/
THE CLAIR VOY ANT DEMON HAS HARD ASK PETER ACS Conside THE CLAIR VOY ANT DEMON HAS HARD ASK PETER ACS Conside

THE CLAIR VOY ANT DEMON HAS HARD ASK PETER ACS Conside - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
416 views
Uploaded On 2015-05-15

THE CLAIR VOY ANT DEMON HAS HARD ASK PETER ACS Conside - PPT Presentation

do the same for the ows independently fr om the columns point of will be called blocked if its ow and column have the same color say that this random con57346guration per colates if ther is path in starting at the origin consisting of rightwar and u ID: 67310

the same for

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THE CLAIR VOY ANT DEMON HAS HARD ASK PET..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

THECLAIRVOYANTDEMONHASAHARDTASKPETERG´ACSABSTRACT.ConsidertheintegerlatticeL=Z2.Forsomem4,letuscoloreachcolumnofthislatticeindependentlyanduniformlyintooneofmcolors.Wedothesamefortherows,independentlyfromthecolumns.ApointofLwillbecalledblockedifitsrowandcolumnhavethesamecolor.WesaythatthisrandomcongurationpercolatesifthereisapathinLstartingattheorigin,consistingofrightwardandupwardunitsteps,andavoidingtheblockedpoints.Asaproblemarisingindistributedcomputing,ithasbeenconjecturedthatform4,thecongurationpercolateswithpositiveprobability.Thishasnowbeenproved(inalaterpaper)forlargem.Weprovethattheprobabilitythatthereispercolationtodistancenbutnottoinnityisnotexponentiallysmallinn.Thisnarrowstherangeofmethodsavailableforprovingtheconjecture.1.STATEMENTOFTHERESULT1.1.Introduction.Letx=(x(0),x(1),...)beaninnitesequenceandu=(u(0),u(1),...)beabinarysequencewithelementsinf0,1g.Letsn=ån1i=0u(i).Wedenethedelayedversionx(u)ofx,byx(u)(n)=x(sn).Thus,ifi=snthenx(u)(n)=x(i),andx(u)(n+1)=x(i)orx(i+1)dependingonwhetheru(n)=0or1.Ifu(n)=0thenwecansaythatx(u)isdelayedattimen+1.Fortwoinnitesequencesx,ywesaythattheydonotcollideifthereisadelaysequenceusuchthatforeachnwehavex(u)(n)6=y(1u)(n).Here,1uisthedelaysequencecomplementarytou:thus,y(1u)isdelayedattimenifandonlyifx(u)isnot.Foragivenm�1,supposethatX=(X(0),X(1),...)isaninnitesequenceofindepen-dentrandomvariables,andY=(Y(0),Y(1),...)isanothersuchsequence,alsoindepen-dentofX,whereallvariablesareuniformlydistributedoverf0,...,m1g.Thefollowingtheoremhasbeenconjecturedin[2].Proposition1.1(See[3]).Ifmissufcientlylargethenwithpositiveprobability,XdoesnotcollidewithY.ThesequencesX,YcanbeviewedastwoindependentrandomwalksonthecompletegraphKm,andthentheproblemiswhethera“clairvoyantdemon”,i.e.abeingwhoknowsinadvancebothinnitesequencesXandY,canintroducedelaysintothesewalksinsuchawaythattheynevercollide.Keywordsandphrases.Dependentpercolation,scheduling,distributedcomputing.1 2PETERG´ACS1.2.Graphreformulation.WedeneagraphG=(V,E)asfollows.V=Z2�0isthesetofpoints(i,j)wherei,jarepositiveintegers.Letusdenethedistanceoftwopoints(i,j),(k,l)asjkij+jljj(L1distance).WhenrepresentingthesetVofpoints(i,j)graphically,therightdirectionistheoneofgrowingi,andtheupwarddirectionistheoneofgrowingj.ThesetEofedgesconsistsofallpairsoftheform((i,j),(i+1,j))and((i,j),(i,j+1)).GivenX,Yasinthetheorem,letussaythatapoint(i,j)hascolorkifX(i)=Y(j)=k.Otherwise,ithascolor1,whichwewillcallwhite.ItiseasytoseethatXandYdonotcollideifandonlyifthereisaninnitedirectedpathinGstartingfrom(0,0)andproceedingonwhitepoints.Indeed,eachpathcorrespondstoadelaysequenceusuchthatu(n)=1ifandonlyiftheedgeishorizontal.Thus,thetwosequencesdonotcollideifandonlyifthegraphofwhitepoints“percolates”.Wewillsaythatthereispercolationiftheprobabilitythatthereisaninnitepathispositive.Ithasbeenshownindependentlyin[1]and[4]thatifthegraphisundirectedthenthereispercolationevenform=4.Intraditionalpercolationtheory,whenthereispercolationthentypically(unlesstheprobabilityofblockingisata“criticalpoint”)theprobabilitythatthereispercolationtoadistancenbutnopercolationtoinnityisexponentiallysmallinn.Thisisthecasealsointhepaperscitedabove,butitisnottrueforthedirectedpercolationproblemwearefacing.Theorem1.IfthereispercolationfromtheorigintoinnitywithpositiveprobabilitythentheprobabilityofpercolatingfromtheorigintodistancenbutnottoinnityisatleastCnaforsomeconstantsC,a�0dependingonlyonm.2.THEPROOFLetbm=(0,1,2,...,m1)becalledthebasiccolorsequenceoflengthm:itissimplythelistofalldifferentcolors.Letb0mbethereverseofbm,i.e.b0m(i)=bm(mi1).LetEn,kbetheeventthatforalli2[0,k1],j2[0,m1]wehaveY(n+im+j1)=b0m(j),i.e.startingwiththeindexn1,thesequenceYhaskconsecutiverepetitionsofb0m.WesaythatiisanindexoftheoccurrenceofbminthesequenceXifX(i+j)=bm(j)forj2[0,m1].Fori�0,lettibethei-thindexofoccurrenceofbminX.LetFn,kbetheeventthatforalli2[1,n]wehaveti+1mtik1,(1)andalsot1k1.Lemma2.1.Ifforsomeintegern�0bothEn,kandFn,kholdthenthereisnowhiteinnitedirectedpath.Proof.Letusassumethatthereisawhiteinnitepath.SincetherearenconsecutivecopiesofbminX,thei-thonestartingatindexti,foreachp2[1,n]theremustbeaverticalstepinthepathwithanxprojectionin[tp,tp+m1].Thereforethepathascendstothesegment[0,tn+m1]fn1g,beforeitsxprojectionreachestn.Foreach1pn,0qkthereisadiagonallydescendingsequenceofmcoloredpointsf(tp+j,n+(q+1)mj2):j2[0,m1]g.Foraxedpthereareksuchdiagonalbarriersstackedaboveeachother,forminganim-penetrablecolumnofheightkm.Thepathwouldhavetoascendbetweentwoofthese THECLAIRVOYANTDEMONHASAHARDTASK3columns,saybetweencolumniandi+1.Thedistanceoftwoconsecutivecolumnsfromeachotheristi+1mtik1.Sincetherearekconsecutivecopiesofb0minYstartingatindexn1,foreachq2[0,k1]theremustbeahorizontalstepinthepathwithaheightinn+qm1+[0,m1].Sincethedistanceofthetwocolumnsisatmostk1,itisnotpossibleforthepathtopassbetweenthetwocolumns.(Thesameholdsforthespacebeforetherstcolumn.)Lemma2.2.Thereisaconstantasuchthatforalls�0,thereisakwithProb(En,k)mmna(s+1),Prob(Fn,k)1ns.Proof.Withp1=mm,wehaveProb(En,k)=pk1.LetusestimatetheprobabilityofFn,k.Theprobabilitythatt1�k1isupperboundedbytheprobabilitythatacopyofbmdoesnotbeginatiinXforanyiinf0,m,...,b(k1)/mcmg,whichis(1p1)b(k1)/mc+1(1p1)k/mep1k/m.Thesameestimateholdsfortheprobabilityof(1)assumingthatthesimilarconditionsforsmallerihavealreadybeensatised.HenceProb(Fn,k)�1nep1k/m.Letuschoosek=d(s+1)(mlogn)/p1e(2)forsomes�0,thenProb(Fn,k)�1ns,whileProb(En,k)p1nmlogp1p1(s+1).ProofofTheorem1.AssumethatthereisaninnitepathwithsomepositiveprobabilityP0.Choosessuchthatns0.5P0andchoosekasafunctionofsasin(2).ThentheprobabilitythatFn,kholdsandthereisaninnitepathisatleast0.5P0.LetGnbetheeventthatthereisapathleavingtherectangle[0,tn][0,n1].ThenProb(Fn,k^Gn)0.5P0.SinceFn,k^GnisindependentofEn,k,wehaveProb(En,k^Fn,k^Gn)0.5P0mmna(s+1).TheauthoristhankfultoJ´anosKoml´osandEndreSzemer´edifortellinghimabouttheproblem.REFERENCES[1]P.N.Balister,B.Bollobas,andA.N.Stacey,Dependentpercolationintwodimensions,Tech.report,1999.1.2[2]D.Coppersmith,P.Tetali,andP.Winkler,Collisionsamongrandomwalksonagraph,SIAMJ.DiscreteMath6(1993),no.3,363–374.1.1[3]PeterG´acs.Clairvoyantschedulingofrandomwalks.math.PR/0109152.1.1[4]P.Winkler,Dependentpercolationandcollidingrandomwalks,Tech.report,1999.1.2 4PETERG´ACSCOMPUTERSCIENCEDEPARTMENT,BOSTONUNIVERSITYE-mailaddress:gacs@bu.edu