/
Redes de Computadoras Redes de Computadoras

Redes de Computadoras - PowerPoint Presentation

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
414 views
Uploaded On 2017-07-11

Redes de Computadoras - PPT Presentation

Instituto Tecnológico de Culiacán Material de apoyo Unidad 2 Ing En Sistemas Computacionales Prof Felipe E Muñiz R 21 Estaciones de Trabajo 211 Plataformas 22 Medios de transmisión ID: 569020

las los cable una los las una cable por para con red del fibra como servidores son coaxial puede

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Redes de Computadoras" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Redes de Computadoras

Instituto Tecnológico de Culiacán

Material de apoyo Unidad 2

Ing. En Sistemas Computacionales

Prof. Felipe E. Muñiz R.Slide2

2.1 Estaciones de Trabajo.2.1.1 Plataformas.2.2 Medios de transmisión.2.2.1 Medios Guiados.

2.2.2 Medios no Guiados.2.3 Adaptadores de Red. (NIC).2.3.1 Ethernet.2.3.2

Token Ring.2.3.3 FDDI.2.4 Dispositivo de conectividad.2.4.1 Repetidores.2.4.2 Concentradores (Hub, Mau).2.4.3 Tranceptores.2.4.4 Puentes (Bridges).2.4.5 Conmutadores (

Switch).2.4.6 Gateways.2.4.7 Routers.

Unidad

2.- Componentes de una red.

TEMARIO

2.5 Servidores.

2.5.1 De archivos e impresión.

2.5.2 Administradores de cuentas de usuarios.

2.5.3 De aplicación.

2.5.4 Servidores de Internet.

2.6 Sistemas Operativos de Red. (NOS).Slide3

Estaciones de Trabajo.Medios de transmisión.

Adaptadores de Red. (NIC).Dispositivo de conectividad.Servidores.

Sistemas Operativos de Red. (NOS).Componentes de una red.Slide4

Es una computadora que se encuentra conectada físicamente al servidor por medio de algún tipo de cable. Muchas de las veces esta computadora ejecuta su propio sistema operativo y ya dentro, se añade al ambiente de la red.Estación de trabajoSlide5

¿Qué es una estación de trabajo?Una estación de trabajo, según el Diccionario de la Computación de Alan Freedman, se puede definir como:"Micro o minicomputadora para un único usuario, de alto rendimiento, que ha sido especializada para gráficos, diseño asistido por computadora, ingeniería asistida por computadora o aplicaciones científicas".

Actualmente no es fácil, por difusa, la diferenciación entre los conceptos tradicionalmente aceptados de Ordenador Personal (PC), Estación de Trabajo y Miniordenador, ya que no es fácil asignar fronteras claramente definidas entre la funcionalidad, prestaciones y utilidad de los distintos equipos.Slide6

Medios de transmisión guiados.En un medio guiado las ondas son conducidas (guiadas) a través de un camino físico, los medios guiados son los que utilizan un cable. Como ejemplo de medios guiados tenemos: Cable coaxial

La fibra óptica Par trenzado. Slide7

CABLE COAXIAL El cable coaxial es un cable formado por dos conductores concéntricos: Un conductor central o núcleo, formado por un hilo sólido o trenzado de cobre (llamado positivo o vivo), Un conductor exterior en forma de tubo o vaina, y formado por una malla trenzada de cobre o aluminio o bien por un tubo, en caso de cables semirrígidos. Este conductor exterior produce un efecto de blindaje y además sirve como retorno de las corrientes.El primero está separado del segundo por una capa aislante llamada dieléctrico. De la calidad del dieléctrico dependerá principalmente la calidad del cable. Todo el conjunto puede estar protegido por una cubierta aislante.

Existen múltiples tipos de cable coaxial, cada uno con un diámetro e impedancia diferentes. El cable coaxial no es habitualmente afectado por interferencias externas, y es capaz de lograr altas velocidades de transmisión en largas distancias. Por esa razón, se utiliza en redes de comunicación de banda ancha (cable de televisión) y cables de banda base (Ethernet).

El cable coaxial se reemplaza por la fibra óptica en distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior, lo que justifica su mayor costo y su instalación más delicada. Slide8

TIPOS DE CABLE COAXIALLos dieléctricos utilizados para separar el conductor central de la vaina externa definen de manera importante el coeficiente de velocidad, y por lo tanto, la calidad del cable. Entre los materiales más comunes utilizados se encuentran: Cable coaxial con dieléctrico de aire: se diferencian dos tipos, en unos se utiliza de soporte y de separación entre conductores una espiral de polietileno y en otros existen unos canales o perforaciones a lo largo del cable de modo que el polietileno sea el mínimo imprescindible para la sujeción del conductor central. Son cables que presentan unas atenuaciones muy bajas.

Cable dieléctrico de polietileno celular o esponjoso: presenta más consistencia que el anterior pero también tiene unas pérdidas más elevadas. Cable coaxial con dieléctricos de polietileno macizo: de mayores atenuaciones que el anterior y se aconseja solamente para conexiones cortas (10–15 m aproximadamente).

Cable con dieléctrico de teflón: tiene pocas pérdidas y se utiliza en microondas. Slide9

Dependiendo del grosor tenemos:—Cable coaxial delgado (Thin coaxial): El RG-58 es un cable coaxial delgado: a este tipo de cable se le denomina delgado porque es menos grueso que el otro tipo de cable coaxial, debido a esto es menos rígido que el otro tipo, y es más fácil de instalar.—Cable coaxial grueso (

Thick coaxial): Los RG8 y Rg11 son cables coaxiales gruesos: estos cables coaxiales permiten una transmisión de datos de mucha distancia sin debilitarse la señal, pero el problema es que, un metro de cable coaxial grueso pesa hasta medio kilogramo, y no puede doblarse fácilmente. Un enlace de coaxial grueso puede ser hasta 3 veces mas largo que un coaxial delgado. Dependiendo de su banda tenemos:—Banda base: Existen básicamente dos tipos de cable coaxial. El de Banda Base, que es el normalmente empleado en redes de ordenadores, con una resistencia de 50Ohm, por el que fluyen señales digitales.

—Banda ancha: El cable coaxial de banda ancha normalmente mueve señales analógicas, posibilitando la transmisión de gran cantidad de información por varias frecuencias, y su uso más común es la televisión por cable. Slide10

Los factores a tener en cuenta a la hora de elegir un cable coaxial son su ancho de banda, su resistencia o impedancia característica, su capacidad y su velocidad de propagación.El ancho de banda del cable coaxial está entre los 500Mhz, esto hace que el cable coaxial sea ideal para transmisión de televisión por cable por múltiples canales.La resistencia o la impedancia característica depende del grosor del conductor central o malla, si varía éste, también varía la impedancia característica.Slide11

PAR TRENZADOLo que se denomina cable de Par Trenzado consiste en dos alambres de cobre aislados, que se trenzan de forma helicoidal, igual que una molécula de DNA. De esta forma el par trenzado constituye un circuito que puede transmitir datos. Esto se hace porque dos alambres paralelos constituyen una antena simple. Cuando se trenzan los alambres, las ondas de diferentes vueltas se cancelan, por lo que la radiación del cable es menos efectiva. Así la forma trenzada permite reducir la interferencia eléctrica tanto exterior como de pares cercanos.

Un cable de par trenzado está formado por un grupo de pares trenzados, normalmente cuatro, recubiertos por un material aislante.Cada uno de estos pares se identifica mediante un color, siendo los colores asignados y las agrupaciones de los pares de la siguiente forma: Par 1: Blanco-Azul/Azul Par 2: Blanco-Naranja/Naranja

Par 3: Blanco-Verde/Verde Par 4: Blanco-Marrón/Marrón Slide12

Los pares trenzados se apantallan. De acuerdo con la forma en que se realiza este apantallamiento podemos distinguir varios tipos de cables de par trenzado, éstos se denominan mediante las siglas UTP, STP y FTP. UTP es como se denominan a los cables de par trenzado no apantallados, son los más simples, no tienen ningún tipo de pantalla conductora. Su impedancia es de 100 onmhios, y es muy sensible a interferencias. Los pares están recubiertos de una malla de teflón que no es conductora. Este cable es bastante flexible.

STP es la denominación de los cables de par trenzado apantallados individualmente, cada par se envuelve en una malla conductora y otra general que recubre a todos los pares. Poseen gran inmunidad al ruido, pero una rigidez máxima. En los cables FTP los pares se recubren de una malla conductora global en forma trenzada. De esta forma mejora la protección frente a interferencias, teniendo una rigidez intermedia. Slide13

Pares trenzados apantallados: Cable ScTPLos cables de pares apantallados ScTP (Screened

Twisted Pair) están experimentando un auge que ya hace temblar al cable UTP, sobre todo si se pretenden lograr instalaciones de CAT6 ampliadas o superiores, es decir, cuando se quiere superar la barrera de 1Gbps sobre par de cobre.En las categorías CAT5 y CAT5e el cable UTP no ha tenido rival, más barato y más fácil de instalar, pero a partir de CAT6 y en concreto CAT6e los UTP han empezado a tocar su límite debido a las interferencias electromagnéticas entre pares adyacentes del mismo cable o de otros que discurran a su lado (

Alien Crosstalk), el problema se intenta controlar con crucetas que aseguran una distancia entre pares en el interior del cable y funciona, pero falla con la distancia respecto a los pares de los cables adyacentes, esto no hay forma e prever como va a ser. En una bandeja puede haber decenas de cables y nadie puede asegurar la distancia entre ellos cuando se agrupan en un mazo.Pero mira por donde cuando se apantallan los pares este problema se reduce drásticamente y en los últimos tiempos muchos fabricantes se ha vuelto a fijar en los denostados FTP/STP como la solución al problema, ya que en comparación con los UTP CAT6 no resultan tan caros…Slide14

FTP (Foil screened Twisted Pair) CAT5e

La imagen superior nos muestra el perfil y la sección de un cable FTP (Foil screened Twisted

Pair) CAT5e, la principal diferencia respecto al UTP se encuentra en las marcas 2 y 3. La primera indica la lámina de aluminio que envuelve a los cuatro pares a lo largo del cable y que sirve de apantallamiento. Con la marca 3 destacamos el hilo o alambre de drenaje, un conductor desnudo que en contacto con la pantalla de aluminio reduce la impedancia del circuito de tierra.El circuito de tierra tiene una gran importancia en un cableado estructurado con cables apantallados, si se descuida su baja impedancia o se pierden las puestas a tierra comunes la instalación se puede convertir en una enorme antena o crear bucles de tierra de consecuencias imprevisibles. Lamentablemente en pocas instalaciones se observa una correcta aplicación de la puesta a tierra, quizás el cable UTP sea el culpable de estos descuidos, pero encontrarse un rack metálico si una adecuada toma de tierra no tiene disculpa. Con los cables de cobre trenzado apantallados hay que extremar la calidad y precisión de las puestas a tierra,tanto en los distribuidores como en las tomas de datos. Si no se hace así más que lograr una solución estamos introduciendo un problema.1 - Revestimiento exterior2 - Pantalla de aluminio3 - Alambre de drenaje

4 - Membrana protectora5 - Par trenzado Slide15

STP (Screened Twisted Pair) CAT6

En esta segunda imagen tenemos un cable STP (Screened Twisted Pair) CAT6.

La marca 2 nos indica el apantallamiento individual de cada par en el interior del cable, en este tipo de cable se sigue manteniendo el alambre de drenaje en toda su longitud y también debe llevarse a tierra en ambos extremos de cada enlace.Slide16

SSTP (Shielded

Screened Twisted Pair) CAT7

Un tercer tipo de cable de par trenzado apantallado el es denominado SSTP (Shielded Screened Twisted Pair), en esta imagen vemos un ejemplo de un cable SSTP de CAT7, En este caso los pares están rodeados de una lámina de aluminio individualmente, y todo el conjunto a su vez de una malla metálica como la que encontramos en los cables coaxiales.Slide17

Dependiendo del número de pares que tenga el cable, del número de vueltas por metro que posea su trenzado y de los materiales utilizados, los estándares de cableado estructurado clasifican a los cables de pares trenzados por categorías: 1, 2, 3, 4, 5, 5e, 6 y 7. Las dos últimas están todavía en proceso de definición. Categoría 3: soporta velocidades de transmisión hasta 10 Mbits/seg

. Utilizado para telefonía de voz, 10Base-T Ethernet y Token ring a 4 Mbits/seg. Categoría 4: soporta velocidades hasta 16 Mbits

/seg. Es aceptado para Token Ring a 16 Mbits/seg. Categoría 5: hasta 100 Mbits/seg. Utilizado para Ethernet 100Base-TX. Categoría 5e: hasta 622 Mbits/seg. Utilizado para

Gigabit Ethernet. Categoría 6: soporta velocidades hasta 1000 Mbits/seg. El cable de Par Trenzado debe emplear conectores RJ45 para unirse a los distintos elementos de hardware que componen la red. Actualmente de los ocho cables sólo cuatro se emplean para la transmisión de los datos. Éstos se conectan a los pines del conector RJ45 de la siguiente forma: 1, 2 (para transmitir), 3 y 6 (para recibir). Slide18

Evolución de EthernetHablamos mucho de la categoría del cable que instalamos, de su precio, de como se debe hacer para que sus características no se degraden y mantener los márgenes de calidad entre señal y ruido. Pero nuestro cableado estructurado está al servicio de la conectividad de la electrónica de red y aquí quien manda es el conjunto de protocolos más utilizado en las redes locales: Ethernet.Para lo bueno y para lo malo (como en los matrimonios) Ethernet ha evolucionado de la mano de las categorías de los cableados y las fibras ópticas, al aumentar la frecuencia de las señales se puede aumentar las velocidades de transmisión de datos expresadas en bps ( bits por segundo). Desde que en 1972 Bob

Metcalfe enunció los principios básicos de Ethernet hasta nuestro días se han sucedido un buen número de estándares que os resumo en la siguiente tabla:Slide19
Slide20

Es muy entretenida la rivalidad entre el par de cobre y la fibra. Lo cierto es que la instalación de las fibras ha dejado de ser una actividad reservada para unos pocos, su precio ha descendido, las herramientas han mejorado de forma espectacular. Y las fibras cubren distancias muy superiores a los 100 metros, por tanto son las reinas en redes. Sin embargo el par de cobre de muerto nada de nada, es más, aguanta el tipo muy bien con categorías como CAT-6. Desde hace unos años se escucha un nuevo mantra que anuncia su segunda muerte de manos de las redes Wi-Fi. Más de lo mismo, el cobre sigue aguantando como un campeón y las

Wi-Fi fallan más que las escopetas de feria.Slide21

FIBRA OPTICAConsta de un hilo construido a partir de cristal por el cual viaja la luz de un laser, el cual realiza la transmisión de la información a una velocidad equivalente a la de la luz, dado que es un medio totalmente óptico, osea, no utiliza señales eléctricas para poder viajar por dentro del hilo de cristal y por lo que se usa la luz de un láser. Es el medio mas rápido existente en transmisiones a la vez que caro y muy difícil de trabajar. Un cable de fibra óptica es un cable compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con

hiladuras de aramida que confieren al cable la necesaria resistencia a la tracción. Los cables de fibra óptica proporcionan una alternativa a los cables de hilo de cobre en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas, tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor. Por otro lado, el peso del cable de fibras es muchísimo menor que el de los cables de cobre, ya que una bobina del cable de 8 fibras antes citado puede pesar del orden de 30 kg/km, lo que permite efectuar tendidos de 2 a 4 km de una sola vez, mientras que en el caso de los cables de cobre no son prácticas distancias superiores a 250 - 300 m. Slide22

Los tipos de fibra óptica son:—Fibra multimodal En este tipo de fibra viajan varios rayos ópticos reflejándose a diferentes ángulos, los diferentes rayos ópticos recorren diferentes distancias y se desfasan al viajar dentro de la fibra. Por esta razón, la distancia a la que se puede trasmitir está limitada.—Fibra multimodal con índice graduado En este tipo de fibra óptica el núcleo está hecho de varias capas concéntricas de material óptico con diferentes índices de refracción. En estas fibras el número de rayos ópticos diferentes que viajan es menor y, por lo tanto, sufren menos el severo problema de las multimodales.

—Fibra monomodal Esta fibra óptica es la de menor diámetro y solamente permite viajar al rayo óptico central. No sufre del efecto de las otras dos pero es más difícil de construir y manipular. Es también más costosa pero permite distancias de transmisión mayores. Slide23
Slide24

Código de colores en fibras ópticasHe aquí otro de esos pequeños detalles que se olvidan con frecuencia. Colocar las fibras en el orden adecuado, sea una caja de terminación o un panel de patcheo, no importa, las fibras se codifican mediante un código de colores internacionalmente reconocido (TIA/EIA-598-B) y lo suyo es conocerlo.

Veamos un ejemplo para un cable óptico de seis fibras:

PosiciónColorAbreviatura1AzulBL2NaranjaOR

3VerdeGR4Marrón

BR

5

Gris pizarraSL

6BlancoWH

Los seis siguientes hasta doce siguen la siguiente secuencia:

7

Rojo

RD

8

Negro

BK

9

Amarillo

YL

10

Violeta

VI

11

Rosa

RS

12

Azul

agua

AQSlide25

Las fibras en el interior de un cable óptico se pueden codificar con esta secuencia hasta 24 posiciones. En este caso desde la fibra nº 13 a la 24 se vuelven a repetir los colores distinguiéndolos de los doce primeros con una traza o marca de color negro.Quizás te preguntas como se puede distinguir entonces la fibra 8 (BK) de la 20… Bien, en este caso (posición 20) la norma contempla que la traza o marca sea de color amarillo. La siguiente fibra, la 21, también combina amarillo con negro, pero el primero es el color de referencia (YL) y el negro de marca. Luego no deben confundirse.

No es lo mismo este código para las fibras que el de la cubierta del cable. Es muy típico que en cables de interiores las fibras multimodo (MM 50/125, MM 62.5/125) se identifiquen con cubiertas de color naranja y las monomodo con cubiertas de color amarillo.Slide26

LA TRANSMISIONPara efectuar la transmisión se pueden usar dos técnicas: banda base y banda ancha. Transmite en banda base el par trenzado y el coaxial de banda base, y en banda ancha el coaxial de banda ancha la fibra óptica. Slide27

CONCLUSIONEl cable coaxial tiene como ventaja respecto del cable de tipo par trenzado, que está más apantallado, consigue mayores velocidades al tener un ancho de banda mayor y permite mayor longitud. Como desventaja, que es más caro y de difícil instalación. El cable de fibra óptica, es un medio que se está empezando a utilizar par la interconexión de redes de área local. Aunque es difícil de instalar, de mantener y costoso, se tiene a su utilización por las velocidades que puede alcanzar y la seguridad y fiabilidad de las transmisiones. La señal que se transmite a través del cable de fibra óptica es luminosa, esta se transmite a través de un cable que está compuesto de fibras de vidrio. Dentro de la fibra óptica se pueden distinguir las fibras

monomodo, en estas el diámetro del núcleo es igual a la longitud de la señal que se transmite, por lo que se consiguen velocidades de transmisión muy altas. Y la fibra multimodo, el tamaño del núcleo es mayor, lo que permite que la señal vaya rebotando y se puedan transmitir varios haces a la vez con distinto ángulo de incidencia. La desventaja que tiene es que al ir rebotando la señal, la velocidad de propagación es menor y la señal se atenúa, otra desventaja es que se puede producir distorsión nodal (rebotes con distintos ángulos de incidencia). La fibra

multimodo de índice gradual, consigue que el índice de refracción de la parte interna del cable sea homogéneo con lo que se elimina la distorsión nodal. Ventajas de la fibra óptica: Puede alcanzar velocidades de transmisión de 1 Gb./seg., tienen gran fiabilidad y seguridad, una gran calidad y resistencia, y como inconvenientes que son muy difíciles de instalar y son muy caras. Slide28

Medios de transmisión no guiados.En el caso de medios guiados es el propio medio el que determina el que determina principalmente las limitaciones de la transmisión: velocidad de transmisión de los datos, ancho de banda que puede soportar y espaciado entre repetidores. Sin embargo, al utilizar medios no guiados resulta más determinante en la transmisión el espectro de frecuencia de la señal producida por la antena que el propio medio de transmisión. el medio solo proporciona un soporte para que las ondas se transmitan, pero no las guía.

La comunicación de datos en medios no guiados utiliza principalmente: Señales de radio Señales de microondas Señales de rayo infrarrojo Señales de rayo láser Slide29

Señales de radio: Son capaces de recorrer grandes distancias, atravesando edificios incluso. Son ondas omnidireccionales: se propagan en todas las direcciones. Su mayor problema son las interferencias entre usuarios.Señales de Microondas: Estas ondas viajan en línea recta, por lo que emisor y receptor deben estar alineados cuidadosamente. Tienen dificultades para atravesar edificios. Debido a la propia curvatura de la tierra, la distancia entre dos repetidores no debe exceder de unos 80 Kms.

de distancia. Es una forma económica para comunicar dos zonas geográficas mediante dos torres suficientemente altas para que sus extremos sean visibles.Señales de Infrarrojo: Son ondas direccionales incapaces de atravesar objetos sólidos (paredes, por ejemplo) que están indicadas para transmisiones de corta distancia.Señales de Rayo Laser: Las ondas láser son unidireccionales. Se pueden utilizar para comunicar dos edificios próximos instalando en cada uno de ellos un emisor láser y un

fotodetector. Slide30

Tarjetas de RedSlide31

Tarjetas de RedUna tarjeta de red o adaptador de red permite la comunicación con aparatos conectados entre si y también permite compartir recursos entre dos o más computadoras (discos duros, CD-ROM, impresoras, etc). A las tarjetas de red también se les llama NIC (por network

interface card; en español "tarjeta de interfaz de red"). Hay diversos tipos de adaptadores en función del tipo de cableado o arquitectura que se utilice en la red (coaxial fino, coaxial grueso, Token Ring, etc.), pero actualmente el más común es del tipo Ethernet utilizando una interfaz o conector RJ-45.Aunque el término tarjeta de red se suele asociar a una tarjeta de expansión insertada en una ranura interna de un computador o impresora, se suele utilizar para referirse también a dispositivos integrados (del inglés

embedded) en la placa madre del equipo, como las interfaces presentes en las videoconsolas Xbox o las computadoras portátiles. Igualmente se usa para expansiones con el mismo fin que en nada recuerdan a la típica tarjeta con chips y conectores soldados, como la interfaz de red para la Sega Dreamcast, las PCMCIA, o las tarjetas con conector y factor de forma CompactFlash y Secure Digital SIO utilizados en PDAs.Slide32

Cada tarjeta de red tiene un número de identificación único de 48 bits, en hexadecimal llamado dirección MAC (no confundir con Apple Macintosh). Estas direcciones hardware únicas son administradas por el Institute of Electronic and Electrical

Engineers (IEEE). Los tres primeros octetos del número MAC son conocidos como OUI e identifican a proveedores específicos y son designados por la IEEE.Se denomina también NIC al circuito integrado de la tarjeta de red que se encarga de servir como interfaz de Ethernet entre el medio físico (por ejemplo un cable coaxial) y el equipo (por ejemplo una computadora personal o una impresora). Es un circuito integrado usado en computadoras o periféricos tales como las tarjetas de red, impresoras de red o sistemas

intergrados (embebed en inglés), para conectar dos o más dispositivos entre sí a través de algún medio, ya sea conexión inalámbrica, cable UTP, cable coaxial, fibra óptica, etc.La mayoría de tarjetas traen un zócalo vacío rotulado BOOT ROM, para incluir una ROM opcional que permite que el equipo arranque desde un servidor de la red con una imagen de un medio de arranque (generalmente un disquete), lo que permite usar equipos sin disco duro ni unidad de disquete. El que algunas placas madre ya incorporen esa ROM en su BIOS y la posibilidad de usar tarjetas CompactFlash en lugar del disco duro con sólo un adaptador, hace que comience a ser menos frecuente, principalmente en tarjetas de perfil bajo.Slide33

Token RingLas tarjetas para red Token Ring han caído hoy en día casi en desuso, debido a la baja velocidad y elevado costo respecto de Ethernet. Tenían un conector DB-9. También se utilizó el conector RJ-45 para las NICs (tarjetas de redes) y los

MAUs (Multiple Access Unit- Unidad de múltiple acceso que era el núcleo de una red Token Ring).ARCNET

Las tarjetas para red ARCNET utilizaban principalmente conectores BNC y/o RJ-45.Detalle de los conectores BNC (Coaxial) y RJ45 de una tarjeta de redSlide34

Tarjeta de red PCI 10MB Encore ESL-835-TBSlide35

EthernetArtículo principal: EthernetLas tarjetas de red Ethernet utilizan conectores RJ-45 (10/100/1000) BNC (10), AUI (10), MII (100), GMII (1000). El caso más habitual es el de la tarjeta o NIC con un conector RJ-45, aunque durante la transición del uso mayoritario de cable coaxial (10 Mbps) a par trenzado (100 Mbps) abundaron las tarjetas con conectores BNC y RJ-45 e incluso BNC / AUI / RJ-45 (en muchas de ellas se pueden ver serigrafiados

los conectores no usados). Con la entrada de las redes Gigabit y el que en las casas sea frecuente la presencias de varios ordenadores comienzan a verse tarjetas y placas base (con NIC integradas) con 2 y hasta 4 puertos RJ-45, algo antes reservado a los servidores.Pueden variar en función de la velocidad de transmisión, normalmente 10 Mbps ó 10/100 Mbps.

Actualmente se están empezando a utilizar las de 1000 Mbps, también conocida como Gigabit Ethernet y en algunos casos 10 Gigabit Ethernet, utilizando también cable de par trenzado, pero de categoría 6, 6e y 7 que trabajan a frecuencias más altas.Las velocidades especificadas por los fabricantes son teóricas, por ejemplo las de 100 Mbps (13,1 MB/s) realmente pueden llegar como máximo a unos 78,4Mbps (10,3 MB/s).Slide36

Tarjeta de red ISA D-Link E-250 CT (Coaxial/base T) a 10MB/sSlide37

Tarjeta de red ISA de 10 Mbps con conectores RJ-45, AUI y 10Base2.Slide38
Slide39

NC6134 Gigabit NIC 64 PC Slide40

Wi-FiArtículo principal: Wi-FiTambién son NIC las tarjetas inalámbricas o wireless, las cuales vienen en diferentes variedades dependiendo de la norma a la cual se ajusten, usualmente son 802.11a, 802.11b y 802.11g. Las más populares son la 802.11b que transmite a 11 Mbps (1,375 MB/s) con una distancia teórica de 100 metros y la 802.11g que transmite a 54 Mbps (6,75 MB/s).

La velocidad real de transferencia que llega a alcanzar una tarjeta WiFi con protocolo 11.b es de unos 4Mbps (0,5 MB/s) y las de protocolo 11.g llegan como máximo a unos 20Mbps (2,6 MB/s). Actualmente el protocolo que se viene utilizando es 11.n que es capaz de transmitir 600

Mbps. Actualmente la capa física soporta una velocidad de 300Mbps, con el uso de dos flujos espaciales en un canal de 40 MHz. Dependiendo del entorno, esto puede traducirse en un rendimiento percibido por el usuario de 100Mbps.Slide41
Slide42

Tecnología LAN FDDILas redes FDDI (Fiber Distributed Data Interface - Interfaz de Datos Distribuida por Fibra ) surgieron a mediados de los años ochenta para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y

Token Ring existentes hasta el límite de sus posibilidades.Están implementadas mediante una física de estrella (lo más normal) y lógica de anillo doble de token, uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) y el otro en dirección contraria (anillo de respaldo o back up), que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de

backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad.Slide43

El tráfico de cada anillo viaja en direcciones opuestas. Físicamente, los anillos están compuestos por dos o más conexiones punto a punto entre estaciones adyacentes. Los dos anillos de la FDDI se conocen con el nombre de primario y secundario. El anillo primario se usa para la transmisión de datos, mientras que el anillo secundario se usa generalmente como respaldo.

Se distinguen en una red FDDI dos tipos de estaciones: las estaciones Clase B, o estaciones de una conexión (SAS) , se conectan a un anillo, mientras que las de Clase A, o estaciones de doble conexión (DAS) , se conectan a ambos anillos. Slide44

Las SAS se conectan al anillo primario a través de un concentrador que suministra conexiones para varias SAS. El concentrador garantiza que si se produce una falla o interrupción en el suministro de alimentación en algún SAS determinado, el anillo no se interrumpa.

Esto es particularmente útil cuando se conectan al anillo PC o dispositivos similares que se encienden y se apagan con frecuencia.

Las redes FDDI utilizan un mecanismo de transmisión de tokens similar al de las redes Token Ring, pero además, acepta la asignación en tiempo real del ancho de banda de la red, mediante la definición de dos tipos de tráfico: Tráfico Síncrono : Puede consumir una porción del ancho de banda total de 100 Mbps de una red FDDI, mientras que el tráfico asíncrono puede consumir el resto.

Tráfico Asíncrono : Se asigna utilizando un esquema de prioridad de ocho niveles. A cada estación se asigna un nivel de prioridad asíncrono. El ancho de banda síncrono se asigna a las estaciones que requieren una capacidad de transmisión continua. Esto resulta útil para transmitir información de voz y vídeo. El ancho de banda restante se utiliza para las transmisiones asíncronas FDDI también permite diálogos extendidos, en los cuales las estaciones pueden usar temporalmente todo el ancho de banda asíncrono.Slide45

El mecanismo de prioridad de la FDDI puede bloquear las estaciones que no pueden usar el ancho de banda síncrono y que tienen una prioridad asíncrona demasiado baja.

En cuanto a la codificación, FDDI no usa el sistema de Manchester, sino que implementa un esquema de codificación denominado esquema 4B/5B , en el que se usan 5 bits para codificar 4. Por lo tanto, dieciséis combinaciones son datos, mientras que las otras son para control.

Debido a la longitud potencial del amillo, una estación puede generar una nueva trama inmediatamente después de transmitir otra, en vez de esperar su vuelta, por lo que puede darse el caso de que en el anillo haya varias tramas a la vez. Las fuentes de señales de los transceptores de la FDDI son LEDs

(diodos electroluminiscentes) o lásers. Los primeros se suelen usar para tendidos entre máquinas, mientras que los segundos se usan para tendidos primarios de backbone. Slide46

Medios en las redes FDDI

FDDI especifica una LAN de dos anillos de 100 Mbps con transmisión de tokens, que usa un medio de transmisión de fibra óptica.

Aunque funciona a velocidades más altas, FDDI es similar a Token Ring. Ambas configuraciones de red comparten ciertas características, tales como su topología (anillo) y su método de acceso al medio (transferencia de tokens). Una de las características de FDDI es el uso de la fibra óptica como medio de transmisión. La fibra óptica ofrece varias ventajas con respecto al cableado de cobre tradicional, por ejemplo: Seguridad: la fibra no emite señales eléctricas que se pueden interceptar.

Confiabilidad: la fibra es inmune a la interferencia eléctrica. Velocidad: la fibra óptica tiene un potencial de rendimiento mucho mayor que el del cable de cobre. Existen dos clases de fibra:

monomodo

(también denominado modo único); y

multimodo. La fibra monomodo permite que sólo un modo de luz se propague a través de ella, mientras que la fibra multimodo permite la propagación de múltiples modos de luz. Los modos se pueden representar como haces de rayos luminosos que entran a la fibra en un ángulo determinado. Slide47

Cuando se propagan múltiples modos de luz a través de la fibra, éstos pueden recorrer diferentes distancias, según su ángulo de entrada. Como resultado, no llegan a su destino simultáneamente; a este fenómeno se le denomina dispersión modal .

La fibra

monomodo puede acomodar un mayor ancho de banda y permite el tendido de cables de mayor longitud que la fibra multimodo. Debido a estas características, la fibra monomodo se usa a menudo para la conectividad entre edificios mientras que la fibra multimodo se usa con mayor frecuencia para la conectividad dentro de un edificio. La fibra multimodo usa los LED como dispositivos generadores de luz, mientras que la fibra monomodo generalmente usa láser.

FDDI (Fibre Distributed Data Interface) consiste básicamente en un anillo de fibra óptica por paso de testigo. El paso de testigo "token-ring" se refiere al método por el que un nodo conectado al anillo FDDI accede a él. La topología en anillo se implementa físicamente con fibra óptica. Slide48

Los nodos no pueden transmitir datos hasta que toman el testigo. Este testigo es realmente una trama especial que se usa para indicar que un nodo libera el testigo.

Cuando un nodo detecta esa trama y tiene datos que transmitir, captura a trama eliminándola del anillo, y lo libera cuando termina o cuando finaliza su tiempo de posesión del testigo.

FDDI proporciona interconexión a alta velocidad entre redes de área local (LAN), y entre éstas y las redes de área ancha (WAN). Las principales eplicaciones se han centrado en la interconexión de redes LAN Ethernet y de éstas con redes WAN X.25. Tanto en la conexión de estas tecnologías de red como con otras, todas se conectan directamente a la red principal FDDI (backbone). Otra aplicación es la interconexión de periféricos remotos de alta velocidad a ordenadores tipo mainframe. Para garantizar el funcionamiento, cuando un ordenador está desconectado, averiado o

apagado, un conmutador óptico de funcionamiento mecánico realiza un puenteo del nodo, eliminándolo del anillo. Esta seguridad, unida al hecho de compatibilizar velocidades de 100 Mbps con distancias de 100 Km hacen de la FDDI una tecnología óptima para gran número de aplicaciones. El cable duplex de fibra óptica consiste en dos cables idénticos, que implementan en realidad dos anillos con sentidos de rotación opuestos

, como se indica en la figura 1. Slide49

En esta configuración, todas las estaciones están conectadas a ambos anillos, el primario y el secundario. Este tipo de nodo se conoce como estación dual (dual

attached station

). Como alternativa, en la configuración de estación simple o única, mostrada en la figura 2, el nodo solo requiere un un cable de fibra óptica. El inconveniente es que un fallo en uno de los cables o nodos desconectará totalmente el nodo de la red. Slide50

Dispositivo de conectividad.Slide51

Repeater (Repetidor):Es un dispositivo electrónico que conecta dos segmentos de una misma red, transfiriendo el tráfico de uno a otro extremo, bien por cable o inalámbrico.

Los segmento de red son limitados en su longitud, si es por cable, generalmente no superan los 100 M., debido a la perdida de señal y la generación de ruido en las líneas.Con un repetidor se puede evitar el problema de la longitud, ya que reconstruye la señal eliminando los ruidos y la transmite de un segmento al otro.

En la actualidad los repetidores se han vuelto muy populares a nivel de redes inalámbricas o WIFI.El Repetidor amplifica la señal de la red LAN inalámbrica desde el router al ordenador. Un Receptor, por tanto, actúa sólo en el nivel físico o capa 1 del modelo OSI.Slide52

ConcentradorUn concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.Contiene diferentes puntos de conexión, denominados puertos, retransmitiendo cada paquete de datos recibidos por uno de los puertos a los demás puertos.

El Hub básicamente extiende la funcionalidad de la red (LAN) para que el cableado pueda ser extendido a mayor distancia, es por esto que puede ser considerado como una repetidor.

El Hub transmite los “Broadcasts” a todos los puertos que contenga, esto es, si contiene 8 puertos, todas las computadoras que estén conectadas a dichos puertos recibirán la misma información.Se utiliza para implementar redes de topología estrella y ampliación de la red LAN. Un Hub, por tanto, actúa sólo en el nivel físico o capa 1 del modelo OSI.Slide53
Slide54

Bridge (Puente):Como los repetidores y los hub, permiten conectar dos segmentos de red, pero a diferencia de ellos, seleccionan el tráfico que pasa de un segmento a otro, de forma tal que sólo el tráfico que parte de un dispositivo (Router, Ordenador o Gateway) de un segmento y que va al otro segmento se transmite a través del bridge.

Con un Bridge, se puede reducir notablemente el tráfico de los distintos segmentos conectados a él.Los Bridge actúan a nivel físico y de enlace de datos del modelo OSI en Capa 2.A nivel de enlace el Bridge comprueba la dirección de destino y hace copia hacia el otro segmento si allí se encuentra la estación de destino.

La principal diferencia de un receptor y hub es que éstos hacen pasar todas las tramas que llegan al segmento, independientemente de que se encuentre o no allí el dispositivo de destino.Slide55

Switch (Conmutador):Interconecta dos o más segmentos de red, pasando segmentos de uno a otro de acuerdo con la dirección de control de acceso al medio (MAC). Actúan como filtros, en la capa de enlace de datos (capa 2) del modelo OSI.Las funciones son iguales que el dispositivo Bridge o Puente, pero pueden interconectar o filtrar la información entre más de dos redes.

El Switch es considerado un Hub inteligente, cuando es activado, éste empieza a reconocer las direcciones (MAC) que generalmente son enviadas por cada puerto, en otras palabras, cuando llega información al conmutador éste tiene mayor conocimiento sobre qué puerto de salida es el más apropiado, y por lo tanto ahorra una carga (“

bandwidth”) a los demás puertos del Switch.Slide56
Slide57

Router (dispositivo de encaminamiento):Operan entre redes aisladas que utilizan protocolos similares y direcciones o encaminan la información de acuerdo con la mejor ruta posible.La primera función de un router, es saber si el destinatario de un paquete de información está en nuestra propia red o en una remota. Para determinarlo, el

router utiliza un mecanismo llamado “máscara de subred”.La máscara de subred es parecida a una dirección IP (la identificación única de un ordenador en una red de ordenadores) y determina a qué grupo de ordenadores pertenece uno en concreto.Si la máscara de subred de un paquete de información enviado no se corresponde a la red de ordenadores de nuestra LAN (red local), el

router determinará, lógicamente que el destino de ese paquete está en otro segmento de red diferente o salir a otra red (WAN), para conectar con otro router.Los router pueden estar conectados a dos o más redes a la vez, e implica la realización de tareas que conciernen a los tres niveles inferiores del modelo OSI: físico, enlace de datos y red. Existen router que son también Switch con 4 puertos y punto de acceso WIFI.Dichos aparatos son los utilizados por las operadores de telefonía para conectar las líneas de comunicaciones ADSL de Internet con los dispositivos de una LAN (red local) de un domicilio particular.Slide58
Slide59
Slide60
Slide61

Gateway (Pasarela):Son router que tienen programas adicionales (correspondientes a niveles de transporte, sesión, presentación y aplicación, del modelo OSI), que permiten interconectar redes que utilizan distintos protocolos: por ejemplo TCP/IP,SNA, Netware,

VoIP. Los Gateway deben desensamblar las tramas y paquetes que le llegan para obtener el mensaje original y a partir de éste volver a reconfigurar los paquetes y las tramas, pero de acuerdo con el protocolo de la red donde se encuentra la estación de destino.En la actualidad los Gateway son muy utilizados en la voz sobre IP (VoIP) entre telefonía convencional, operadoras, ordenadores y telefonía

VoIP.Slide62

Un gateway (puerta de enlace) es un dispositivo que permite interconectar redes con protocolos y arquitecturas diferentes a todos los niveles de comunicación. Su propósito es traducir la información del protocolo utilizado en una red al protocolo usado en la red de destino.

Gateway (Pasarela)Slide63

En informática, un servidor es un tipo de software que realiza ciertas tareas en nombre de los usuarios. El término servidor ahora también se utiliza para referirse al ordenador físico en el cual funciona ese software, una máquina cuyo propósito es proveer datos de modo que otras máquinas puedan utilizar esos datos.Este uso dual puede llevar a confusión. Por ejemplo, en el caso de un servidor web, este término podría referirse a la máquina que almacena y maneja los sitios web, y en este sentido es utilizada por las compañías que ofrecen

hosting o hospedaje. Alternativamente, el servidor web podría referirse al software, como el servidor de http de Apache, que funciona en la máquina y maneja la entrega de los componentes de los páginas web como respuesta a peticiones de los navegadores de los clientes.Los archivos para cada sitio de Internet se almacenan y se ejecutan en el servidor. Hay muchos servidores en Internet y muchos tipos de servidores, pero comparten la función común de proporcionar el acceso a los archivos y servicios.

ServidoresSlide64

Un servidor sirve información a los ordenadores que se conecten a él. Cuando los usuarios se conectan a un servidor pueden acceder a programas, archivos y otra información del servidor.En la web, un servidor web es un ordenador que usa el protocolo http para enviar páginas web al ordenador de un usuario cuando el usuario las solicita.Los servidores web, servidores de correo y servidores de bases de datos son a lo que tiene acceso la mayoría de la gente al usar Internet.

Algunos servidores manejan solamente correo o solamente archivos, mientras que otros hacen más de un trabajo, ya que un mismo ordenador puede tener diferentes programas de servidor funcionando al mismo tiempo.Los servidores se conectan a la red mediante una interfaz que puede ser una red verdadera o mediante conexión vía línea telefónica o digital.Slide65

Tipos de servidoresServidores de Aplicaciones (Application Servers): Designados a veces como un tipo de middleware (software que conecta dos aplicaciones), los servidores de aplicaciones ocupan una gran parte del territorio entre los servidores de bases de datos y el usuario, y a menudo los conectan.

Servidores de Audio/Video (Audio/Video Servers): Los servidores de Audio/Video añaden capacidades multimedia a los sitios web permitiéndoles mostrar contenido multimedia en forma de flujo continuo (streaming) desde el servidor.Servidores de Chat (Chat Servers): Los servidores de chat permiten intercambiar información a una gran cantidad de usuarios ofreciendo la posibilidad de llevar a cabo discusiones en tiempo real.

Servidores de Fax (Fax Servers): Un servidor de fax es una solución ideal para organizaciones que tratan de reducir el uso del teléfono pero necesitan enviar documentos por fax.Slide66

Servidores FTP (FTP Servers): Uno de los servicios más antiguos de Internet, File Transfer Protocol permite mover uno o más archivos...Leer más »Servidores Groupware (Groupware Servers): Un servidor groupware es un software diseñado para permitir colaborar a los usuarios, sin importar la localización, vía Internet o vía Intranet corporativo y trabajar juntos en una atmósfera virtual.

Servidores IRC (IRC Servers): Otra opción para usuarios que buscan la discusión en tiempo real, Internet Relay Chat consiste en varias redes de servidores separadas que permiten que los usuarios conecten el uno al otro vía una red IRC.Servidores de Listas (List

Servers): Los servidores de listas ofrecen una manera mejor de manejar listas de correo electrónico, bien sean discusiones interactivas abiertas al público o listas unidireccionales de anuncios, boletines de noticias o publicidad.Slide67

Servidores de Correo (Mail Servers): Casi tan ubicuos y cruciales como los servidores web, los servidores de correo mueven y almacenan el correo electrónico a través de las redes corporativas (vía LANs y WANs) y a través de Internet.Servidores de Noticias (News Servers): Los servidores de noticias actúan como fuente de distribución y entrega para los millares de grupos de noticias públicos actualmente accesibles a través de la red de noticias USENET.

Servidores Proxy (Proxy Servers): Los servidores proxy se sitúan entre un programa del cliente (típicamente un navegador) y un servidor externo (típicamente otro servidor web) para filtrar peticiones, mejorar el funcionamiento y compartir conexiones.Servidores Telnet (Telnet Servers): Un servidor telnet permite a los usuarios entrar en un ordenador huésped y realizar tareas como si estuviera trabajando directamente en ese ordenador.Slide68

Definición de servidor webBásicamente, un servidor web sirve contenido estático a un navegador, carga un archivo y lo sirve a través de la red al navegador de un usuario. Este intercambio es mediado por el navegador y el servidor que hablan el uno con el otro mediante HTTP.Se pueden utilizar varias tecnologías en el servidor para aumentar su potencia más allá de su capacidad de entregar páginas HTML; éstas incluyen scripts CGI, seguridad SSL y páginas activas del servidor (

ASP).Slide69
Slide70