/

1 Doubling Time De64257nition of doubling time The time required for each doubling in exponential growth is called the doubling time After a time an exponentially growing quantity with a doubling time double increases in size by a factor of double ID: 36777

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter Exponential Astonishment Lectur..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

## Presentation Transcript

Chapter8:ExponentialAstonishmentLecturenotesMath1030SectionB Ex.2Compoundinterestisaformofexponentialgrowthbecauseaninterestbearingaccountgrowsbythesamepercentageeachyear.Supposeyourbankaccounthasadoublingtimeof13years,bywhatfactordoesyourbalanceincreasein50years? Ex.3Worldpopulationgrowth.Worldpopulationdoubledfrom3billionin1960to6billionin2000.Supposethatworldpopulationcontinuestogrowwithadoublingtimeof40years.Whatwillthepopulationbein2030?in2200?2 Chapter8:ExponentialAstonishmentLecturenotesMath1030SectionB SectionB.3:ExponentialDecayandHalf-Life Exponentialdecayandhalf-life Exponentialdecayoccurswheneveraquantitydecreasesbythesamepercentageineveryxedtimeperiod.Inthatcase,thevalueofthequantityrepeatedlydecreasestohalfitsvalue,witheachhalvingoccurringinatimecalledthehalf-life=Thalf�life.Afteratimet,anexponentiallydecayingquantitywithahalf-timetimeThalf�lifedecreasesinsizebyafactorof1 2t Thalf�lifeThenewvalueofthedecayingquantityisrelatedtoitsinitialvalue(att=0)bynewvalue=initialvalue1 2t Thalf�life Ex.6Youmayhaveheardhalf-livesdescribedforradioactivematerialssuchasuraniumorplutonium.Forexample,radioactiveplutonium-239(Pu-239)hasahalf-lifeofabout24;000years.Supposethat100poundsofPu-239isdepositedatanuclearwastesite.Howmuchplutoniumwehaveafter24;000years?Andafter48;000years?Andafter72;000years?4 Chapter8:ExponentialAstonishmentLecturenotesMath1030SectionB SectionB.4:TheApproximateHalf-LifeFormula Denitionofapproximatehalf-lifeformula Theapproximatedoublingtimeformula(theruleof70)foundearlierworksequallywellforexponentialdecayifwereplacethedoublingtimewiththehalf-lifeandthepercentagegrowthratewiththepercentagedecayrate.ForaquantitydecayingexponentiallyatarateofP%pertimeperiod,thehalf-lifeisapproxi-matelyThalf�life70 PThisapproximationworksbestforsmalldecayratesandbreaksdownfordecayratesoverabout15%. Ex.9SupposethatinationcausesthevalueoftheRussianrubletofallatarateof12%peryear(relativetothedollar).Approximatelyhowlongdoesittakefortherubletolosehalfitsvalue?6 Chapter8:ExponentialAstonishmentLecturenotesMath1030SectionB Ex.11SupposetheRussianrubleisfallinginvalueagainstthedollarat12%peryear.Usingtheexacthalf-lifeformula,determinehowlongittakestherubletolosehalfitsvalue.8