PPT-Equalizer: Dynamically Tuning GPU Resources for Efficient E

Author : myesha-ticknor | Published Date : 2016-03-31

Ankit Sethia Scott Mahlke University of Michigan Graphics Simulation Linear Algebra Data Analytics Machine Learning Computer Vision Resource Requirements of GPU

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Equalizer: Dynamically Tuning GPU Resour..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Equalizer: Dynamically Tuning GPU Resources for Efficient E: Transcript


Ankit Sethia Scott Mahlke University of Michigan Graphics Simulation Linear Algebra Data Analytics Machine Learning Computer Vision Resource Requirements of GPU applications are diverging. . Sorba. Managing Director. Reggie Lee. Sales Director. Chris Sumer. Production Director. Pat Hall. Production Director. Nicky Darling. Finance Director. Tina . Kizer. Production Lead. Ron Yates. Production Lead. Embedded CPU-GPU Architectures. Xuntao Cheng. , Bingsheng He, Chiew Tong Lau. Nanyang Technological University, Singapore. 1. Outline. Motivations. System Design. Evaluations. Conclusion. 2. Query Processing in the Era of IoT. Presented . by:. . Rastislav Vajdák. . Senior Test Engineer. . . Oxymat. -Slovakia, s.r.o.. Fine tuning and setting PSA. OC input / output parameters. Tools. Start . o. f system to test . Paolo Romano. Based on ICAC’14 paper. N. . . Diegues. and Paolo Romano. Self-Tuning Intel Transactional Synchronization Extensions. 11. th . USENIX International Conference . on Autonomic Computing (. When and How to Improve Code Performance?. Ivaylo Bratoev. Telerik Corporation. www.telerik.com. Actual . vs. Perceived Performance. Example: . “Vista's file copy performance is noticeably worse than Windows XP” . By Hilary . Janysek. What’s the difference?. Intonation: . . (noun) The correct or accurate pitching (placement) of intervals; the capacity to play or sing in tune.. Tuning: . . (verb) to adjust to the correct or given standard of pitch. . S. liding Mode Control. Application of an Auto-Tuning Neuron. to Sliding Mode Control. Wei-Der Chang, Rey-Chue Hwang, and Jer-Guang . Hsieh. IEEE . TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER . Kevin Jamison. Brenda Bushell. Shih-Chieh Hsu. April 30, 2013. Register Test. 4/30/13. Further studies of the FEI3 TDAC tuning. Brenda Bushell Kevin Jamison. 2. Checks the connection of all the components involved in readout. Add GPUs: Accelerate Science Applications. © NVIDIA 2013. Small Changes, Big Speed-up. Application Code. . GPU. C. PU. Use GPU to Parallelize. Compute-Intensive Functions. Rest of Sequential. CPU Code. Kadin Tseng. Boston University. Scientific Computing and Visualization. Outline. Introduction. Timing. Example Code. Profiling. Cache. Tuning. Parallel Performance. Code Tuning and Optimization. 2. Introduction. The Tuning Process. Benefits of Tuning. Why Tuning is Different. What is Tuning?. A collaborative, faculty-driven . process that . “harmonizes” curricula around defining what a . student should know and be able to do in a chosen . CS 179: GPU Programming Lecture 7 Week 3 Goals: Advanced GPU- accelerable algorithms CUDA libraries and tools This Lecture GPU- accelerable algorithms: Reduction Prefix sum Stream compaction Sorting (quicksort) . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:. Cooperative Computing. Di Wu, Fan Zhang, . Naiyong. . Ao. , Gang Wang, . Xiaoguang. Liu, Jing Liu. Nankai. -Baidu Joint Lab, . Nankai. University. Introduction. Cooperative Model. GPU Batching Algorithm.

Download Document

Here is the link to download the presentation.
"Equalizer: Dynamically Tuning GPU Resources for Efficient E"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents