/
“Electricity” – from the Greek word “Electricity” – from the Greek word

“Electricity” – from the Greek word - PowerPoint Presentation

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
356 views
Uploaded On 2019-06-21

“Electricity” – from the Greek word - PPT Presentation

electron elektron meaning amber The ancients knew that if you rub an amber rod with a piece of cloth it attracts small pieces of leaves or dust amber effect the object becomes electrically charged ID: 759519

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "“Electricity” – from the Greek wor..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

“Electricity” – from the Greek word electron (elektron) - meaning “amber”. The ancients knew that if you rub an amber rod with a piece of cloth, it attracts small pieces of leaves or dust. “amber effect”– the object becomes electrically charged

All physics to date has led to one primary conclusion: There are four fundamental forces:

~250 yrs or so since we first learned what electricity is

GUT - grand unified theory : Higgs boson

Strong nuclear Electromagnetic Weak nuclearGravitational

But why four?

Why

not just one master force?

The quest

for a single unified master

force is on!!!

Idea: There is one force only which manifest itself differently in different situations

Slide2

Electricity & Magnetism

static electricity (Electrostatics)Why do I get a shock when I walk across the rug and touch the door knob?Why do socks stick to my pants in the dryer?Why does my hair stick to my comb, and I hear a crackling sound ?Why does a piece of plastic refuse to leave my hand when I peel it off a package?What is lightning?

What is that all about?

It’s the CHARGE

Slide3

Electric charge is defined by the effect (force) it produces.

positive chargenegative charge

Benjamin Franklin 1706 - 1790, American statesman, philosopher and scientist)

named by

No one has ever seen electric charge;

it has no weight, color, smell, flavor, length, or width.

Charge is an intrinsic property of matter electron has it, proton has it, neutron doesn’t have it – and that’s all

Slide4

Electricity has origin within the atom itself.

 

Name

Symbol

Charge

Mass

Electron

e - e9.11x10-31 kg Proton p e1.67x10-27 kg Neutron n none1.67x10-27 kg

Atom is electrically neutral = has no net charge,

since

it contains equal numbers of protons and electrons.

10

-10

m

10

-15

m

r

atom

≈ 100000 x

r

nucleus

m

nucleon

≈ 2000 x

m

electron

Slide5

Electric forces

charges exert electric forces on other charges

The repulsive electric force between 2 protons is

1,000,000,000,000,000,000,000,000,000,000,000,000

times stronger than the attractive gravitational force!

+

+

+

two

positive charges repel each other

two

negative charges repel each other

a

positive and negative charge attract each other

Slide6

charge is measured in Coulombs [C]

French physicist Charles A. de Coulomb

1736 - 1806

Every electron has charge -1.6 x 10-19 C, and every proton 1.6 x 10-19 C 1C represents the charge of 6.25 billion billion (6.25x1018) electrons ! Yet 1C is the amount of charge passing through a 100-W light bulb in just over a second. A lot of electrons!

Attractive force between protons and electrons cause them to form atoms.

Electrical force is behind all of how atoms

are formed and…chemistry

Slide7

The smallest amount of the free positive charge is the charge on the proton.

The smallest amount of the free negative charge is the charge on the electron.

Charge of the single proton is qproton = e

Charge of the single electron is qelectron = - e  

Charge is quantized: cannot divide up charge into smaller units than that of electron (or proton) i.e. all objects have a charge that is a whole-number multiple of charge of the smallest amount (a single e). The net charge is the algebraic sum of the individual charges (+ 5 - 3 = 2).

quarks have 1/3, but they come in triplets

let e = 1.6 x 10

-19

C

Slide8

Objects can be charged – there can be net charge on an object. How?

Everyday objects - electronically neutral – balance of charge – no net charge.

The only type of charge that can move around is the negative charge, or electrons. The positive charge stays in the nuclei. So, we can put a NET CHARGE on different objects in two ways

Add electrons and make the object negatively charged.

Remove electrons and make

the object

positively charged.

Slide9

Some materials have atoms that have outer electrons (farthest from nucleus) loosely bound. They can be attracted and can actually move into an outer orbit of another type of atom. The atom that has lost an electron has a net charge +e (positive ion). An atom that gains an extra electron has a net charge of – e (negative ion).

This type of charge transfer often occurs when two different materials (different types of atoms) come into contact.

Which object gains the electrons depends on their

electron affinity:

Slide10

During that process, the net charge produced is zero. The charges are separated, but the sum is zero. The amount of charge in the universe remains constant (we think!!) It is CONSERVED!

electrons can be transferred from one object to another

Another Law of Conservation: Charge is always conserved: charge cannot be created or destroyed, but can be transferred from one object to another.

Conclusion:

Slide11

Any material that allow charges to move about more or less freely is called conductor. So, if you transfer some electrons to the metal rod, that excess of charge will distribute itself all around rod. Tap water, human body and metals are generally good conductors.

That’s all very nice, but why is that so?

Electrical conductors, insulators, semiconductors and superconductors

- distinction

based

on their ability to conduct electric charge.

Slide12

What makes conductors conduct?

Atoms have equal numbers of positive and negative charges, so that a chunk of stuff usually has no net charge  the plusses and minuses cancel each other.However, in metal atoms the valence electrons – the electrons in the outermost orbits - are loosely bound, so when you put a bunch of metal atoms together (to form a metal) an amazing thing happens  valence electrons from each atom get confused and forget which atom they belong to.They now belong to the metal as the whole. As the result, positive ions which are tightly bound and can only oscillate around their equilibrium positions, form a positive background. All the homeless electrons - “Free electrons” wander around freely keeping ions from falling apart – metallic bond!!

Slide13

Electrons in insulators are tightly bound to atomic nuclei and so cannot be easily made to drift from one atom to the next. Only if a very strong electric field is applied, the breakthrough (molecules become ionized resulting in a flow of freed electrons) could result in destruction of the material.

The markings caused by electrical breakdown in this material – look similar to the lightening bolts produced when air undergoes electrical breakdown.

Materials like amber, pure water, plastic, glass, rubber, wood… are called

insulators.

They

do not let electricity flow through them.

Electrons are tightly bound to nuclei,

so

it is hard to make them flow. Hence, poor conductors of current and of heat.

Slide14

Conductors and Insulators

Most things are in between perfect conductor/ insulator

Electrons are free to move in a conductor

Electrons stay with their atom in an insulator

REMEMBER:

Slide15

Semiconductors

Materials that can be made to behave sometimes as insulators, sometimes as conductors.

Eg

. Silicon, germanium. In pure crystalline form, are insulators. But if replace even one atom in 10 million with an impurity atom (

ie

a different type of atom that has a different # of electrons in their outer shell), it becomes an excellent conductor.

Transistors

: thin layers of semiconducting materials joined together.

Used to control flow of currents, detect and amplify radio signals, act as digital switches…An integrated circuit contains many transistors

.

Slide16

The movement of electrons in semiconductors is impossible to describe without the aid of quantum mechanics.

As the conductivity of semiconductors can be adjusted by adding certain types of atomic impurities in varying concentrations, you can control how much resistance the product will have.

ADVANTAGE

– A HUGE ONE

Slide17

Superconductors

Have

zero resistance, infinite conductivity

Not common! Have to cool to

very,

very low temperatures.

Current passes without losing energy, no heat loss.

Discovered in 1911 in metals near absolute zero

(

recall this is 0

o

K, -273

o

C)

Discovered in 1987 in non-metallic compound (ceramic) at “high” temperature around 100 K, (-173

o

C)

Under intense research! Many useful applications

eg

.

transmission of power

without

loss,

magnetically-levitated trains…

http://science.nasa.gov/science-news/science-at-nasa/2003/05feb_superconductor

/

http://www.scicymru.info/sciwales/indexphpsectionchoose_scienceuser_typePupilpage_id11696languageEnglish.htm

Slide18

Van de Graaff

The sphere gives the girl a large negative charge. Each strand of hair is trying to:Get away from the charged sphere.Get away from the ground.Get near the ceiling.Get away from the other strands of hair.Get near the wall outlet.

Like charges attached to the hair strands repel,

causing them to get away from each other.

Example:

Slide19

What is his secret?

Slide20

Seeing the effects of charge: the electroscope

the electroscope is a simple device for observing the presence of electric chargeit consists of a small piece of metal foil (gold if possible) suspended from a rod with a metal ball at its top

If a negatively charged rod is placed near the ball,

the electrons move away because of the repulsion.

The two sides of the metal foil then separate.

++

++

Slide21

Why? Balloon becomes charged by friction when rub on hair, picking up electrons. It then polarize molecules on the surface, induces + charge layer on the wall’s surface closest to it , and next negative furthest away. So balloon is attracted to + charges and repelled by – charges in wall, but the – charges are further away so repulsive force is weaker and attraction wins.

Charge polarization is why a charged object can attract a neutral one :

Charge a comb by rubbing it through your hair, and then see it attracts bits of paper and fluff…

DEMO:

Rub balloon on your hair – it will then stick to the wall !

Slide22

You can bend water with charge!

charged rod

The water molecule

has a positive end and

a negative end.

When a negative rod is

brought near the stream

of water, all the positive

ends of the water

molecules

turn to the right

and are attracted to the

negative rod.

stream of water

What happens if the rod is charged positively?

Slide23

As we said Like charges repel, and opposite charges attract. This is the fundamental cause of almost ALL electromagnetic behavior. But how much?

How Strong is the Electric Force between two charges?

Slide24

ELECTROSTATIC – ELECTRIC - COULOMB FORCE

The force between two point charges is proportional to the product of the amount of the charge on each one, and inversely proportional to the square of the distance between them.

Force is a vector, therefore it must always have a direction.

Slide25

SHE accumulates a charge q

1

of 2.0 x 10-5 C (sliding out of the seat of a car). HE has accumulated a charge q2 of – 8.0 x 10-5 C while waiting in the wind.

a) They exert equal forces on each other only in opposite direction

b) r’ = 0.5 r

(“-“ = attractive force)

Strong force at

very small separation

spark

How many electrons is

2.0

x

10-5 C ?

What is the force between them

when

she opens the door 6.0 m from him and when their separation is reduced by a factor of 0.5?

Slide26

When you comb your hair with a plastic comb, some electrons from your hair can jump onto it making it negatively charged.

Suppose that you could borrow all the electrons from a friend’s body and put them into your pocket. The mass of electrons would be about 10 grams (a small sweet). With no electrons your friend would have a huge positive charge. You, on the other hand, would have a huge negative charge in your pocket. If you stood 10 m from your friend the attractive force would be equal to the force that 1023 tons would exert sitting on your shoulders – more 100,000 times greater than the gravitational force between the earth and the Sun. Luckily only smaller charge imbalances occur, so huge electrical forces like the one described simply do not occur.

Your body contains more than

10

28

electrons.

Slide27

Three point charges : q1= +8.00 mC; q2= -5.00 mC and q3= +5.00 mC. Determine the net force (magnitude and direction) exerted on q1 by the other two charges. If q1 had a mass of 1.50 g and it were free to move, what would be its acceleration?

1.30 m

1.30 m

23

0

23

0

q

1

q

2

q3

Force diagram

F

2

F

3

q

1

=

 

;

x-components will cancel each other

 

F =

= 0.166 N

 

 

electric force is very-very strong force, and resulting acceleration can be huge

Slide28

+

-

-

Positive charge is attracted (force to left)

Negative charge is repelled (force to right)

Positive charge is closer so force to left is larger.

A positive and negative charge with equal magnitude are connected by a

rigid rod

, and placed near a large negative charge. In which direction is the net force on the two connected charges?

1) Left

2) Zero 3) Right

Slide29

Calculate force on +2mC charge due to other two chargesCalculate force from +7mC chargeCalculate force from –3.5mC chargeAdd (VECTORS!)

Q=-3.5

m

C

Q=+7.0

m

C

Q=+2.0

m

C

6 m

4 m

F

7

5 m

F

3

F

x

= F

7

cos

q

+ F

3

cos

q

= F

7(3/5) + F3(3/5) = 3  10-3 N + 1.5  10-3 N = 4.510-3 N

Fy = F7 sin q + F3 sin q = F7(4/5) + F3(4/5) = 4  10-3 N – 2.0  10-3 N= 2.010-3 N

Slide30

Let's take a single electric charge,

Q, and put it somewhere. The space around it is different from the space without charge. We have created a situation in which we could have an electric force. All we have to do is bring in a second charge, q, to feel the force. Without q, there is no force ....but we still have the condition that we could have a force. We say that the space around charge contains ELECTRIC FIELD.

Electric Field

How to measure/find the strength (magnitude and direction) of electric field at particular location

P due to charge Q?

A test charge, q, placed at P will experience an electric force, F - either attractive or repulsive.

q

Q

r

F

P

Slide31

The magnitude of the electric field is defined as the force per unit charge.

E =

F

q

As

F contains q, E DOESN’T depend on q at all, only on Q.

Electric field at any point P in space is always in the direction of the force on a positive test charge if it were placed at the point P.

Definition of electric field, E, at a point P distance r away from Q.

q

Q

r

F

P

Slide32

The other way around:If you know electric field E at a point where you place a charge q, that charge will experience the force F:

F = q E

E

q

F

E

q

F

Slide33

+

Q=1.6x10-19 C

Electric field of a charged particle/point charge

◊ magnitude the same value on the sphere of radius r around ◊ direction – radially outward or inward

r = 1x10

-10 m

E

(to the right)

A charged particle Q creates an electric field.

q

E = 9

10

9

= 2.9

10

11 N/C

1.6

10-19

(10-10)2

E

 = k

q

F

r2

Q

E Field independent of test charge

q positive test charge

example:

Slide34

Question

Say the electric field from an isolated point charge has a certain value at a distance of 1m. How will the electric field strength compare at a distance of 2 m from the charge?

It will be ¼ as much – inverse square law for force between two charges carries over to the electric field from a point charge.

Slide35

Direction indicates direction in which a positive test charge would be pushed – direction of the force!!!.

We use “Electric Field Lines” to visualize el. field.

Convention / agreement

Slide36

Electric Field of a Point Charge

+

E

2.9

10

11

N/C

32

10

11

N/C

0.8

10

11 N/C

251011 N/C

This is becoming a mess!!!

Slide37

Slide38

Electric Field Lines

Density gives strength

# lines proportional to Q

lines never cross!

Arrow gives direction

Start on +, end on -

Slide39

negative charge

positive charge

So always point away from

+

charges, towards

charges…

Denser lines - stronger field

el. field decreases with distance

more lines revels stronger field due to greater charge

Slide40

Electric field lines can never cross. If they crossed, that would mean that a charge placed at the intersection, would be accelerated in TWO directions at once! This is impossible! If two sources are creating electric fields in the same place, we have to add the two vectors and get a resultant vector representing the NET ELECTRIC FIELD.

Slide41

Question?

What is the direction of the electric field at point C?Left Right Zero

x

y

C

Away from positive charge (right)

Towards negative charge (right)

Net E field is to right.

Slide42

Question?

What is the direction of the electric field at point A?Up Down Left Right Zero

x

A

Slide43

Question?

What is the direction of the electric field at point B?Up Down Left Right Zero

x

y

B

Slide44

Question?

What is the direction of the electric field at point A, if the two positive charges have equal magnitude?Up Down Left Right Zero

x

A

Slide45

Two different things that sound alike!

Electrical Energy and Electrical Potential

In order to bring two like charges together work must be done.   In order to separate two opposite charges, work must be done.

Recall Work:

W = F d cos(q)

As the monkey does + work on the positive charge against electric force, he increases the energy of that charge.  The closer he brings it, the more electrical potential energy it has.

Try the same thing with grav. force. It is the same!!!! charge → mass

This work done by external force against electrical force is stored as electrical PE, U.

When he let it go, the charge will gain kinetic energy and can do a work.

Slide46

Greater amount of charge → greater force needed → greater work done → greater stored potential energy U.

The SI unit of electric potential is the

volt

.

If a charge

q

at point

P

(in electric field E) has electric potential energy U, the electric potential V at that point is:

→ introducing the electrical potential energy per unit charge, known as electrical potential, which doesn’t depend on the amount of charge.

So essentially, potential energy is capacity for doing work which arises from position or configuration.

Slide47

Note important difference between energy and potential: A point has potential, charge placed there has electric potential energy

Two points that are at the same distance from the charged object have the same potential.

+

+

+

+

+

+

+

+

+

+

+

+

+

So, when two charged object are placed there, they are at the

same potential

, but the one with more charge on it has higher electric potential

energy – could do more work.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Slide48

The difference between the potentials at two different points, A & B, is equal to the change in electric potential energy between these two points or the work done per unit of positive charge in order to move it from one point to the other.

Potential Difference Between Two Points (ΔV = VB – VA)

Law of conservation of energy:

change in potential energy = change in kinetic energy

To place a charge in electric field a work has to be done on the charge. That work is stored as potential energy, U, of the charge. The point where the charge is, has potential V (charge q placed there has potential energy U =

qV). Charge placed in electric field E will experience electric force, F= qE. If the charge is free to move it will accelerate, it will gain kinetic energy and can do a work.

 

Slide49

surprise, surprise ! We use the same name for different things, and even worse we use couple of different names to express the same thing, like:

The variable we use for potential, potential difference, and the unit for potential difference (volts) is V. Cute!!!!! 

Don't let that confuse you when you see V = 1.5V

Electric potential energy is

not

the same as electrical potential.

The electron volt is not a smaller unit of the volt, it's a smaller unit of the Joule.

Electrical potential can also be described by the terms, potential difference, voltage, potential drop, potential rise, electromotive force, and EMF.  These terms may differ slightly in meaning depending on the situation.

Slide50

Electric

Current

And

Ohm’s law

Slide51

Electrical Energy Storage

◊ We can store electric energy in a capacitor :◊ Found in nearly all electronic circuits eg. in photo-flash units. ◊ Simplest is: two close but separated parallel plates. When connected to a battery electrons get transferred from one plate to the other until the potential difference between them = voltage of battery.◊ How?

Positive battery terminal attracts electrons on LH plate; these are then pumped through battery, through the terminal to the opposite plate. Process continues until no more potential difference btn plate and connected terminal.

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

Discharging: when conducting path links the two charged plates.

Discharging is what creates the flash in a camera.

If very high voltages (

eg

caps in

tv’s

), its dangerous if you are this path!

Slide52

Potential difference or Voltage (symbol V)

When the ends of an electric conductor are at different electric potential, charge flows from one end to the other. Voltage is what causes charge to move in a conductor. Charge moves toward lower potential energy the same way as you would fall from a tree. Voltage plays a role similar to pressure in a pipe; to get water to flow there must be a pressure difference between the ends, this pressure difference is produced by a pumpThat’s why we call voltage “electric pressure”A battery is like a pump for charge, it provides the energy for pushing the charges around a circuit

Slide53

Voltage and current are not the same thing

You can have voltage, but without a path (connection) there is no current.

voltage

An

electrical

outlet

Current– flow of electric charge

If I connect a battery to the ends of the copper bar the

electrons in the copper

will be pulled toward the positive side of the battery and will flow around and around.

 this is called

current

– flow of charge

copper

Duracell

+

An electric circuit!

Slide54

Electric current (symbol I)

DEF: the rate at which charge flows by a given cross-section. measured in amperes (A)

q

the flow of electric charge q that can occur in solids, liquids and gases.

Solids –

electrons in metals and graphite, and holes in semiconductors

Liquids –

positive and negative ions in molten and aqueous electrolytes

Gases –

electrons and positive ions stripped from gaseous molecules

by large potential differences.

Slide55

Electrical resistance (symbol R)

Why is it necessary to keep pushing the charges to make them move?The electrons do not move unimpeded through a conductor. As they move they keep bumping into the ions of crystal lattice which either slows them down or bring them to rest..

atoms

free electron

(actually positive ions)

path

The

resistance (R)

is a measure of the degree to which the conductor impedes the flow of current.

Resistance is measured in

Ohms

(

)

Slide56

OHM’S LAW - Current, Voltage and Resistance

DEF: Current through resistor (conductor) is proportional to potential difference on the resistor if the temperature of a resistor is constant

(than the resistance of a conductor is constant).

Other way:

if resistance R is constant/ temperature is constant

I – current V – potential difference across R

Slide57

Examples

If a 3 volt flashlight bulb has a resistance of 9 ohms, how much current will it draw? I = V / R = 3 V / 9  = 1/3 AmpsIf a light bulb draws 2 A of current when connected to a 120 volt circuit, what is the resistance of the light bulb? R = V / I = 120 V / 2 A = 60 

Slide58

Effects of electric current on the BODY- electric shock

Current (A)Effect0.001can be felt0.005painful0.010involuntary muscle contractions (spasms)0.015loss of muscle control0.070if through the heart, serious disruption; probably fatal if current lasts for more than 1 second

questionable circuits: live (hot) wire ? how to avoid being electrified?

keep one hand behind the body (no hand to hand current through the body)

2. touch the wire with the back of the hand. Shock causing muscular contraction will not cause their hands to grip the wire.

Slide59

human body resistance varies: 100 ohms if soaked with salt water; moist skin - 1000 ohms; normal dry skin – 100 000 ohms, extra dry skin – 500 000 ohms.

What would be the current in your body if you touch the terminals of a 12-V battery with dry hands? I = V/R = 12 V/100 000 W = 0.000 12 A quite harmless

But if your hands are moist (fear of AP test?) and you touch 24 V battery, how much current would you draw? I = V/R = 24 V/1000 W = 0.024 A a dangerous amount of current.

Slide60

Factors affecting resistance

Conductors, semiconductors and insulators differ in their resistance to current flow.

Slide61

Wires, wires, wires

T

he

resistance of a wire can be completely ignored – if it is a thin wire connecting two, three or more resistors,

or can become

very important if it is a long, long wire as in the case of iron, washing machine, toaster

……

The resistance of a conducting wire depends on four main factors:

• length • cross-sectional area • resistivity • temperature

Slide62

Resistance of a wire when the temperature is kept

constant is:

The resistivity,

ρ

(the Greek letter rho), is a value that only depends on the material being used.  It is tabulated and you can find it in the books. For example, gold would have a lower value than lead or zinc, because it is a better conductor than they are.

The unit is Ω•m.

Of course, resistance depends on the material being used.

In conclusion, we could say that a short fat cold wire makes the best conductor.If you double the length of a wire, you will double the resistance of the wire. If you double the cross sectional area of a wire you will cut its resistance in half.

L – length

A – cross-sectional area

Slide63

Example

A copper wire has a length of 160 m and a diameter of 1.00 mm. If the wire is connected to a 1.5-volt battery, how much current flows through the wire?

The current can be found from Ohm's Law, V = IR. The V is the battery voltage, so if R can be determined then the current can be calculated. The first step, then, is to find the resistance of the wire:

L = 1.60 m.r = 1.00 mmr = 1.72x10-8 Wm, copper - books                          

The current can now be found from Ohm's Law:

The resistance of the wire is then:

R = r L/A = (1.72x10-8 Wm)(1.67)/(7.85x10-7m2 ) = 3.50 W

I = V / R = 1.5 / 3.5 = 0.428 A

Slide64

When a current is flowing through a load such as a resistor, it dissipates energy in it. In collision with lattice ions electrons’ kinetic energy is transferred to the ions, and as a result the amplitude of vibrations of the ions increases and therefore the temperature of the device increases.That thermal energy (internal energy) is then transferred as heat (to the air, food, hair etc.) by convection, or radiated as light (electric bulb). Where is that energy coming from? This energy is equal to the potential energy lost by the charge as it moves through the potential difference that exists between the terminals of the load.

DEF: Power is the rate at which electric energy is converted into another form such as mechanical energy, heat, or light.

Power dissipation in resistors

DEF: Electric power is the rate at which energy

is supplied to or used by a device.

Slide65

Power is measured in J s-1 called watts W.If a vacuum cleaner has a power rating of 500 W, it meansit is converting electrical energy to mechanical, soundand heat energy at the rate of 500 J s-1. A 60 W light globeconverts electrical energy to light and heat energy at therate of 60 J s -1.

Appliance Power ratingBlow heater 2 kWKettle 1.5 kWToaster 1.2 kWIron 850 WVacuum cleaner 1.2 kWTelevision 250 W

Slide66

Basic definition of power:

Deriving expressions for determining power

Remember: W = qV

→ and I = q/t, so

P = I V

P = IV = V

2

/R = I

2

R

Slide67

Look at your hair dryer. If label says “10 A”, that means that the power of the hair dryer is 10x120=1200 W, or 1.2 kW (using a standard US 120 V outlet).

In USA you can not get direct information on power of appliance   you buy.

Comparison of US and other countries that use voltage of 240 V. As the power of appliances is the roughly the same, the appliances in USA have to draw a greater current, hence have to have less resistance. As the consequence the wires (both used for connecting and in appliances) are thicker in USA.

example

How much current is drawn by a 60 Watt light bulb connected to a 120 V power line?

P = 60 W = I V = I x 120

so I =

0.5 A

What is the resistance of the bulb?

I = V/R R = V/I = 120 V/0.5 A

R = 240 

Slide68

Paying for electricity

You pay for the total amount of electrical energy (not power) that is used each monthIn Irving the cost of electric energy used is 14 ¢ per kilowatt-hour. How do we get kilowatt-hour and what is that? Power = energy/timeEnergy = power x time, so energy can be expressed in units watts x second what is simply a joule.

Physicists measure energy in joules, but utility companies customarily charge energy in units of kilowatt-hours (kW h), where :

Kilowatt-hour (kWh) = 103 W x 3600 s

1 kWh = 3.6 x 106 J

1W x 1s = 1J

Slide69

$$$ example $$$

At a rate of 14 cents per kWh, how much does it cost to keep a 100 W light bulb on for one day?

energy (kWh) = power (kW) x time (h)

energy (kWh) = 0.1 kW x 24 h = 2.4 kWh

cost / day = 2.4 kWh x 14 cents/kWh = 33.6

¢

for one month that amounts to

$ 10.1.

Slide70

Direct Current (DC) electric circuits

a circuit containing a battery is a DC circuitin a DC circuit the current always flows in the same direction. The direction of the current depends on how you connect the battery Either way the bulb will be on.

Duracell

+

The electrons go one way but the current flows the

opposite to the direction that the electrons travel.

That’s convention.

a circuit must provide a closed path for the current to circulate around

when the electrons pass through the light bulb they loose some of their energy

 the conductor (resistor) heats up

the battery is like a pump that re-energizes them each time they pass through it

hystoric explanation

click me

Slide71

When a battery is connected across the ends of a metal wire, an electric field is produced in the wire. All free electrons in the circuit start moving at the same time. Free electrons are accelerated along their path reaching enormous speeds of about 106 ms-1. They collide with positive ions of crystal lattice generating heat that causes the temperature of the metal to increse. After this event, they are again accelerated because of the electric field, until the next collision occurs. Due to the collisions with positive ions of crystal lattice, hence changing direction, it is estimated that the drift velocity is only a small fraction of a metre each second (about 10-4 m s-1).

Drift speed

example: in an el. circuit of a car, electrons have average drift speed of about 0.01 cm/s, so it takes ~ 3 hour for an electron to travel through 1m. it’s not even a snail’s pace!!!!!

Slide72

the electricity that you get from the power company is not DC it is AC (alternating) created by an AC electric generator.In an AC circuit the current reverses direction periodically

_

+

The current in AC electricity alternates in direction. The back-and-forth motion occurs at freq. of 50 or 60 Hz, depending on the electrical system of the country.

AC movement of electrons in a wire

!!!!!!! the source of electrons is wire itself – free electrons in it !!!!!!

If you are jolted by electric shock, electrons making up the current in your body originate in your body. They do NOT come from the wire through your body into the ground. Alternating electric field causes electrons to vibrate. Small vibrations – tingle; large vibrations can be fatal.

Slide73

current

time

AC

current

time

DC

How does the voltage and current change in time?

DC does not change direction over time;

the actual voltage in a 120-V AC circuit varies between +170V and -170V peaks.

Slide74

AC vs. DC current

for heaters, hair dryers, irons, toasters, waffle makers, the fact that the current reverses makes no difference. They can be used with either AC or DC electricity.battery chargers (e.g., for cell phones) convert the AC to DCWhy do we use AC ?? DC seems simpler?late 1800’s  the war of the currentsEdison (DC) vs Tesla (Westinghouse) (AC)Edison opened the first commercial power plane for producing DC in NY in 1892Tesla who was hired by George Westinghouse believed that AC was superiorTesla was right, but Edison never gave up!

Slide75

Why AC is better than DC

DC power is provided at one voltage onlyThe major advantage: AC voltages can be transformed to higher or lower voltages (can be stepped up or down to provide any voltage required)This means that the high voltages used to send electricity over great distances from the power station can be reduced to a safer voltage for use in the house. This is done by the use of a transformer. DC is very expensive to transmit over large distances compared to AC (more loss to heat), so many plants are requiredDC power plants must be close to usersAC plants can be far outside citiesby 1895 DC was out and AC was in

Slide76

D.C. circuit analysis

An electric circuit has three essential components

1. A source of emf.2. A conducting pathway obtained by conducting wires or some alternative.3. A load to consume energy such as a filament globe, other resistors and electronic components.

Electric Circuits: Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually provided by an electric switch that can be opened or closed to either cut off or allow electron flow.

When the switch is closed, a current exists almost immediately in all circuit. The current does not “pile up” anywhere but flows through the whole circuit. Electrons in all circuit begin to move at once. Eventually the electrons move all the way around the circuit. A break anywhere in the path results in an open circuit, and the flow of electrons ceases.

Slide77

In the mid-nineteenth century,

G.R. Kirchoff

(1824-1887) stated two simple rules using the laws of conservation of energy and charge to help in the analysis of direct current circuits.

These rules are called Kirchoff’s rules.

Slide78

‘The sum of the currents flowing into a point in a circuit equals the sum of the currents flowing out at that point’.

1. Junction rule – conservation of charge.

I1 + I2 = I3 + I4 + I5

2. loop rule – conservation of energy principle: Energy supplied equals the energy released in this closed path

‘In a closed loop, the sum of the emfs equals the sum of the potential drops’.

V = V1 + V2 + V3

Slide79

Burning out of one of the lamp filaments or simply opening the switch could cause such a break.

Resistors in Series

connected in such a way that all components have the same current through them.

logic: the total or effective resistance would have length L1+ L2+ L3and resistance is proportional to the length

Equivalent or total or effective resistance is the one that could replace all resistors resulting in the same current.

Slide80

Resistors in Parallel

Electric devices connected in parallel are connected to the same two points of an electric circuit, so all components have the same potential difference across them.• The current flowing into the point of splitting is equal to the sum of the currents flowing out at that point: I = I1 + I2 + I3.

A break in any one path does not interrupt the flow of charge in the other paths. Each device operates independently of the other devices. The greater resistance, the smaller curent.

equivelent resistance is smaller than the smallest resistance.

Slide81

Slide82

RESISTORS IN COMPOUND CIRCUITS

Now you can calculate current, potential drop and power dissipated through each resistor

Slide83

http://phet.colorado.edu/en/simulation/circuit-construction-kit-dc-virtual-lab

http://www.saaphysics.com/CircuitsPracticeQuiz.htm

http

://

www.glencoe.com/qe/science.php?qi=2246

Slide84

example: Find power of the source, current in each resistor, terminal potential, potential drop across each resistor and power dissipated in each resistor.

R

eq = 120 W

I = ε/Req = 0.3 A

terminal potential: V = ε – Ir = 36 – 0.3x6.7 = 34 V

current through resistors 100Ω and 50Ω : I = I1 + I2 I1R1 = I2R2

0.3 = I1 + I2 100 I1 = 50 I2 → I1 = 0.1 A I2 = 0.2 A

 potential drops V = IRpower dissipated P = IV 80 Ω 0.3x80 = 24 V0.3x24 = 7.2 W100 Ω0.1x100 = 10 V0.1x10 = 1 W 50 Ω0.2x50 = 10 V0.2x10 = 2 W 6.7 Ω0.3x6.7 = 2 V0.3x2 = 0.6 W

ε = Σ all potential drops36 V = 2 V + 24 V + 10 V

power dissipated in the circuit = power of the source

0.6 + 2 + 1 + 7.2 = 0.3x36

Slide85

In practical use, we need to be able to measure currents through components and voltages across various components in electrical circuits. To do this, we use AMMETERS and VOLTMETERS.

Ammeters and voltmeters

Slide86

An ammeter – measures current passing through it• is always connected in series with a component we want to measure in order that whatever current passes through the component also passes the ammeter.• has a very low resistance compared with theresistance of the circuit so that it will not alter thecurrent the current being measured.• would ideally have no resistance with no potentialdifference across it so no energy would be dissipated in it.

Slide87

A voltmeter – measures voltage drop between two points• is always connected across a device (in parallel).• has a very high resistance so that it takes very littlecurrent from the device whose potential differenceis being measured.• an ideal voltmeter would have infinite resistance with no current passing through it and no energy would be dissipated in it.