/
IEEE TRANSACTIONS ON INFORMATION THEORY VOL IEEE TRANSACTIONS ON INFORMATION THEORY VOL

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
471 views
Uploaded On 2014-12-21

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PPT Presentation

45 NO 5 JULY 1999 SpaceTime Block Codes from Orthogonal Designs Vahid Tarokh Member IEEE Hamid Jafarkhani and A R Calderbank Fellow IEEE Abstract We introduce spacetime block coding a new par adigm for communication over Rayleigh fading channels u ID: 27296

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON INFORMATION THEORY ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999Space±TimeBlockCodesfromOrthogonalDesignsVahidTarokh,Member,IEEE,HamidJafarkhani,andA.R.Calderbank,Fellow,IEEEAbstractÐWeintroducespace±timeblockcoding,anewpar-adigmforcommunicationoverRayleighfadingchannelsusingmultipletransmitantennas.Dataisencodedusingaspace±timeblockcodeandtheencodeddataissplitintostreamswhicharesimultaneouslytransmittedusingtransmitantennas.Thereceivedsignalateachreceiveantennaisalinearsuperposition TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNSTheoutlineofthepaperisasfollows.InSectionII,wede-scribeamathematicalmodelformultiple-antennatransmissionoverawirelesschannel.Wereviewthediversitycriterionforcodedesigninthismodelasestablishedin[10].InSectionIII,werevieworthogonaldesignsanddescribetheirapplicationtowirelesscommunicationsystemsemployingmultipletransmitantennas.Itwillbeprovedthattheschemeprovidesmaximumpossiblespatialdiversityorderandallowsaremarkablysimpledecodingstrategybasedonlyonlinearprocessing.InSectionIV,wegeneralizetheconceptoftheorthogonaldesignsanddevelopatheoryofgeneralizedorthogonaldesigns.Usingthismathematicaltheory,weconstructcodingschemesforanyarbitrarynumberoftransmitantennas.Theseschemesachievethefulldiversityorderthatcanbeprovidedbythetransmitandreceiveantennas.Moreover,theyhaveverysimplemaximum-likelihooddecodingalgorithmsbasedonlyonlinearprocessingatthereceiver.Theyprovidethemaximumpossibletransmis-sionrateusingtotallyrealconstellationsasestablishedinthetheoryofspace±timecoding[10].InSectionV,wede necomplexorthogonaldesignsandstudytheirproperties.WewillrecovertheschemeproposedbyAlamouti[1]asaspecialcase,thoughitwillbeprovedthatgeneralizationtomorethantwotransmitantennasisnotpossible.Wethendevelopatheorycomplexgeneralizedorthogonaldesigns.Thesedesignsexistforanynumberoftransmitantennasandagainhaveremarkablysimplemaximum-likelihooddecodingalgorithmsbasedonlyonlinearprocessingatthereceiver.Theyprovidefullspatialdiversityand ofthemaximumpossiblerate(asestablishedpreviouslyinthetheoryofspace±timecoding)usingcomplexconstellations.Forcomplexconstellationsandforthespeci ccasesoftwo,three,andfourtransmitantennas,thesediversityschemesareimprovedtoprovide,respectively ,and ofmaximumpossibletransmissionrate.SectionVIpresentsourconclusionsand nalremarks.Forthereaderwhoisinterestedonlyinthecodecon-structionbutisnotconcernedwiththedetails,weprovideasummaryofthematerialatthebeginningofeachsubsection.II.TODELANDTHEInthissection,wemodelamultiple-antennawirelesscom-municationsystemundertheassumptionthatfadingisquasi-staticand at.Wereviewthediversitycriterionforcodedesignassumingthismodel.Thisdiversitycriterioniscrucialforourstudiesofspace±timeblockcodes.Weconsiderawirelesscommunicationsystemwherethebasestationisequippedwith andtheremoteisequipped antennas.Ateachtimeslot ,signals aretransmittedsimultaneouslyfromthe transmitantennas.Thecoef cient isthepathgainfromtransmitantenna receiveantenna .ThepathgainsaremodeledassamplesofindependentcomplexGaussianrandomvariableswithvariance perrealdimension.Thewirelesschannelisassumedtobequasi-staticsothatthepathgainsareconstantoveraframeof andvaryfromoneframetoanother.Attime thesignal receivedatantenna isgivenby (1)where areindependentsamplesofazero-meancomplexGaussianrandomvariablewithvariance SNR percom-plexdimension.Theaverageenergyofthesymbolstransmittedfromeachantennaisnormalizedtobe Assumingperfectchannelstateinformationisavailable,thereceivercomputesthedecisionmetric overallcodewords anddecidesinfavorofthecodewordthatminimizesthissum.Givenperfectchannelstateinformationatthereceiver,wemayapproximatetheprobabilitythatthereceiverdecideserroneouslyinfavorofasignal assumingthat wastransmitted.(Fordetailssee[6],[10].)Thisanalysisleadstothefollowingdiversitycriterion.·DiversityCriterionForRayleighSpace±TimeCode:Inordertoachievethemaximumdiversity ,thematrix ...... ............... hastobefullrankforanypairofdistinctcodewords and .If hasminimumrank overthesetofpairsofdistinctcodewords,thenadiversityof isachieved.SubsequentanalysisandsimulationshaveshownthatcodesdesignedusingtheabovecriterioncontinuetoperformwellinRicianenvironmentsintheabsenceofperfectchannelstateinformationandunderavarietyofmobilityconditionsandenvironmentaleffects[11].III.ORTHOGONALESIGNSASODESFORInthissection,weconsidertheapplicationofrealorthog-onaldesigns(SectionIII-A)tocodingformultiple-antennawirelesscommunicationsystems.Unfortunately,thesedesignsonlyexistinasmallnumberofdimensions.EncodingusingorthogonaldesignsisshowntobetrivialinSectionIII-B.Maximum-likelihooddecodingisshowntobeachievedbydecouplingofthesignalstransmittedfromdifferentantennasandisprovedtobebasedonlyonlinearprocessingatthereceiver(SectionIII-C).Thepossibilityoflinearprocessingatthetransmitter,leadstotheconceptoflinearprocessingorthogonaldesignsdevelopedinSectionIII-D.Wethenproveanormalizationresult(Theorem3.4.1)whichallowsusto IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999focusonaspeci cclassoflinearprocessingorthogonaldesigns.Tostudythesetofdimensionsforwhichlinearprocessingorthogonaldesignsexist,weneedabriefreviewoftheHurwitz±RadontheorywhichisprovidedinSectionIII-E.Usingthistheory,weprovethatallowinglinearprocessingatthetransmitteronlyincreasesthehardwarecomplexityatthetransmitteranddoesnotexpandthesetofdimensionsforwhicharealorthogonaldesignexists.Areaderwhoisonlyinterestedincodeconstructionandapplicationsofspace±timeblockcodesmaychoosetofocusattentiononSectionsIII-A,III-B,andIII-CaswellasTheo-rem3.5.1,De nition3.5.2,andLemma3.5.1.A.RealOrthogonalDesignsArealorthogonaldesignofsize isan matrixwithentriestheindeterminates TheexistenceproblemfororthogonaldesignsisknownastheHurwitz±Radonprobleminthemathematicsliterature[5],andwascompletelysettledbyRadoninanothercontextatthebeginningofthiscentury.Infact,anorthogonaldesignexistsifandonlyif or Givenanorthogonaldesign ,onecannegatecertaincolumnsof toarriveatanotherorthogonaldesignwherealltheentriesofthe rstrowhavepositivesigns.Bypermutingthecolumns,wecanmakesurethatthe rstrowof is .Thuswemayassumewithoutlossofgenerality hasthisproperty.Examplesoforthogonaldesignsarethe design (3)the design andthe design Thematrices(3)and(4)canbeidenti ed,respectively,withcomplexnumber andthequaternionicnumber B.TheCodingSchemeInthissection,weapplyorthogonaldesignstoconstructspace±timeblockcodesthatachievediversity.Weassumethattransmissionatthebasebandemploysarealsignalconstella- with elements.Wefocusonprovidingadiversityorderof .Corollary3.3.1of[10]impliesthatthemaximumtransmissionrateis bitspersecondperhertz(bits/s/Hz).Weprovidethistransmissionrateusingan design.Attimeslot1, bitsarriveattheencoderandselectconstellationsignals .Setting for ,wearriveatamatrix withentries .Ateachtimeslot theentries aretransmittedsimultaneouslyfromtransmitantennas Clearly,therateoftransmissionis bits/s/Hz.Wenowdemonstratethatthediversityorderofsuchaspace±timeblockcodeis Theorem3.2.1:Thediversityorderoftheabovecodingschemeis Proof:Therankcriterionrequiresthatthematrix benonsingularforanytwodistinctcodesequences .Clearly, where isthematrixconstructedfrom byreplacing with forall .Thedeterminantoftheorthogonalmatrix iseasilyseentobe where isthetransposeof .Hence whichisnonzero.Itfollowsthat isnonsingularandthemaximumdiversity isachieved. C.TheDecodingAlgorithmNext,weconsiderthedecodingalgorithm.Clearly,therowsof areallpermutationsofthe rstrowof possiblydifferentsigns.Let denotethepermutationscorrespondingtotheserowsandlet denotethesignof inthe throwof .Then meansthat isuptoasignchangethe thelementof .Sincethecolumns arepairwise-orthogonal,itturnsoutthatminimizingthemetricof(2)amountstominimizing (6)where (7) TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNSandwhere denotesthecomplexconjugateof Thevalueof onlydependsonthecodesymbol ,thereceivedsymbols ,thepathcoef cients ,andthestructureoftheorthogonaldesign .Itfollowsthatminimiz-ingthesumgivenin(6)amountstominimizing(7)forall .Thusthemaximum-likelihooddetectionruleistoformthedecisionvariables forall anddecideinfavorof amongalltheconstellationsymbols if Thisisaverysimpledecodingstrategythatprovidesdiversity.D.LinearProcessingOrthogonalDesignsTherearetwoattractionsinprovidingtransmitdiversityviaorthogonaldesigns.·Thereisnolossinbandwidth,inthesensethatorthogonaldesignsprovidethemaximumpossibletransmissionrateatfulldiversity.·Thereisanextremelysimplemaximum-likelihooddecod-ingalgorithmwhichonlyuseslinearcombiningatthereceiver.Thesimplicityofthealgorithmcomesfromtheorthogonalityofthecolumnsoftheorthogonaldesign.Theabovepropertiesarepreservedevenifweallowlinearprocessingatthetransmitter.Therefore,werelaxthede ni-tionoforthogonaldesignstoallowlinearprocessingatthetransmitter.Signalstransmittedfromdifferentantennaswillnowbelinearcombinationsofconstellationsymbols.De nition3.4.1:Alinearprocessingorthogonaldesignin isan matrix suchthat:·Theentriesof arereallinearcombinationsofvariables .· ,where isadiagonalmatrixwith diagonalelementoftheform withthecoef cients allstrictlypositiveItiseasytoshowthattransmissionusingalinearprocessingorthogonaldesignprovidesfulldiversityandasimpli eddecodingalgorithmasabove.Thenexttheoremshowsthatwemay,withnolossofgenerality,constrainthematrix De nition3.4.1tobeascaledidentitymatrix.Theorem3.4.1:Alinearprocessingorthogonaldesign invariables existsifandonlyifthereexistsalinearprocessingorthogonaldesign suchthat Proof: bealinearprocessingorthogonaldesign,andlet wherethematrices arediagonalandfull-rank(sincethecoef cients arestrictlypositive).Thenitfollowsthat (9) (10)and isafull-rankdiagonalmatrixwithpositivediagonalentries.Let denotethediagonalmatrixhavingthepropertythat .Wede ne Thenthematrices satisfythefollowingproperties: (11) Itfollowsthat isalinearprocessingorthogonalarrayhavingtheproperty Inviewoftheabovetheorem,wemay,withoutanylossofgenerality,assumethatalinearprocessingorthogonaldesign satis es E.TheHurwitz±RadonTheoryInthissection,wede neaHurwitz±Radonfamilyofmatrices.Thesematricesencodetheinteractionsbetweenvariablesinanorthogonaldesign.De nition3.5.1:Asetof realmatrices iscalledasize Hurwitz±Radonfamilyofmatricesif and WenextrecallthefollowingtheoremofRadon[8].Theorem3.5.1: ,where isoddand with and .AnyHurwitz±Radonfamilyof matricescontainsstrictlylessthan matrices.Furthermore .AHurwitz±Radonfamily matricesexistsifandonlyif or De nition3.5.2: bea matrixandlet beanyarbitrarymatrix.Thetensorproduct isthematrixgivenby ........................... (13) IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999De nition3.5.3:Amatrixiscalledanintegermatrixifallofitsentriesareintheset TheproofofthenextLemmaisdirectlytakenfrom[5]andweincludeitforcompleteness.Lemma3.5.1:Forany thereexistsaHurwitz±Radonfamilyofmatricesofsize whosemembersareintegerProof:Theproofisbyexplicitconstruction.Let denotetheidentitymatrixofsize .We rstnoticethatif with odd,then .Moreover,givenafamily Hurwitz±Radonintegermatrices ofsize ,theset isaHurwitz±Radonfamilyof integermatricesofsize .Inlightofthisobservation,itsuf cestoprovethelemmafor .Tothisend (14) (15)and (16)Let and Then Weobservethat isaHurwitz±Radonintegerfamilyofsize isaHurwitz±Radonintegerfamilyofsize and isanintegerHurwitz±Radonfamilyofsize Thereadermayeasilyverifythatif isanintegerHurwitz±Radonfamilyof matrices,then isanintegerHurwitz±Radonfamilyof integermatrices If,inaddition, isanintegerHur-witz±Radonfamilyof matrices,then isanintegerHurwitz±Radonfamilyof integermatrices Weproceedbyinduction.For ,wealreadycon-structedanintegerHurwitz±Radonfamilyofsize withentriesintheset .Now(17)givesthetransition to .Byusing(18)andletting , ,wegetthetransitionfrom to .Similarly,with , and , ,wegetthetransitionfrom to andto . Thenexttheoremshowsthatrelaxingthede nitionoforthogonaldesignstoallowlinearprocessingatthetransmitterdoesnotexpandthesetofdimensions forwhichthereexistsanorthogonaldesignofsize Theorem3.5.2:Alinearprocessingorthogonaldesignof existsifandonlyif and Proof: denotealinearprocessingorthogonalde-sign.Sincetheentriesof arelinearcombinationsofvariables wecanwriterow of as ,where isanappropriatereal-valued matrixand .Orthogonalityof translatesintothefol-lowingsetofmatrixequalities: (19) (20)where istheidentitymatrix.WenowconstructaHur-witz±Radonsetofmatricesfromtheoriginaldesign.Let for .Then andwehave (21) (22) Theseequationsimplythat isafamilyofmatrices.BytheHurwitz±RadonTheo-rem(3.5.1),wecanconcludethat and or . Inparticular,wehavethefollowingspecialcase.Corollary3.5.1:Anorthogonaldesignofsize existsifandonlyif and Proof:ImmediatefromTheorem3.5.2. Tosummarize,relaxingthede nitionoforthogonaldesigns,byallowinglinearprocessingatthetransmitter,failstoprovidenewtransmissionschemesandonlyaddstothehardwarecomplexityatthetransmitter.IV.GRTHOGONALThepreviousresultsshowthelimitationsofprovidingtransmitdiversitythroughlinearprocessingorthogonalde-signsbasedonsquarematrices.Sincethesimplemaximum-likelihooddecodingalgorithmdescribedaboveisachievedbecauseoforthogonalityofcolumnsofthedesignmatrix,wemaygeneralizethede nitionoflinearprocessingorthogonaldesigns.Notonlydoesthiscreatenewandsimpletransmis-sionschemesforanynumberoftransmitantennas,butalsogeneralizestheHurwitz±Radontheorytononsquarematrices. TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNSInthissection,weintroducegeneralizedrealorthogonalandposethefundamentalquestionofgeneralizedorthogonaldesigntheory.Theanswertothisfundamentalquestionprovidesuswithtransmissionschemesthatareinsomesenseoptimalintermsofthedecodingdelay.Wethensettlethefundamentalquestionofgeneralizedorthogonaldesigntheoryforfull-rateorthogonaldesigns(inasensetobede nedinthesequel)andconstructfull-ratetransmissionschemesforanynumberoftransmitantennas.Areaderwhoisinterestedonlyincodeconstructionandapplicationsofspace±timeblockcodesisadvisedtogothroughtheresultsofthissection.A.ConstructionandBasicPropertiesDe nition4.1.1:Ageneralizedorthogonaldesign ofsize isa matrixwithentries suchthat where isadiagonalmatrixwithdiagonal oftheform andcoef cients arestrictlypositiveintegers.Therateof is ThefollowingtheoremisanalogoustoTheorem3.4.1Theorem4.1.1: generalizedorthogonaldesign invariables existsifandonlyifthereexistsageneralizedorthogonaldesign inthesamevariablesandofthesamesizesuchthat Inviewoftheabovetheorem,withoutanylossofgenerality,weassumethatany generalizedorthogonaldesign invariables satis es Transmissionusingageneralizedorthogonaldesignisdis-cussednext.Weconsiderarealconstellation ofsize Throughputof canbeachievedasdescribedinSec-tionIII-A.Attimeslot1, bitsarriveattheencoderandselectconstellationsymbols .Theencoderpop-ulatesthematrixbysetting ,andattime thesignals aretransmittedsimultaneouslyfrom .Thus bitsaresentduringeach transmissions.Itcanbeproved,asinTheorem3.1,thatthediversityorderis .Itshouldbementionedthattherateofageneralizedorthogonaldesignisdifferentfromthethroughputoftheassociatedcode.Tomotivatethede nitionoftherate,wenotethatthetheoryofspace±timecodingprovesthatforadiversityorderof ,itispossibletotransmit bitspertimeslotandthisisbestpossible(see[10,Corollary3.3.1]).Therefore,therate ofthiscodingschemeisde nedtobe whichisequalto Thegoalofthissectionistoconstructhigh-ratelinearprocessingorthogonaldesignswithlowdecodingcomplexityandfulldiversityorder.Wemust,however,takethememoryrequirementsintoaccount.Thismeansthatgiven and ,wemustattempttominimize De nition4.1.2:Foragiven wede ne betheminimumnumber suchthatthereexistsa generalizedorthogonaldesignwithrateatleast .Ifnosuchorthogonaldesignexists,wede ne generalizedorthogonaldesignattainingthevalue calleddelay-optimal.Thevalueof isthefundamentalquestionofgen-eralizedorthogonaldesigntheory.Themostinterestingpartofthisquestionisthecomputationof sincethegeneralizedorthogonaldesignsoffullratearebandwidth-ef cient.Toaddressthisquestion,wewillneedthefollowingConstructionI: and InLemma3.5.1,weexplicitlyconstructedafamilyofinteger matriceswith members .Let andconsiderthe matrix whose columnis for .TheHurwitz±Radonconditionsimplythat isageneralizedorthogonaldesignoffullrate.Theorem4.1.2:Thevalue isthesmallestnumber suchthat Proof: beanumbersuchthat .Let andapplyConstructionItoarriveat generalizedorthogonaldesignoffullrate.Byde nition, ,andhence Next,weconsideranygeneralizedorthogonaldesign ofsize in variables(rateone)where Thecolumnsof arelinearcombinationsofthevariables .The thcolumncanbewrittenas somereal-valued matrix .Sincethecolumnsof orthogonalwehave (25) Thismeansthatthematrices areaHurwitz±Radonfamilyofsize .Thus and ,and .Combiningthisresultwithinequality(24)concludestheproof. Corollary4.1.1:Forany Proof:TheprooffollowsimmediatelyfromTheo-rem4.1.2. Corollary4.1.2:Thevalue ,wheretheminimizationistakenovertheset and Inparticular, , ,and for Proof: .We rstclaimthat isapoweroftwo.Tothisend,supposethat where isanoddnumber.Then .But .Thiscontradictsthefactthat andprovestheclaim.Thus forsome .Anapplicationoftheexplicitformulafor giveninTheorem3.5.1completestheproof. IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999Itfollowsthatorthogonaldesignsaredelayoptimalfor and WehaveexplicitlyconstructedaHurwitz±Radonfamilyofmatricesofsize with memberssuchthatallthematricesinthefamilyhaveentriesintheset .GivensuchafamilyofHurwitz±Radonmatricesofsize wecanapplyConstructionItoprovidea orthogonaldesignwithfullrate.Thisfull-rategeneralizedorthogonaldesignhasentriesoftheform Thisisthemethodusedtoprovethefollowingtheoremwhichcompletestheconstructionofdelay-optimalgeneralizedorthogonaldesignsofrateonefor transmitantennas.Theorem4.1.3:Theorthogonaldesigns (27) (28) (29)and aredelay-optimaldesignswithrateone.Proof:Theorthogonaldesignsconstructedaboveachievethevalue for . V.GRTHOGONALESIGNSASPACEThesimpletransmitdiversityschemesdescribedaboveassumearealsignalconstellation.Itisnaturaltoaskforextensionsoftheseschemestocomplexsignalconstellations.HencethenotionofcomplexorthogonaldesignsisintroducedinSectionV-A.WerecovertheAlamoutischemeasa complexorthogonaldesignsinSectionV-B.Motivatedbythepossibilityoflinearprocessingatthetransmitter,wede necomplexlinearprocessingorthogonaldesignsinSectionV-C,butweshallprovethatcomplexlinearprocessingorthogonaldesignsonlyexistintwodimensions.ThismeansthattheAlamoutiSchemeisinsomesenseunique.However,wewouldliketohavecodingschemesformorethantwotransmitantennasthatemploycomplexconstellations.HencethenotiongeneralizedcomplexorthogonaldesignsisintroducedinSectionV-E.Wethenprovebyexplicitconstructionthat generalizedcomplexorthogonaldesignsexistinanydimension.InSectionV-F,itisshownthatthisisnotthebestratethatcanbeachieved.Speci cally,examplesofrate generalizedcomplexlinearprocessingorthogonaldesignsindimensionsthreeandfourareprovided.Areaderwhoisonlyinterestedincodeconstructionandtheapplicationofspace±timeblockcodesmaychoosetoreadSectionV-B,De nition5.4.1,De nition5.5.2,theproofofTheorem5.5.2,Corollary5.5.1,theremarkafterCorollary5.5.1,andSectionV-F.A.ComplexOrthogonalDesignsWede neacomplexorthogonaldesign ofsize asanorthogonalmatrixwithentriestheindeterminates ,theirconjugates ormultiplesoftheseindeterminatesby where Withoutlossofgenerality,wemayassumethatthe rstrow is ThemethodofencodingpresentedinSectionIII-Acanbeappliedtoobtainatransmitdiversityschemethatachievesthefulldiversity .Thedecodingmetricagainseparatesintodecodingmetricsfortheindividualsymbols Anexampleofa complexorthogonaldesignisgivenby B.TheAlamoutiSchemeThespace±timeblockcodeproposedbyAlamouti[1]usesthecomplexorthogonaldesign Supposethatthereare signalsintheconstellation.Atthe rsttimeslot, bitsarriveattheencoderandselecttwocomplexsymbols and .Thesesymbolsaretransmittedsimultaneouslyfromantennasoneandtwo,respectively.Atthesecondtimeslot,signals and aretransmittedsimultaneouslyfromantennasoneandtwo,respectively.Maximum-likelihooddetectionamountstominimizingthedecisionstatistic overallpossiblevaluesof and .Theminimizingvaluesarethereceiverestimatesof and ,respectively.Asinthe TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNSprevioussection,thisisequivalenttominimizingthedecision fordetecting andthedecisionstatistic fordecoding .Thisisthesimpledecodingschemedescribedin[1],anditshouldbeclearthataresultanalogoustoTheorem3.2.1canbeestablishedhere.ThusAlamouti'sschemeprovidesfulldiversity using receiveantennas.ThisisalsoestablishedbyAlamouti[1],whoprovedthatthisschemeprovidesthesameperformanceas levelmaximumratiocombining.C.OntheExistenceofComplexOrthogonalDesignsInthissection,weconsidertheexistenceproblemforcomplexorthogonaldesigns.First,weshowthatacomplexorthogonaldesignofsize determinesarealorthogonaldesignofsize ConstructionII:Givenacomplexorthogonaldesign ofsize ,wereplaceeachcomplexvariable bythe realmatrix Inthisway isrepresentedby (35) isrepresentedby andsoforth.Itiseasytoseethatthe matrixformedinthiswayisarealorthogonaldesignofsize Wecannowprovethefollowingtheorem:Theorem5.3.1:Acomplexorthogonaldesign ofsize existsonlyif or Proof:Givenacomplexorthogonaldesignofsize applyConstructionIItoprovidearealorthogonaldesignofsize .Sincerealorthogonaldesignscanonlyexistfor and itfollowsthatcomplexorthogonaldesignsofsize cannotexistunless or . For ,Alamouti'sschemegivesacomplexorthogonaldesign.Wewillprovelaterthatcomplexorthogonaldesignsdonotexistevenforfourtransmitantennas.D.ComplexLinearProcessingOrthogonalDesignsDe nition5.4.1:Acomplexlinearprocessingorthogonaldesigninvariables isan matrix ·theentriesof arecomplexlinearcombinationsof andtheirconjugates; ,where isadiagonalmatrixwherealldiagonalentriesarelinearcombinationsof withallstrictlypositiverealcoef cients.TheproofofthefollowingtheoremissimilartothatofTheorem3.4.1.Theorem5.4.1:Acomplexlinearprocessingorthogonal invariables existsifandonlyifthereexistsacomplexlinearprocessingorthogonaldesign suchthat Inviewoftheabovetheorem,withoutanylossofgenerality,weassumethatanycomplexlinearprocessingorthogonal satis es Wecannowprovethefollowingtheorem:Theorem5.4.2:Acomplexlinearprocessingorthogonaldesignofsize existsifandonlyif Proof:WeapplyConstructionIItothecomplexlinearprocessingorthogonaldesignofsize toarriveatalinearprocessingorthogonaldesignofsize .Thus or whichimpliesthat or .For Alamouti'smatrixisacomplexlinearprocessingorthogonaldesign.Therefore,itsuf cestoprovethatfor linearprocessingorthogonaldesignsdonotexist.TheproofisgivenintheAppendix.Wecannowimmediatelyrecoverthefollowingresult.Corollary5.4.1:Acomplexorthogonaldesignofsize existsifandonlyif Proof:ImmediatefromTheorem5.4.2. Weconcludethatrelaxingthede nitionofcomplexor-thogonaldesignstoallowlinearprocessingwillonlyaddtohardwarecomplexityatthetransmitterandfailstoprovidetransmissionschemesinnewdimensions.E.GeneralizedComplexOrthogonalDesignsWenextde negeneralizedcomplexorthogonaldesigns.De nition5.5.1: bea matrixwhoseentriesare ortheirproductwith .If isadiagonal IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999matrixwith thdiagonalelementoftheform andthecoef cients allstrictlypositivenumbers, isreferredtoasageneralizedorthogonaldesignof andrate ThefollowingTheoremisanalogoustoTheorem3.4.1.Theorem5.5.1: complexgeneralizedlinearpro-cessingorthogonaldesign invariables existsifandonlyifthereexistsacomplexgeneralizedlinearprocessingorthogonaldesign inthesamevariablesandofthesamesizesuchthat Inviewoftheabovetheorem,withoutanylossofgenerality,weassumethatany generalizedorthogonaldesign invariables satis estheequality aftertheappropriatenormalization.Transmissionusingacomplexgeneralizedorthogonalde-signissimilartothatofageneralizedorthogonaldesign.Maximum-likelihooddecodingisanalogoustothatofAlam-outi'sschemeandcanbedoneusinglinearprocessingatthereceiver.Thegoalofthissectionistoconstructhigh-ratecomplexgeneralizedlinearprocessingorthogonaldesignswithlowdecodingcomplexitythatachievefulldiversity.Wemust,however,takethememoryrequirementsintoaccount.Thismeansthatgiven and ,wemustattempttominimize De nition5.5.2:Foragiven and ,wede ne theminimumnumber forwhichthereexistsacomplexgeneralizedlinearprocessingorthogonaldesignofsize andrateatleast .Ifnosuchorthogonaldesignexists,we Thequestionofthecomputationofthevalueof isthefundamentalquestionofgeneralizedcomplexorthogonaldesigntheory.Toaddressthisquestiontosomeextent,wewillestablishthefollowingTheorem.Theorem5.5.2:Thefollowinginequalitieshold.·i)Forany ,wehave ·ii)For ,wehave Proof:We rstproveParti).If ,thenthereisnothingtobeproved.Thusweassumethat andconsideracomplexgeneralizedlinearprocessingorthogonaldesign ofrateatleastequalto andsize .ByapplyingConstructionII,wearriveata realgeneralizedlinearprocessingorthogonaldesignofrateatleastequalto .Thus ToprovePartii),weconsiderarealorthogonaldesign ofsize andrateatleastequalto invariables where .Weconstructacomplex ofsize .Wereplacethesymbols everywherein bytheirsymbolicconjugates toarriveatanewarray .Thenwede ne tobethe arraywiththerow the throwof andtherow the throwof .Itiseasytoseethat acomplexgeneralizedorthogonaldesignofrateatleastequal .Thus . Corollary5.5.1: ,wehave Proof:ItfollowsimmediatelyfromPartii)ofTheorem5.5.2andCorollary4.1.1. Corollary5.5.1provesthereexistsrate plexgeneralizedorthogonaldesigns,andtheproofofPartii)ofTheorem5.5.2givesanexplicitconstructionforthesedesigns.Forinstance,rate codesfortransmissionusingthreeandfourtransmitantennasaregivenby (37)and Thesetransmissionschemesandtheiranalogsforhigher givefulldiversitybutlosehalfofthetheoreticalbandwidthef ciency.F.FewSporadicCodesItisnaturaltoaskforhigherratesthan whendesigninggeneralizedcomplexlinearprocessingorthogonaldesignsfortransmissionwith multipleantennas.For ,Alamouti'sschemegivesarateonedesign.For and ,weconstruct generalizedcomplexlinearprocessingorthogonaldesignsgivenby (39) TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNS and (40)for .Thesecodesaredesignedusingthetheoryofamicabledesigns[5].Apartfromthesetwodesigns,wedonotknowofanyothergeneralizeddesignsinhigherdimensionswithrategreaterthan .Webelievethattheconstructionofcomplexgeneralizeddesignswithrategreaterthan isdif cultandwehopethatthesetwoexamplesstimulatefurtherwork.VI.CWehavedevelopedthetheoryofspace±timeblockcoding,asimpleandelegantmethodfortransmissionusingmultipletransmitantennasinawirelessRayleigh/Ricianenvironment.Thesecodeshaveaverysimplemaximum-likelihooddecodingalgorithmwhichisonlybasedonlinearprocessing.Moreover,theyexploitthefulldiversitygivenbytransmitandreceiveantennas.ForarbitraryrealconstellationssuchasPAM,wehaveconstructedspace±timeblockcodesthatachievethemaximumpossibletransmissionrateforanynumber transmitantennas.Foranycomplexconstellation,wehaveconstructedspace±timeblockcodesthatachievehalfofthemaximumpossibletransmissionrateforanynumber transmitantennas.Forarbitrarycomplexconstellationsandforthespeci ccases and ,wehaveprovidedspace-timeblockcodesthatachieve,respectively,all, ,and ofthemaximumpossibletransmissionrate.Webelievethatthesediscoveriesonlyrepresentthetipoftheiceberg.Theorem:Acomplexorthogonaldesignofsize doesnotProof:Theproofisdividedintosixsteps.StepI:Inthisstep,weprovidenecessaryandsuf cientconditionsfora matrixofindeterminatestobeacomplexlinearprocessinggeneralizedorthogonaldesign.Tothisend, beacomplexlinearprocessinggeneralizedorthogonaldesignofsize .Eachentryof isalinearcombination .Itfollowsthat (41)where arecomplex matrices.Since wecanconcludefromtheabovethat Conversely,anysetof complexmatrices satisfyingtheaboveequationsde nesalinearprocessingcomplexorthogonaldesign.StepII:Inthisstep,wewillprovethatgivenacomplexlinearprocessinggeneralizedorthogonaldesign ,wecouldconstructanothercomplexlinearprocessinggeneralizedor-thogonaldesign suchthatforanyrow,oneof and doesnotoccurintheentriesofthatrowof .Inotherwords,forany whereforany xed either forall or forall .Intheformer(respectively,latter)casewesay (respectively, )doesnotoccurinthe throwof Using(42),we rstobservethat Hence Similarly, .Thismeansthatthematrices and areidempotentfor .Since ,thematrices and projectionsontoperpendicularvectorspaces and thusarediagonalizablewithalleigenvaluesintheset .If ,thenexactly (respectively, )ofeigenvaluesof (respectively, )are Next,using(42),weobservethatfor Thusthematrices and commute.Similarly,itfollowsthat isacommutingfamilyofdiagonalizablematrices.Hence,thesematricesaresimultaneouslydiagonalizable.Sincetheeigenvaluesof areintheset ,weconcludethatthereexistsaunitary suchthat where arediagonalmatriceswithdiago-nalentriesintheset .Moreover,because the thentryof iszero(respectively,one)ifandonlyifthe thentryof isone(respectively,zero).Since thenonzeroentriesof appearinthoserows wherethe thelementof iszero.Similarly, IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999impliesthatthenonzeroentriesof appearinthoserows,wherethecorrespondingdiagonalelementof zero.Thusthenonzeroentriesof and indifferentrows. thenitfollowsfromthematrixequationsgiveninStepIthat isacomplexlinearprocessinggeneralizedorthogonaldesignwiththedesiredproperty.StepIII:Wecannowassumewithoutanylossofgen-eralitythat isacomplexlinearprocessinggeneralizedorthogonaldesignwiththepropertiesdescribedinStepII.Inthisstep,weapplyConstructionIIto andstudythepropertiesoftheassociatedreallinearprocessinggeneralizedorthogonaldesign.Byinterchanging with everywhereinthedesignifnecessary,wecanfurtherassumethatonly inthe rstrowof .WenextapplyConstructionIIto andconstructarealorthogonaldesign ofsize invariables .Thematrix canbewrittenas (43)where arereal matrices.Furthermore,assumingthepropertyestablishedinStepII,wecaneasilyobservebydirectcomputationthat (44)where where isadiagonalmatrixofsize whosediagonalentriesbelongtotheset .Moreover,the thentryof equals .Welet thevectorwhose thcomponentisthe thelementof .The thelementof isequalto (respectively, )if )occursinrow Using(43)and wearriveatthefollowingsetofequations: (45)Let ,thenusing(44)and(45)wehave (46) (47) (48) (49) (50) (51) (52) StepIV:Wenextprovethatthematrices anticommutewith and butcommutewith and .First,weobservethatby(51)and(53) Sincethematrices and areantisymmetric,theaboveequationsprovethat anticommuteswith and .Furthermore,since ,weconcludefrom(46)±(53)thatwhen and whichimpliesthat Since anticommuteswith ,wearriveat Because isorthogonal,itisinvertibleandthuswhen- and ,wehave Theassertionfor noweasilyfollowssince StepV:Recallthat isthevector thcomponentisthe thelementof .Inthisstep,weprovethatanytwovectors and haveHammingdistanceexactlyequaltotwo.Tothisend,since commuteswith for andanticommuteswith and ,wecaneasilyconcludefromthenonsingularityof that ,for and for .ThustheHammingdistanceofanytwodistinctvectors and isneitherzeronorfour.We rstprovethattheHammingdistanceofanytwodistinct and cannotbeone.Tothisend,letussupposethattwodistinctvectors and haveHammingdistanceoneanddifferonlyinthe thposition.Theninthe throwof wehaveeitheroccurrencesof and oroccurrencesof and butnotboth.Inanyotherrowof ,wehaveeitheroccurrencesof and oroccurrencesof and notboth.Itiseasytoseethatthecolumnsof cannotbeorthogonaltoeachother.WenextprovethattheHammingdistanceofanytwodistinctvectors and cannotbethree.Tothisend,letussupposethattwodistinctvectors and haveHamming TAROKHetal.:SPACE±TIMEBLOCKCODESFROMORTHOGONALDESIGNSdistancethree.Since forall concludethat forall .Wecannow andobservethatthevector isdistinctwith and .Moreover,itcoincideswithboth and the rstposition.Itfollowsusingasimplecountingargument hasHammingdistanceonewitheither or .Butwejustprovedthatthisisnotpossible.Weconcludethatanytwodistinctvectors and Hammingdistanceexactlyequaltotwo.StepVI:Inthisstep,wewillarriveatacontradictionthatconcludestheproof.Becauseanytwodistinctvectors and haveHammingdistanceexactlyequaltotwo,thematrix whose throw isaHadamardmatrix.Itfollowsthatanytwodistinctcolumnsof alsohaveHammingdistance .Thuswecannowassumewithoutlossofgeneralitythat(afterpossiblerenamingofthevariablesandbyexchangingtheroleofsomevariableswiththeirconjugates) occurinrowone occurinrowtwoof .The rstrowof isthusexpressibleas andthesecondrowof isoftheform forappropriatevectors .Because weobservethat arevectorsofunitlength.Moreover,if thevectors and areorthogonaltoeachother.Sincethe rstandsecondrowsof areorthogonal,weobserve isorthogonalto .Thismeansthat containsasetof veorthonormalvectorsincomplexspaceofdimension .Thiscontradictionprovestheresult. TheauthorsthankDr.NeilSloaneforvaluablecommentsanddiscussions.[1]S.M.Alamouti,ªAsimpletransmitterdiversityschemeforwire-lesscommunications,ºIEEEJ.Select.AreasCommun.,vol.16,pp.1451±1458,Oct.1998.[2]N.BalabanandJ.Salz,ªDualdiversitycombiningandequalizationindigitalcellularmobileradio,ºIEEETrans.Veh.Technol.,vol.40,pp.342±354,May1991.[3]G.J.FoschiniJr.,ªLayeredspace-timearchitectureforwirelesscommu-nicationinafadingenvironmentwhenusingmulti-elementantennas,ºBellLabsTech.J.,pp.41±59,Autumn,1996.[4]G.J.FoschiniJr.andM.J.Gans,ªOnlimitsofwirelesscommunicationinafadingenvironmentwhenusingmultipleantennas,ºWirelessPersonalCommun.,Mar.1998.[5]A.V.GeramitaandJ.Seberry,OrthogonalDesigns,QuadraticFormsandHadamardMatricesLectureNotesinPureandAppliedMathemat-,vol.43.NewYorkandBasel:MarcelDekker,1979.[6]J.-C.Guey,M.P.Fitz,M.R.Bell,andW.-Y.Kuo,ªSignaldesignfortransmitterdiversitywirelesscommunicationsystemsoverRayleighfadingchannels,ºinProc.IEEEVTC'96,1996,pp.136±140.[7]Y.KawadaandN.Iwahori,ªOnthestructureandrepresentationsofCliffordAlgebras,ºJ.Math.Soc.Japan,vol.2,pp.34±43,1950.[8]J.Radon,ªLinearescharenorthogonalermatrizen,ºinausdemMathematischenSeminarderHamburgishenUniversit,vol.I.pp.1±14,1922.[9]N.SeshadriandJ.H.Winters,ªTwosignalingschemesforimprovingtheerrorperformanceoffrequency-division-duplex(FDD)transmissionsystemsusingtransmitterantennadiversity,ºInt.J.WirelessInform.,vol.1,no.1,1994.[10]V.Tarokh,N.Seshadri,andA.R.Calderbank,ªSpace±timecodesforhighdataratewirelesscommunication:PerformanceanalysisandcodeIEEETrans.Inform.Theory,vol.44,pp.744±765,Mar.[11]V.Tarokh,A.Naguib,N.Seshadri,andA.R.Calderbank,ªSpace-timecodesforhighdataratewirelesscommunications:Performancecriteriainthepresenceofchannelestimationerrors,mobilityandmultipleIEEETrans.Commun.,vol.47,pp.199±207,Feb.1999.[12]E.Telatar,ªCapacityofmulti-antennaGaussianchannels,ºAT&T-BellLaboratoriesInternalTech.Memo.,June1995.[13]J.Winters,J.Salz,andR.D.Gitlin,ªTheimpactofantennadiversityonthecapacityofwirelesscommunicationsystems,ºIEEETrans.,vol.42.Nos.2/3/4,pp.1740±1751,Feb./Mar./Apr.1994.[14]A.Wittneben,ªBasestationmodulationdiversityfordigitalSIMUL-CAST,ºinProc.IEEEVTC,May1991,pp.848±853. ,ªAnewbandwidthef cienttransmitantennamodulationdiver-sityschemeforlineardigitalmodulation,ºinProc.IEEEICC,1993,pp.1630±1634.