisenon-isomorphic.Proof.AssumethatthereisanexactzerodivisorinR;thenRhasHilbertseries1+e+(e�1)2;see(4.2).Letfx1;:::;xegbeaminimalsetofgeneratorsformandletfu1;:::;ue�1gbeabasisform2.Forhandjinf1;:::;egwritexhxj=e�1Xi=1hijui;wheretheelementshijareink.Forr1;:::;reinRletrhdenotetheimageofrhink,andsetx=r1x1++rexe.Theequalityxm=m2holdsifandonlyifthe(e�1)ematrixx= eXh=1rhhij!ijhasranke�1;seeRemark(7.2).Forj2f1;:::;egletj(x)bethemaximalminorofxobtainedbyomittingthejthcolumn.Noticethateachminorj(x)isahomogeneouspolynomialexpressionintheelementsr1;:::;re.Thecolumnvector(1(x)�2(x)(�1)e�1e(x))Tisinthenull-spaceofthematrixx,sotheelementw=1(x)x1�2(x)x2++(�1)e�1e(x)xeannihilatesx.Let1(w);:::;e(w)bethemaximalminorsofthematrixw;theyarehomogeneouspolynomialexpressionsin1(x);:::;e(x)and,therefore, 24L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDinr1;:::;re.ByRemark(7.2)theelementsxandwformanexactpairofzerodivisorsifandonlyifbothmatricesxandwhaveranke�1.Forj2f1;:::;egde nejandjtobethehomogeneouspolynomialsink[1;:::;e]obtainedfromj(x)andj(w)byreplacingtheelementsrhbythein-determinatesh,forh2f1;:::;eg.IntheprojectivespacePe�1k,thecomplementEoftheintersectionofvanishingsetsZ(1)\\Z(e)isanopenset.NopointinEisintheintersectionZ(1)\\Z(e),aseachpolynomialjisapolynomialin1;:::;e.Therefore,eachpoint(1::e)inEcorrespondstoanexactzerodivisorasfollows.Letr1;:::;rebeliftsof1;:::;einR;thentheelementx=r1x1++rexeisanexactzerodivisor.ItisclearthattwodistinctpointsinEcorrespondtonon-isomorphicmodulesinN1.TakeasM1anysubsetofN1suchthattheelementsofM1areinone-to-onecorrespondencewiththepointsinE.Byassumption,thesetEisnon-empty,and,ifkisin nite,thenEhasthesamecardinalityask.(7.7)Remark.ThemodulesinM1areinone-to-onecorrespondencewiththepointsofanon-emptyZariskiopensetinPe�1k.SeealsoRemark(8.8).(7.8)Theorem.Let(R;m;k)bealocalringwithm3=0,emb:dimR�3,andkin nite.IfthereisanexactzerodivisorinR,thenthesetN2=M2(w;x;y) w,x,andyareelementsinR,suchthatwandxformanexactpairofzerodivisorsoftotallyre exiveR-modulescontainsasubsetM2ofcardinalitycard(k),suchthatthemodulesinM2areindecomposableandpairwisenon-isomorphic.Proof.AssumethatthereisanexactzerodivisorinRandletM1bethesetofcyclictotallyre exiveR-modulesa ordedbyTheorem(7.6);thecardinalityofM1iscard(k).FromM1onecanconstructanothersetofthesamecardinality,whoseelementsareexactpairsofzerodivisors,suchthatforanytwoofthem,sayw;xandw0;x0,onehas(x)6=(x0)and(w)6=(x0).Giventwosuchpairs,chooseelementsyandy0inmnm2suchthaty=2(w;x)andy0=2(w0;x0).ByTheorem(4.4),themodulesM2(w;x;y)andM2(w0;x0;y0)areindecomposableandtotallyre exive.SupposethattheR-modulesM2(w;x;y)andM2(w0;x0;y0)areisomorphic;thenthereexistmatricesA=(aij)andB=(bij)inGL2(R)suchthattheequalityAwy0x=w0y00x0Bholds.Inparticular,thereareequalitiesa21w=b21x0anda21y+a22x=b22x0:The rstoneshowsthattheentriesa21andb21areelementsinm,andthenitfollowsfromthesecondonethata22andb22areinm.ThusAandBeachhavearowwithentriesinm,whichcontradictstheassumptionthattheyareinvertible.8.ExistenceofexactzerodivisorsInprevioussectionsweconstructedfamiliesoftotallyre exivemodulesstartingfromanexactpairofzerodivisors.Nowweaddressthequestionofexistenceofexactzerodivisors;inparticular,weproveTheorem(1.3);seeRemark(8.7). BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES25Alocalring(R;m)withm3=0andembeddingdimension1is,byCohen'sStructureTheorem,isomorphictoD=(d2)orD=(d3),where(D;(d))isadiscretevaluationdomain.Ineithercase,disanexactzerodivisor.Inthefollowingwefocusonringsofembeddingdimensionatleast2.(8.1)Remark.Let(R;m)bealocalringwithm3=0.Itiselementarytoverifythatelementsinmannihilateeachotherifandonlyiftheirimagesintheassociatedgradedringgrm(R)annihilateeachother.Thusanelementx2misanexactzerodivisorinRifandonlyifx2m=m2isanexactzerodivisoringrm(R).Let(R;m;k)beastandardgradedk-algebrawithm3=0andembeddingdi-mensione�2.AssumethatthereisanexactzerodivisorinR;by(4.2)onehasHR()=1+e+(e�1)2.Ifeis2,thenitfollowsfrom[17,Hilfssatz7]thatRiscompleteintersectionwithPoincareseries1Xi=0 Ri(k)i=1 1�2+2=1 HR(�);henceRisKoszulbyaresultofLofwall[15,thm.1.2].Ifeisatleast3,thenRisnotGorensteinand,therefore,RisKoszulby[6,thm.A].ItisknownthatKoszulalgebrasarequadratic,andthegoalofthissectionistoprovethatifkisin nite,thenagenericquadraticstandardgradedk-algebrawithHilbertseries1+e+(e�1)2hasanexactzerodivisor.RecallthatRbeingquadraticmeansitisisomorphictok[x1;:::;xe]=q,whereqisanidealgeneratedbyhomogeneousquadraticforms.TheidealqcorrespondstoasubspaceVofthek-vectorspaceWspannedbyfxixjj16i6j6eg.ThedimensionofWism=e(e+1) 2,andsinceRhasHilbertseries1+e+(e�1)2,theidealqisminimallygeneratedbyn=e2�e+2 2quadraticforms;thatis,dimkV=n.Inthisway,RcorrespondstoapointintheGrassmannianGrassk(n;m).(8.2)De nition.Lete�2beanintegerandsetGk(e)=Grassk(n;m),wheren=e2�e+2 2andm=e(e+1) 2.PointsinGk(e)areinbijectivecorrespondencewithk-algebrasofembeddingdimensionewhosede ningidealisminimallygeneratedbynhomogeneousquadraticforms.Forapoint2Gk(e)letRdenotethecorrespondingk-algebraandletMdenotetheirrelevantmaximalidealofR.NoticethatHR()hastheform1+e+(e�1)2+P1i=3hiiforevery2Gk(e).ConsiderthesetsEk(e)=f2Gk(e)jthereisanexactzerodivisorinRgandHk(e)=f2Gk(e)jHR()=1+e+(e�1)2gandrecallthatasubsetofGk(e)iscalledopen,ifitmapstoaZariskiopensetunderthePluckerembeddingGk(e),!PNk,whereN=�mn�1.ThesetsEk(e)andHk(e)arenon-empty:(8.3)Example.Letkbea eldandlete�2beaninteger.Thek-algebraR=k[x1;:::;xe] (x21)+(xixjj26i6j6e)islocalwithHilbertseries1+e+(e�1)2.Onehas(0:x1)=(x1);inparticular,x1isanexactzerodivisorinR. 26L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(8.4)Theorem.Forevery eldkandeveryintegere�2thesetsEk(e)andHk(e)arenon-emptyopensubsetsoftheGrassmannianGk(e).ThefactthatHk(e)isopenandnon-emptyisaspecialcaseof[11,thm.1];forconvenienceaproofisincludedbelow.Recallthatapropertyissaidtoholdforagenericalgebraoveranin nite eldifthereisanon-emptyopensubsetofanappropriateGrassmanniansuchthateverypointinthatsubsetcorrespondstoanalgebrathathastheproperty.(8.5)Corollary.Letkbeanin nite eldandlete�2beaninteger.Agenericstandardgradedk-algebrawithHilbertseries1+e+(e�1)2hasanexactzerodivisor.Proof.TheassertionfollowsasthesetEk(e)\Hk(e)isopenbyTheorem(8.4)andnon-emptybyExample(8.3).(8.6)Remark.Let(R;m)bealocalring.FollowingAvramov,Iyengar,andSega(2008)wecallanelementxinRwithx2=0andxm=m2aConcageneratorofm.Concaprovesin[7,sec.4]thatifkisalgebraicallyclosed,thenthesetCk(e)=f2Gk(e)jthereisaConcageneratorofMgisopenandnon-emptyinGk(e).Ifm3iszero,thenitfollowsfromLemma(4.3)(c)thatanelementxisaConcageneratorofmifandonlyiftheequality(0:x)=(x)holds.Inparticular,thereisaninclusionCk(e)\Hk(e)Ek(e)\Hk(e):Ifkisalgebraicallyclosed,thenitfollowsfromConca'sresultcombinedwithThe-orem(8.4)andExample(8.3)thatbothsetsarenon-emptyandopeninGk(e);inthenextsectionweshowthattheinclusionmaybestrict.(8.7)Remark.Let(R;m;k)bealocalk-algebrawithm3=0andassumethatitisnotGorenstein.IfRadmitsanon-freetotallyre exivemodule,thenithasembeddingdimensione�3andHilbertseries1+e+(e�1)2;see(4.1).SetTk(e)=f2Hk(e)jRadmitsanon-freetotallyre exivemoduleg:WedonotknowifthisisanopensubsetofGk(e),butitcontainsthenon-emptyopensetEk(e)\Hk(e);hencetheassertioninTheorem(1.3).Proofof(8.4).Letkbea eld,lete�2beaninteger,andletSdenotethestan-dardgradedpolynomialalgebrak[x1;:::;xe].SetN=�mn�1,wherem=e(e+1) 2andn=e2�e+2 2.ThePluckerembeddingmapsapointintheGrassman-nianGk(e)tothepoint(0()::N())intheprojectivespacePNk,where0();:::;N()arethemaximalminorsofanymnmatrixcorrespondingto.Thecolumnsofsuchamatrixgivethecoordinates,inthelexicographicallyorderedbasisB=fxixjj16i6j6egforS2,ofhomogeneousquadraticformsq1;:::;qn.ThealgebraRisthequotientringS=(q1;:::;qn).ThesetsEk(e)andHk(e)arenon-emptybyExample(8.3).LetZbeanmnmatrixofindeterminatesandlet0;:::;NdenotethemaximalminorsofZ.WeproveopennessofeachsetEk(e)andHk(e)inGk(e)byprovingthatthePluckerem-beddingmapsittothecomplementinPNkofthevanishingsetfora nitecollectionofhomogeneouspolynomialsink[0;:::;N]. BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES27OpennessofEk(e).LetbeapointinGk(e),letbeacorrespondingmatrix,andletqbethede ningidealforR=R.Foralinearform`=a1x1++aexeinS,letldenotetheimageof`inR.Fori2f1;:::;eglet[xi`]denotethecolumnthatgivesthecoordinatesofxi`inthebasisB.Multiplicationbylde nesak-linearmapfromR1toR2.Byassumption,onehasdimkR2=dimkR1�1,sotheequalitylR1=R2holdsifandonlyiflisannihilatedbyaunique,uptoscalarmultiplication,homogeneouslinearforminR.Set`=�[x1`]j[x2`]jj[xe`]j;itisanm(m+1)matrixwithentriesink.TheequalitylR1=R2holdsifandonlyiftheequality`S1+q2=S2holds,andthelatterholdsifandonlyifthematrix`hasmaximalrank.Fori2f1;:::;m+1gleti(`)denotethemaximalminorobtainedbyomittingtheithcolumnof`.Thecolumnsofarelinearlyinde-pendent,so`hasmaximalrankifandonlyifoneoftheminors1(`);:::;e(`)isnon-zero.Noticethateachoftheminors1(`);:::;e(`)isapolynomialexpressionofdegreee�1inthecoecientsa1;:::;aeof`andlinearinthePluckercoordinates1();:::;N().Thecolumnvector(1(`)�2(`)(�1)mm+1(`))Tisinthenull-spaceofthematrix`,sotheelementeXi=1(�1)i�1i(`)xi`=eXi=1(�1)i�1i(`)[xi`]isinthecolumnspaceofthematrix.Set`0=Pei=1(�1)i�1i(`)xi;itfollowsthat`0`belongstotheidealq,soonehasl0l=0inR.Bythediscussionabove,listheunique,uptoscalarmultiplication,annihilatorinR1ofl0ifandonlyifoneofthemaximalminors1(`0);:::;e(`0)of`0isnon-zero.Moreover,ifoneof1(`0);:::;e(`0)isnon-zero,thenalsooneoftheminors1(`);:::;e(`)isnon-zerobythede nitionof`0.ThuslisanexactzerodivisorinRifandonlyifoneof1(`0);:::;e(`0)isnon-zero.Noticethateachoftheseminorsisapolynomialexpressionofdegreeein1();:::;N()anddegree(e�1)2ina1;:::;ae.Let1;:::;ebeindeterminatesandsetL=1x1++exe.Fori2f1;:::;egletidenotethemaximalminorofthematrix�[x1L]j[x2L]jj[xeL]jZ;obtainedbyomittingtheithcolumn.Eachminoriisapolynomialofdegreee�1intheindeterminates1;:::;eandlinearin0;:::;N.Fori2f1;:::;egsetFi=i(1;�2;:::;(�1)e�1e);eachFiisapolynomialofdegree(e�1)2in1;:::;eandofdegreeein0;:::;N.ConsiderF1;:::;Feaspolynomialsin1;:::;ewithcoecientsink[0;:::;N],andletPdenotethecollectionofthesecoecients.ThealgebraRhasanexactzerodivisor,i.e.thepointbelongstoEk(e),ifandonlyifoneofthepolynomialsFiinthealgebra(k[0;:::;N])[1;:::;e]isnon-zero,thatis,ifandonlyifthePluckerembeddingmapstoapointinthecomplementofthealgebraicvariety\P2PZ(P)PNk:OpennessofHk(e).LetbeapointinGk(e),letbeacorrespondingmatrix,andletq=(q1;:::;qn)bethede ningidealforR.Clearly,belongstothesubsetHk(e)ifandonlyiftheequalityS1q2=S3holds.Setc=�e+23andtakeas 28L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDk-basisforS3thechomogeneouscubicmonomialsorderedlexicographically.Forahomogeneouscubicformf2S3,let[f]denotethecolumnthatgivesitscoordinatesinthisbasis.TheequalityS1q2=S3holdsifandonlyifthecnematrix=�[x1q1]j[x1q2]jj[x1qn]j[x2q1]jj[xeqn]hasmaximalrank,i.e.rankcasonehasc6ne.SetE=�[x1(x21)]j[x1(x1x2)]jj[x1(x2e)]j[x2(x21)]jj[xe(x2e)];itisacmematrix,andeachcolumnofEisidenticaltoacolumnintheccidentitymatrixIc.Inparticular,Ehasentriesfromthesetf0;1g.Letbethematrixe,thatis,theblockmatrixwithecopiesofonthediagonaland0elsewhere;itisamatrixofsizemene.Itisstraightforwardtoverifytheequality=E.Setg=ne�candletCdenotethecollectionofallsubsetsoff1;:::;megthathavecardinalityg.Fori2f1;:::;megletridenotetheithrowoftheidentitymatrixIme.Foreach =ft1;:::;tgginCsetE =0BBB@rt1...rtg E1CCCA;itisannemematrixwithentriesfromthesetf0;1g.Claim.Thematrixhasmaximalrankifandonlyifthereexistsa 2CsuchthatE hasnon-zerodeterminant.Proof.AssumethatthenenematrixE hasnon-zerodeterminant.Onecanwritethedeterminantasalinearcombinationwithcoecientsinf�1;0;1gofthec-minorsofthesubmatrixE,so=Ehasmaximalrank.Toprovetheconverse,assumethatEhasmaximalrank,i.e.rankc.Thematrixhasmaximalrank,ne,sotherowsofspankne.Therefore,onecanchoose =ft1;:::;tgginCsuchthatrowsnumbert1;:::;tgintogetherwiththerowsofEspankne.Thatis,therowsofE spankne,sothedeterminantofE isnon-zero.ThedeterminantsP =det(E Ze),for 2C,yield�meghomogeneouspoly-nomialsofdegreeeink[0;:::;N].UnderthePluckerembedding,ismappedtoapointinthecomplementofthealgebraicvariety\ 2CZ(P )PNkifandonlyifdet(E e)isnon-zeroforsome 2C.ByClaimsucha existsifandonlyifhasmaximalrank,thatis,ifandonlyifbelongstoHk(e).(8.8)Remark.Let(R;m;k)bealocalk-algebrawithm3=0.TheargumentthatshowstheopennessofEk(e)yieldsadditionalinformation.Namely,ifthereisanexactzerodivisorinR,thenoneofthepolynomialsFiinthevariables1;:::;eisnon-zero,andeverypointinthecomplementofitsvanishingsetZ(Fi)Pe�1kcor-respondstoanexactzerodivisor.Thusifkisin nite,thenagenerichomogeneouslinearforminRisanexactzerodivisor. BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES299.Shortlocalringswithoutexactzerodivisors|AnexampleLetkbea eld;setR=k[s;t;u;v]=(s2;sv;t2;tv;u2;uv;v2�st�su)andm=(s;t;u;v)R:Concamentionsin[7,Example12]thatalthoughRisastandardgradedk-algebrawithHilbertseries1+4+32and(0:m)=m2,empiricalevidencesuggeststhatthereisnoelementx2Rwith(0:x)=(x);thatis,thereisnoConcageneratorofm.Proposition(9.1)con rmsthis,andtogetherwithProposition(9.2)itexhibitspropertiesofRthatframetheresultsintheprevioussections.Inparticular,thesepropositionsshowthatnon-freetotallyre exivemodulesmayexistevenintheabsenceofexactzerodivisors,andthatexactzerodivisorsmayexistalsointheabsenceofConcagenerators.(9.1)Proposition.Thefollowingholdforthek-algebraR.(a)ThereisnoelementxinRwith(0:x)=(x).(b)Ifkdoesnothavecharacteristic2or3,thentheelementss+t+2u�vand3s+t�2u+4vformanexactpairofzerodivisorsinR.(c)Assumethatkhascharacteristic3.If#2kisnotanelementoftheprimesub eldF3,thentheelement(1�#)s+#t+u+visanexactzerodivisorinR.IfkisF3,thentherearenoexactzerodivisorsinR.(d)Ifkhascharacteristic2,thentherearenoexactzerodivisorsinR.(9.2)Proposition.TheR-modulepresentedbythematrix=t�t+u�vt+u�vs+uisindecomposableandtotallyre exive,its rstsyzygyispresentedby =�t+v2s+t�u+2vt+us�u+v;anditsminimalfreeresolutionisperiodicofperiod2.Proofof(9.1).Foranelementx= s+ t+ u+vinmwedenotetheimagesof , , ,andinR=m=kbya,b,c,andd.Forxandx0= 0s+ 0t+ 0u+0vtheproductxx0canbewrittenintermsofthebasisfst;su;tugform2asfollows:(1)xx0=(ab0+ba0+dd0)st+(ac0+ca0+dd0)su+(bc0+cb0)tu:Theproductxmisgeneratedbytheelementsxs=bst+csu,xt=ast+ctu,xu=asu+btu,andxv=dst+dsu.ByRemark(7.2)theequalityxm=m2holdsifandonlyifthematrixx=0@ba0dc0ad0cb01Ahasanon-zero3-minor;thatis,ifandonlyifoneof1(x)=�2abc;2(x)=cd(c�b);3(x)=bd(c�b);and4(x)=�ad(c+b)(2)isnon-zero.Thuselementsxandx0withxx0=0formanexactpairofzerodivisorsifandonlyifoneoftheminors1(x);:::;4(x)isnon-zero,andoneoftheminors1(x0);:::;4(x0)ofthematrixx0isnon-zero. 30L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND(a):Fortheequality(0:x)=(x)tohold,xmustbeanelementinmnm2.Ifx= s+ t+ u+vsatis esx2=0,then(1)yields2ab+d2=0;2ac+d2=0;and2bc=0:Itfollowsthatborciszeroandthenthatdiszero.Thuseachoftheminors1(x);:::;4(x)iszero,whencexdoesnotgenerate(0:x).(b):Fortheelementsx=s+t+2u�vandx0=3s+t�2u+4v,itisimmediatefrom(1)thattheproductxx0iszero,while(2)yields3(x)=�1and1(x0)=12.Ifkdoesnothavecharacteristic2or3,then1(x0)isnon-zero,soxandx0formanexactpairofzerodivisorsinR.(c):Assumethatkhascharacteristic3.IfkproperlycontainsF3,thenchooseanelement#2knF3andsetx=(1�#)s+#t+u+v:Observethat2(x)=1�#isnon-zero.If#isnota4throotofunity,setx0=(1+#)s+t�#u�(1+#2)v;andnotethattheminor2(x0)=#(1+#)(1+#2)isnon-zero.From(1)onereadilygetsxx0=0,soxandx0formanexactpairofzerodivisors.If#isa4throotofunity,thenonehas#2=�1.Setx00=(1�#)s+t+#u�v;thentheminor2(x00)=#(1�#)isnon-zero,anditisagainstraightforwardtoverifytheequalityxx00=0.Therefore,xandx00formanexactpairofzerodivisors.Assumenowk=F3andassumethattheelementsx= s+ t+ u+vandx0= 0s+ 0t+ 0u+0vformanexactpairofzerodivisorsinR.Oneoftheminors1(x);:::;4(x)isnon-zero,andoneoftheminors1(x0);:::;4(x0)isnon-zero,soitfollowsfrom(2)thatabcordisnon-zeroandthata0b0c0ord0isnon-zero.Firstassumedd06=0;wewillshowthatthesixelementsa;a0;b;b0;c;c0arenon-zeroandderiveacontradiction.Supposeb=0,then(1)yieldscb0=0andab06=0,whichforcesc=0.This,however,contradictstheassumptionthatoneoftheminors1(x);:::;4(x)isnon-zero,cf.(2).Therefore,bisnon-zero.Aparallelargumentsshowthatcisnon-zero,andbysymmetrytheelementsb0andc0arenon-zero.Supposea=0,thenitfollowsfrom(1)thata0isnon-zero,asdd06=0byassumption.However,(1)alsoyieldsa(b0�c0)=a0(c�b);sotheassumptiona=0forcesc=b,whichcontradictstheassumptionthatoneoftheminors1(x);:::;4(x)isnon-zero.Thusaisnon-zero,andbysymmetryalsoa0isnon-zero.Withoutlossofgenerality,assumea=1=a0,then(1)yields(3)b0+b=c0+candbc0+cb0=0:Eliminateb0betweenthesetwoequalitiestoget(4)b(c0�c)+c(c0+c)=0:Ascandc0arenon-zeroelementsinF3,theelementsc0�candc0+caredistinct,andtheirproductis0.Thusoneandonlyoneofthemis0,whichcontradicts(4)asbothbandcarenon-zero.Nowassumedd0=0.Withoutlossofgenerality,assumethatdiszero,thenabcisnon-zero.Itfollowsfrom(2)thattheelementsa0,b0,andc0cannotallbezero, BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES31andthen(1)showsthattheyareallnon-zero.Thusallsixelementsa;a0;b;b0;c;c0arenon-zero,andasabovethisleadstoacontradiction.(d):Assumethatkhascharacteristic2andthattheelementsx= s+ t+ u+vandx0= 0s+ 0t+ 0u+0vformanexactpairofzerodivisorsinR.From(2)onegetsd6=0,d06=0,b6=c,andb06=c0.Arguingasinpart(c),itisstraightforwardtoverifythatthesixelementsa;a0;b;b0;c;c0arenon-zero.Withoutlossofgenerality,assumea=1=a0.From(1)thefollowingequalitiesemerge:b0+b+dd0=0;c0+c+dd0=0;andbc0+cb0=0:The rsttwoequalitiesyieldb0+b6=0andc0+c6=0.Further,eliminationofdd0yieldsb0=b+c+c0.Substitutethisintothethirdequalitytogetb(c0+c)+c(c0+c)=0:Asc0+cisnon-zerothisimpliesb=c,whichisacontradiction.Proofof(9.2).Itiseasytoverifythattheproducts and arezero,whenceF:�!R2��!R2 ��!R2��!R2�!;isacomplex.Weshall rstprovethatFistotallyacyclic.Toseethatitisacyclic,onemustverifytheequalitiesIm =KerandIm=Ker .Assumethattheelement�xx0isinKer.Itisstraightforwardtoverifythatm2R2iscontainedintheimageof ,sowemayassumethatxandx0havetheformx=as+bt+cu+dvandx0=a0s+b0t+c0u+d0v,wherea;b;c;danda0;b0;c0;d0areelementsink.Usingthatfst;su;tugisabasisform2,theassumption�xx0=0canbetranslatedintothefollowingsystemofequations0=8��������&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:a�a0�d0a0�d0c+b0�c0a�d+b0a�d+a0+c0b+c+b0Fromhereonederives,inorder,thefollowingidentitiesa0=d0;a=2a0;d=2a0+b0;c0=�a0+b0;c=�a0;andb=a0�b0;whichimmediatelyyield�xx0= �b0a0.ThisprovestheequalityIm =Ker.Similarly,itiseasytocheckthatm2R2iscontainedinIm,andforanelement(1)xx0=as+bt+cu+dva0s+b0t+c0u+d0v;wherea;a0;:::;d;d0areelementsink,one ndsthat �xx0=0implies�xx0=�b0a0.ThisprovestheequalityIm=Ker ,soFisacyclic.Thedi erentialsinthedualcomplexHomR(F;R)arerepresentedbythematricesTand T.Oneeasilycheckstheinclusionsm2R2ImTandm2R2Im T.Moreover,foranelementoftheform(1)one ndsT�xx0=0implies�xx0= T�b0a0�2b0and T�xx0=0implies�xx0=T��b0a0: 32L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGANDThisprovesthatalsoHomR(F;R)isacyclic,sothemodule,M,presentedbyistotallyre exive.Moreover,the rstsyzygyofMispresentedby ,andtheminimalfreeresolutionofMisperiodicofperiod2.ToprovethatMisindecomposable,assumethatthereexistmatricesA=(aij)andB=(bij)inGL2(R),suchthatABisadiagonalmatrix;i.e.theequalities0=(a12b22)s+((a11+a12)b12�a11b22)t+(a12b12+(a11+a12)b22)u�(a12b12+a11b22)v(2)and0=(a22b21)s+((a21+a22)b11�a21b21)t+(a22b11+(a21+a22)b21)u�(a22b11+a21b21)v(3)hold.AsthematricesAandBareinvertible,neitherhasaroworacolumnwithbothentriesinm.Sincetheelementss,t,u,andvarelinearlyindependentmodulom2,itfollowsfrom(2)thata12b22isinm.Assumethata12isinm,thena11anda22arenotinm.Italsofollowsfrom(2)thata12b12+a11b22isinm,whichforcestheconclusionb222m.However,thisimpliesthatb21isnotinm,soa22b21isnotinmwhichcontradicts(3).Aparallelargumentshowsthatalsotheassumptionb222mleadstoacontradiction.ThusMisindecomposable.10.Familiesofnon-isomorphicmodulesofinfinitelengthMostavailableproofsoftheexistenceofin nitefamiliesoftotallyre exivemodulesarenon-constructive.Intheprevioussectionswehavepresentedconstructionsthatapplytolocalringswithexactzerodivisors.In[12]Holmgivesadi erentconstruction;itappliestoringsofpositivedimensionwhichhaveaspecialkindofexactzerodivisors.Hereweprovideonethatdoesnotdependonexactzerodivisors.(10.1)Construction.Let(R;m)bealocalringandlet{=fx1;:::;xegbeaminimalsetofgeneratorsform.LetNbea nitelygeneratedR-moduleandletN1beits rstsyzygy.LetFNbeaprojectivecover,andconsidertheelement:0�!N1�!F�!N�!0inExt1R(N;N1).Fori2f1;:::;egandj2Nrecallthatxjiisthesecondrowinthediagram:0// N1// xji F//  N// 0xji:0// N1!(i;j)// P(i;j)// N// 0;wheretheleft-handsquareisthepushoutofalongthemultiplicationmapxji.Thediagramde nesP(i;j)uniquelyuptoisomorphismofR-modules.SetP({;N)=fP(i;j)j16i6e;j2Ng;notethateverymoduleinP({;N)canbegeneratedby R0(N)+ R1(N)elements.(10.2)Lemma.Let(R;m)bealocalringandletNbea nitelygeneratedR-module.If,forsomeminimalset{=fx1;:::;xegofgeneratorsform,thesetP({;N)containsonly nitelymanypairwisenon-isomorphicmodules,thentheR-moduleExt1R(N;N1)has nitelength. BRAUER{THRALLFORTOTALLYREFLEXIVEMODULES33Proof.Let{=fx1;:::;xegbeaminimalsetofgeneratorsformandassumethatP({;N)containsonly nitelymanypairwisenon-isomorphicmodules.Givenanindexi2f1;:::;eg,thereexistpositiveintegersmandnsuchthatthemod-ulesP(i;m)andP(i;n+m)areisomorphic.Sincexn+miequalsxni(xmi),themo-duleP(i;n+m)comesfromthepushoutof!(i;m)alongthemultiplicationmapxni;cf.Construction(10.1).Thusthereisanexactsequence0�!N1 ��!N1P(i;m)�!P(i;n+m)�!0;where =�xni�!(i;m).ItfollowsfromtheisomorphismP(i;m)=P(i;n+m)andMiyata'stheorem[16]thatthissequencesplits.Hence,itinducesasplitmonomorphismExt1R(N;N1)Ext1R(N; )��������!Ext1R(N;N1)Ext1R(N;P(i;m)):Let bealeft-inverseofExt1R(N; ),setmi=mandnoticethattheelementxmii= Ext1R(N; )(xmii)= �xn+mii0=xn+mii �0belongstomn+miExt1R(N;N1).Foreveryindexi2f1;:::;egletmibethepositiveintegerobtainedabove.Withh=m1++methereisaninclusionmhExt1R(N;N1)mh+1Ext1R(N;N1),soNakayama'slemmayieldsmhExt1R(N;N1)=0.(10.3)Theorem.Let(R;m)bealocalringandlet{=fx1;:::;xegbeaminimalsetofgeneratorsform.Ifthereexistsatotallyre exiveR-moduleNandaprimeidealp6=msuchthatNpisnotfreeoverRp,thenthesetP({;N)containsin nitelymanyindecomposableandpairwisenon-isomorphictotallyre exiveR-modules.Proof.ItfollowsfromtheassumptionsonNthateverymoduleinthesetP({;N)istotallyre exiveandthattheR-moduleExt1R(N;N1)hasin nitelength,asitssupportcontainstheprimeidealp6=m.By(10.2)thesetP({;N)containsin nitelymanypairwisenon-isomorphicmodules.EverymoduleinP({;N)isminimallygeneratedbyatmost R0(N)+ R1(N)elements;seeConstruction(10.1).Therefore,everyin nitecollectionofpairwisenon-isomorphicmodulesinP({;N)containsin nitelymanyindecomposablemodules.AcknowledgmentsItisourpleasuretothankManojKumminiandChristopherMonicoforhelpfulconversationsrelatedtosomeofthematerialinthispaper.References1.MauriceAuslanderandMarkBridger,Stablemoduletheory,MemoirsoftheAmericanMath-ematicalSociety,No.94,AmericanMathematicalSociety,Providence,R.I.,1969.MR02696852.WinfriedBrunsandUdoVetter,Determinantalrings,LectureNotesinMathematics,vol.1327,Springer-Verlag,Berlin,1988.MR9539633.Ragnar-OlafBuchweitz,Gert-MartinGreuel,andFrank-OlafSchreyer,Cohen-Macaulaymod-ulesonhypersurfacesingularitiesII,Invent.Math.88(1987),no.1,165{182.MR8770114.LarsWintherChristensen,AndersFrankild,andHenrikHolm,OnGorensteinprojective,injectiveand atdimensions|Afunctorialdescriptionwithapplications,J.Algebra302(2006),no.1,231{279.MR22366025.LarsWintherChristensen,GregPiepmeyer,JanetStriuli,andRyoTakahashi,FiniteGoren-steinrepresentationtypeimpliessimplesingularity,Adv.Math.218(2008),no.4,1012{1026.MR2419377 34L.W.CHRISTENSEN,D.A.JORGENSEN,H.RAHMATI,J.STRIULI,ANDR.WIEGAND6.LarsWintherChristensenandOanaVeliche,Acyclicityoverlocalringswithradicalcubezero,IllinoisJ.Math.51(2007),no.4,1439{1454.MR24174367.AldoConca,Grobnerbasesforspacesofquadricsoflowcodimension,Adv.inAppl.Math.24(2000),no.2,111{124.MR17489658.VesselinN.GasharovandIrenaV.Peeva,Boundednessversusperiodicityovercommutativelocalrings,Trans.Amer.Math.Soc.320(1990),no.2,569{580.MR9673119.In^esB.HenriquesandLianaM.Sega,FreeresolutionsovershortGorensteinlocalrings,Math.Z.,onlineNovember2009,19pp.PreprintarXiv:0904.3510v2[math.AC].10.JurgenHerzog,RingemitnurendlichvielenIsomorphieklassenvonmaximalen,unzerlegbarenCohen-Macaulay-Moduln,Math.Ann.233(1978),no.1,21{34.MR046315511.MelvinHochsterandDanLaksov,Thelinearsyzygiesofgenericforms,Comm.Algebra15(1987),no.1-2,227{239.MR87697912.HenrikHolm,Constructionoftotallyre exivemodulesfromanexactpairofzerodivisors,preprint,2010,arXiv:1002.0419v1[math.AC].13.RogerA.HornandCharlesR.Johnson,Matrixanalysis,CambridgeUniversityPress,Cam-bridge,1985.MR83218314.DavidA.JorgensenandLianaM.Sega,Independenceofthetotalre exivityconditionsformodules,Algebr.Represent.Theory9(2006),no.2,217{226.MR223836715.ClasLofwall,Onthesubalgebrageneratedbytheone-dimensionalelementsintheYonedaExt-algebra,Algebra,algebraictopologyandtheirinteractions(Stockholm,1983),LectureNotesinMath.,vol.1183,Springer,Berlin,1986,pp.291{338.MR84645716.TakehikoMiyata,Noteondirectsummandsofmodules,J.Math.KyotoUniv.7(1967),65{69.021458517.GunterScheja,UberdieBettizahlenlokalerRinge,Math.Ann.155(1964),155{172.MR016281918.Jean-PierreSerre,Surlesmodulesprojectifs,SeminareDubreil.Algebraettheoriedesnom-bres,tome14,no.1,exp.no.2(Paris),Secretariatmathematique,1960/61,pp.1{16.19.YujiYoshino,ModulesofG-dimensionzerooverlocalringswiththecubeofmaximalidealbeingzero,Commutativealgebra,singularitiesandcomputeralgebra(Sinaia,2002),NATOSci.Ser.IIMath.Phys.Chem.,vol.115,KluwerAcad.Publ.,Dordrecht,2003,pp.255{273.MR2030276L.W.C.DepartmentofMath.andStat.,TexasTechUniversity,Lubbock,TX79409,U.S.A.E-mailaddress:lars.w.christensen@ttu.eduURL:http://www.math.ttu.edu/~lchristeD.A.J.DepartmentofMathematics,UniversityofTexas,Arlington,TX76019,U.S.A.E-mailaddress:djorgens@uta.eduURL:http://dreadnought.uta.edu/~daveH.R.DepartmentofMath.andStat.,TexasTechUniversity,Lubbock,TX79409,U.S.A.Currentaddress:MathematicsDepartment,SyracuseUniversity,Syracuse,NY13244,U.S.A.E-mailaddress:hrahmati@syr.eduJ.S.DepartmentofMath.andC.S.,FairfieldUniversity,Fairfield,CT06824,U.S.A.E-mailaddress:jstriuli@fairfield.eduURL:http://www.faculty.fairfield.edu/jstriuliR.W.DepartmentofMathematics,UniversityofNebraska,Lincoln,NE68588,U.S.A.E-mailaddress:rwiegand1@math.unl.eduURL:http://www.math.unl.edu/~rwiegand1