/
Coding for a network coded fountain Coding for a network coded fountain

Coding for a network coded fountain - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
419 views
Uploaded On 2016-07-25

Coding for a network coded fountain - PPT Presentation

b1 b2 b3 b4 b5 b6 G1 G2 G3 G4 G5 Fig2Tannergraphforencodingandtransmittingoftherstvebatches 0 1 KFirstsamplethedistribution whichreturnsadegreediwithprobability diThenuniformlyatrandomc ID: 328647

b1 b2 b3 b4 b5 b6 G1 G2 G3 G4 G5 Fig.2.Tannergraphforencodingandtransmittingoftherstvebatches.( 0; 1;; K):Firstsamplethedistribution whichreturnsadegreediwithprobability di;Thenuniformlyatrandomc

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Coding for a network coded fountain" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

alsotaketheadvantagesofnetworkcoding.BATScodesarefullycompatiblewithlinearnetworkcodingbyemployinganewdesignfreedomcalledbatch.AbatchisasetofMpacketsgeneratedbyusingasamesubsetofinputpackets.TheencodingcomplexityofaBATScodeisO(TKM)andthecorrespondingdecodingcomplexityisO(KM2+TKM).Moreover,whenapplyingBATScodes,anintermediatenodeusesO(TM)timetorecodeapacketandbuffersO(M)packets.Asanend-to-endcodingschemeworkingatthesourceanddestinationnodes,BATScodesaresuitableforalargerangeofnetworksaslongastheend-to-endoperationonthepacketsofabatchisalineartransformation,whichcanbedifferentfordifferentbatches.BATScodesarerobustagainstdynamicalnetworktopologyandpacketlosssincetheend-to-endoperationremainslinear.Moreover,BATScodesworkwithrandomlinearnetworkcodingwithsmallniteelds.Mostexistingworksonrandomlinearnetworkcodingrequiresalargeeldsizetoguaranteeafullrankforthetransfermatrix.ForBATScodes,however,thetransfermatricesofthebatchesareallowedtohavearbitraryrankdeciency.Thelineartransformationonbatchescanbemodelledbyalinearoperatorchannel(LOC),achannelmodelstudiedforlinearnetworkcoding[13].WeverifytheoreticallyforcertaincasesanddemonstratenumericallyforthegeneralcasesthatBATScodesachieveratesveryclosetothecapacityofmemorylessLOCs.ThebatchsizeMdeterminesthetradeoffbetweenthecomplexityandthemaximumachievablerate.WhenM=1,BATScodesdegeneratetoLTcodes,whichhavethelowestcomplexitybutwithoutthebenetofnetworkcoding.WhenM=K,BATScodeshasthesamecomplexityofrandomlinearnetworkcoding,andatthesametimethepotentialofnetworkcodingcanbefullyrealized.II.BATCHEDSPARSE(BATS)CODESConsiderencodingKinputpackets,eachofwhichhasTsymbolsinaniteeldFwithsizeq.Apacketisdenotedbyacolumnvector.Inthefollowingdiscussion,weequateasetofpacketstothematrixformedbyjuxtaposingthepacketsinthisset.Forexample,thesetoftheinputpacketsisdenotedbythematrixB=b1;b2;;bK;wherebiistheithinputpackets.Whentreatingasaset,wealsowritebi2B,B0B,etc.Weuserk(A)todenotethematrixrankofA.A.EncodingofBatchesAbatchisasetofMcodedpacketsgeneratedfromasubsetoftheseinputpackets.Fori=1;2;:::,theithbatchXiisgeneratedusingasubsetBiBoftheinputpacketsasXi=BiGi;whereGiiscalledthegeneratormatrixoftheithbatch.WecallthepacketsinBithecontributorsoftheithbatch.TheformationofBidependsonadegreedistribution = b1 b2 b3 b4 b5 b6 G1 G2 G3 G4 G5 Fig.2.Tannergraphforencodingandtransmittingoftherstvebatches.( 0; 1;; K):Firstsamplethedistribution whichreturnsadegreediwithprobability di;ThenuniformlyatrandomchoosediinputpacketsformingBi.Thedesignof isdiscussedlaterinSectionIII.ThedimensionofGiisdiM.TherearetwooptionsfordesigningGi.i)Giarepre-designed.ii)Giaregeneratedonthey.Inthispaper,weanalyzeBATScodeswithrandomgeneratormatrices,i.e.,allthecomponentsofGiareindependentlychosen,uniformlyatrandombytheencoder.Randomgenerationmatrixisnotonlygoodforanalysis,butalsoimplementable.E.g.,Gi,i=1;2;,canbegeneratedbyapseudorandomgeneratorandcanberecoveredinthedestinationsbythesamepseudorandomgenerator.TheencodingofBATScodescanbedescribedbyTannergraphs.ATannergraphhasKvariablenodes,wherethevariablenodeicorrespondstotheithinputpacketbi,andnchecknodes,wherethechecknodejcorrespondstothejthbatchXj.Checknodejisconnectedtovariablenodeiifbiisacontributorofbatchj.Fig.2illustratesanexampleofTannergraphforencoding.B.TransmissionofBatchesTotransmitabatch,thesourcenodetransmitsthepacketsinthebatch.Nofeedbackisrequiredtostopthetransmissionofeachbatch.BATScodesareratelesscodes,i.e.,thenumberofbatchesthatcanbetransmittedisnotxed.Whenapplyinglinearnetworkcoding,anintermediatenodeencodesthereceivedpacketsofabatchintonewpacketsusinglinearcombinationsandtransmitthesenewpacketsonitsoutgoinglinks.Thesenewpacketsareconsideredtobeinthesamebatch.Theruleisthatthepacketsindifferentbatchesarenotmixedinsidethenetwork.BATScodesarerobustagainstdynamicalnetworktopologyandpacketlosssincetheend-to-endoperationremainslinear.ToapplyBATScodes,wefurtherneedtoconsiderhowtoschedulethetransmissionofbatchesinthesourcenodeandtheintermediatenodesandhowtomanagethebuffersattheintermediatenodes.Thedesignofthesenetworkoperationsvariesfordifferentapplications.Forexample,fortheletrans-missioninadirectedacyclicnetwork,whentheintermediatenetworknodesdonotrequirethele,sequentialschedulingofbatchesatthesourcenodeandtheintermediatenodescanminimizethebufferrequirementattheintermediatenodes.Incontrast,fortheledistributioninapeer-to-peernetwork,sinceallnetworknodesrequestthele,randomschedulingofbatchescanreducetheprotocoloverhead. andforachecknodewithdegreed,theprobabilitythatithasrankrishd;r=Prfrk(GdH)=rg,whereGdisadMrandommatrixwithuniformi.i.dcomponents.ThegeneratormatrixofabatchwithdegreedisjustaninstanceofGd.hd;rcanbecomputedusingonlytherankdistributionofH(see[15]fortheexpression).Forconvenience,wealsocallthepair(d;r)thedegreeofachecknode.Let d;r= dhd;rbetheprobabilitythatachecknodehasdegree(d;r).AdecodinggraphwithKvariablenodesandnchecknodesisdenotedbyBATS(K;n;f d;rg).ThedesigncodingrateoftheBATScodeis=K=n.Weusetheresultofdensityevolutiontoshowtheasymp-toticdecodingperformanceofasequenceofdecodinggraphBATS(K;n;f d;rg)withconstant.WeapplyWormald'stheorem[16]toapproximatethedensityevolutionbydiffer-entialequations.Thedetailsoftheanalysisareomittedandcanbefoundin[15].AssumethatthemaximumDsuchthat DisnonzeroisnotrelatedtoK.Let (x)=MXr=1hr;rDXd=r+1d dId�r;r(x)+MXr=1hr;rr r;wherehr;r=1�q�1 1�q�r�1hr+1;randIa;b(x)=a+b�1Xj=aa+b�1jxj(1�x)a+b�1�jiscalledregularizedincompletebetafunction.Dene~1()=(1�=C0) E[ ]( (=C0)+ln(1�=C0));whereC0==E[ ].WeobtainthefollowingsufcientconditionofthedegreedistributionsuchthattheBPdecodingofBATScodessucceedswithhighprobabilitywhenKissufcientlylarge.Theorem1:ConsiderasequenceofdecodinggraphBATS(K;n;f d;rg)withconstant.Forany�0,consideradegreedistributionwith~1()for2[0;C0(1�)].ThereexistconstantK0,candc0suchthatwhenKK0,withprobabilityatleast1�cn7=24exp(�c0n1=8),thedecodingterminateswithatmostKinputpacketserased.Theorem1enablesustoconsiderthefollowingoptimizationproblemtondanasymptoticallyoptimaldegreedistributionthatmaximizesthecodingrate:max(2)s.t. (x)+ln(1�x)0;0x1� d0;d=1;;DXd d=1:TheonlychannelinformationrequiredintheoptimizationproblemistherankdistributionofH.WecanfurthershowthatusingD&#x-278;dM=e�1doesnotgivebetteroptimalvalueintheaboveoptimizationproblem.ThuswesetD=dM=e�1,whichcompliesourassumptionthatDisnotrelatedtoK.IV.ACHIEVABLERATESThecodingrateofaBATScodesisgivenbytheaveragenumberofpacketsthatcanbetransmittedusingonebatch.Theratecanalsobenormalizedbythebatchsize.A.AsymptoticallyAchievableRatesTheBPdecodingalgorithm,ifsucceeds,recoversatleast(1�)Kpackets.Thus,themaximumachievablerateofBATScodesisatleast^(1�),where^istheoptimalvalueoftheoptimizationproblem(2).Intermsofpacketsperuse,thecapacityofaLOCwiththetransfermatrixHisE[rk(H)][13].AschannelcodesforLOCs,themaximumachievablerateofBATScodesisupperboundedbythecapacityofLOCs.So^(1�)E[rk(H)].ThemaximumachievablerateofBATScodesislowerboundedbythefollowingtheorem(provedin[15]).Theorem2:Let^betheoptimalvalueoftheoptimizationin(2).Then^maxr=1;2;;Mrhr;r:Eventhoughthelowerboundgivenbythetheoremislooseingeneral,itshowsthatBATScodesachieveratesarbitrarilyclosetothecapacityforthefollowingspecialcase.WecallanLOCwithtransfermatrixHfull-rankifh1=h2==hM�1=0,wherehi=Prfrk(H)=ig.Forafull-rankLOC,^MhM;M!MhM=E[rk(H)]whentheeldsizeq!1.Sincecanbetakenarbitrarilysmall,BATScodesachieveratesarbitrarilyclosetothecapacityoffull-rankLOCsoversufcientlylargeniteelds.Toseetheachievableratesforthegeneralcases,wenu-mericallysolvetheoptimizationproblem(2)bytakingdiscretevaluesforx.Let~betheoptimalvalueofthisrelaxedversionof(2).SetM=5,q=16and=0:01.Arankdistributionfh0;h1;:::;hMgisgeneratedasfollows:First,h0=0andfori&#x-278;1,hiisindependentlyanduniformlychosenbetweenzeroandone;Then,normalizetherankdistributionsuchthatPihi=1.Wecompute~for24345rankdistributionsindependentlygeneratedandcompare(1�)~withPMr=1rhrbycomputing=(PMr=1rhr�(1�)~)=PMr=1rhr.Theresultsshowthatformorethan99%rankdistributions,issmallerthan0:05,andthelargestis0:1145.ThismeansthatBATScodesachieveratesveryclosetothecapacityevenforLOCsoversmallniteelds.Whenusinglargerelds,thegapbetweenthemaximumachievablerateandthecapacitybecomessmaller.E.g.,afterchangingtheeldsizetoq=64,formorethan99%rankdistributions,issmallerthan0:026,andthelargestreducesto0:0876.B.FiniteLengthPerformanceWeusethenetworkinFig.1toillustratetheperformanceofBATScodes.ThesourcenodesappliesBATScodeencoding.Ineachtimeslot,ssendsapackettoa.Assumetransmissionisinstantaneousandnodeareceivesthepacket,ifnoterased,atthesametimeslot.Nomatterwhetherparticularpacketsarereceivedornot,nodeatransmitsateachtimeslotalinearcombinationofthepacketsithasreceivedsofar.AfterMtime