/
The The

The - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
387 views
Uploaded On 2017-11-23

The - PPT Presentation

Fax12158989145Emailaddressgreveramipgupennedu10773142seefrontmatter2004ElsevierIncAllrightsreserveddoi101016jcviu200405002 ComputerVisionandImageUnderstanding952004317 ID: 607944

Fax:1-215-898-9145.E-mailaddress:grevera@mipg.upenn.edu.1077-3142/$-seefrontmatter2004ElsevierInc.Allrightsreserved.doi:10.1016/j.cviu.2004.05.002 ComputerVisionandImageUnderstanding95(2004)317

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "The" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ThedeadreckoningsigneddistancetransformGeorgeJ.GreveraMedicalImageProcessingGroup,DepartmentofRadiology,UniversityofPennsylvania,4thFloorBlockleyHall,423GuardianDrive,Philadelphia,PA19104-6021,USAReceived3February2003;accepted17May2004Availableonline7July2004Considerabinaryimagecontainingoneormoreobjects.Asigneddistancetransformas-signstoeachpixel(voxel,etc.),bothinsideandoutsideofanyobjects,theminimumdistancefromthatpixeltothenearestpixelontheborderofanobject.Byconvention,thesignoftheassigneddistancevalueindicateswhetherornotthepointiswithinsomeobject(positive)oroutsideofallobjects(negative).Overtheyears,manydierentalgorithmshavebeenproposedtocalculatethedistancetransformofanimage.Thesealgorithmsoftentradeaccuracyforef-“ciency,exhibitvaryingdegreesofconceptualcomplexity,andsomerequireparallelproces-sors.Onealgorithminparticular,theChamferdistance[J.ACM15(1968)600,Comput.Vis.Graph.ImageProcess.34(1986)344],hasbeenanalyzedforaccuracy,isrelativelye-cient,requiresnospecialcomputinghardware,andisconceptuallystraightforward.Itisun-derstandably,therefore,quitepopularandwidelyused.Wepresentastraightforwardmodi“cationtotheChamferdistancetransformalgorithmthatallowsittoproducemoreac-curateresultswithoutincreasingthewindowsize.WecallthisnewalgorithmDeadReckoningasitislooselybasedontheconceptofcontinualmeasurementsandcoursecorrectionthatwasemployedbyoceangoingvesselnavigationinthepast.WecompareDeadReckoningwithawidevarietyofotherdistancetransformalgorithmsbasedontheChamferdistancealgorithmforbothaccuracyandspeed,anddemonstratethatDeadReckoningproducesmoreaccurateresultswithcomparableeciency.2004ElsevierInc.Allrightsreserved.Signeddistancetransform;Chamferdistance;Euclideandistance Fax:1-215-898-9145.E-mailaddress:grevera@mipg.upenn.edu.1077-3142/$-seefrontmatter2004ElsevierInc.Allrightsreserved.doi:10.1016/j.cviu.2004.05.002 ComputerVisionandImageUnderstanding95(2004)317…333 www.elsevier.com/locate/cviu 1.IntroductionGivenabinaryimageconsistingofoneormoreobjectsanda(possiblydisjoint)background,wede“neasigneddistancetransformasatransformthatassignstoev-erypoint(toboththoseinobjectsaswellasthoseinthebackground)theminimumdistancefromthatparticularpointtothenearestpointontheborderofanobject.Thesignoftheassigneddistancevalueindicateswhetherthepointiseitherinside(positive)oroutside(negative)objects.Manydistancetransformalgorithmshavebeenproposedwith[18]and[25]mostlikelybeingtheearliest.Ingeneral,distancetransformalgorithmsexhibitvaryingdegreesofaccuracyoftheresult,computa-tionalcomplexity,hardwarerequirements(suchasparallelprocessors),andconcep-tualcomplexityofthealgorithmsthemselves.In[7],theauthorproposedanalgorithmthatproducesextremelyaccurateresultsbypropagatingvectorswhichap-proximatethedistanceof2Dimagesbysweepingthroughthedataanumberoftimesbypropagatingalocalmaskinamannersimilartoconvolution.In[1],theau-thorpresentedtheChamferdistancealgorithm(CDA)thatpropagatesscalar,inte-gervaluestoecientlyandaccuratelycalculatethedistancetransformof2Dand3Dimages(againinamannersimilartoconvolution).Borgefors[1]alsopresentedanerroranalysisfortheCDAforvariousneighborhoodsizesandintegervalues.Morerecently[2],ananalysisof3Ddistancetransformsemploying33neighbor-hoodsoflocaldistanceswaspresented.In[3],ananalysisofthe2DChamferdis-tancealgorithmusing33,55,andlargerneighborhoodsemployingbothintegerandrealvalueswaspresented.Marchand-MailletandSharaiha[26]alsopres-entananalysisofChamferdistanceusingtopologicalorderasopposedtotheap-proximationtotheEuclideandistanceastheevaluationcriteria.BecauseoftheconceptualeleganceoftheCDAandbecauseofitswidespreadpopularity,itsim-provementisthemotivationforthiswork.Ofcourse,distancetransformsoutsideoftheChamferfamilyalsohavebeenpre-sented.AtechniquefromArti“cialIntelligence,namelyA*heuristicsearch,hasbeenusedasthebasisforadistancetransformalgorithm[27].Amultiplepassalgorithmusingwindowsofvariouscon“gurations(alongthelinesof[7]andotherrasterscan-ningalgorithmssuchastheCDA)waspresentedin[28]and[34].Amethodofdis-tanceassignmentcalledorderedpropagationwaspresentedin[29].ThebasisofthisalgorithmandotherssuchasA*(usedin[27])istopropagatedistancebetweenpix-elscanberepresentedasnodesinagraph.Thesealgorithmstypicallyemploysortedliststoorderthepropagationamongthegraphnodes.GuanandMa[30]andEggers[31]employlistsaswell.In[35],theauthorspresentfouralgorithmstoperformtheexact,Euclidean,-dimensionaldistancetransformviatheserialcompositionof-dimensional“lters.Algorithmsfortheecientcomputationofdistancetransformsusingparallelarchitecturesarepresentedin[32]and[36].In[36],theauthorspresentanalgorithmthatconsistsoftwophaseswitheachphaseconsistingofbothafor-wardscanandabackwardscan.Inthe“rstphase,columnsarescanned;inthesec-ondphase,rowsarescanned.Theynotethatsincethescanningofaparticularcolumn(orrow)isindependentofthescanningoftheothercolumns(orrows),eachcolumn(row)maybescannedindependently(i.e.,inparallel).AdistancetransformG.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 employingagraphsearchalgorithmisalsopresentedin[33].DistancetransformscontinuetobeinterestingandhavealsobeenthefocusofatleastonerecentPh.D.dissertation[4].Sincetheearlyformulationofdistancetransformalgorithms[18,25],applicationsemployingdistancetransformshavebecomewidespread.Forexample,distancetransformshavebeenusedforskeletonizationofimages[6,14,19,21].Distancetrans-formsarealsousefulforthe(shape-based)interpolationofbothbinaryimages[11,15]aswellasgrayimagedata[8].In[12],theauthorsemploydistancetransforminformationinmultidimensionalimageregistration.Anecientraytracingalgo-rithmalsoemploysdistancetransforminformation[13].Distancetransformshavealsobeenshowntobeusefulincalculatingthemedialaxistransformwith[16,17]em-ployingtheChamferdistancealgorithmspeci“cally.Inadditiontotheusefulnessofdistancetransformsfortheinterpolationof3Dgraymedicalimagedata[9,10],theyhavealsobeenusedfortheautomaticclassi“cationofplantcells[22]andformea-suringcellwalls[24].TheChamferdistancewasalsoemployedinamethodtochar-acterizespinalcordatrophy[20].Becausedistancetransformsareapplicabletosuchawidevarietyofproblems,itisimportanttodevelopaccurateandecientdistancetransformalgorithms.Theoutlineofthispaperisasfollows.First,wepresentafewde“nitionsfromdig-italtopology[23]thatwillbeusefulfordevelopingtheframeworkofthealgorithm.ThenwepresenttheChamferdistancealgorithmandcompareandcontrastitwiththenewDeadReckoningmethod.Toevaluatethisnewmethod,wecompareitwiththeChamferdistancealgorithmemployingvariouswindowsizes(33,55,and7)andtypes(Chamfer,cityblock,chessboard,andEuclideanwitha33win-dow).Anevaluationframeworkisthenpresented.Thisframeworkevaluatestheal-gorithmswithrespecttoexecutiontime,aquantitativeevaluation,andaqualitativeevaluation.Thequalitativeevaluationdemonstratesthepresenceofpolygonaliso-contoursinalloftheChamfer-baseddistancetransformalgorithmsexceptDeadReckoning.Givenknownandrandombinaryimages,thequantitativeevaluationdemonstratesthattheDeadReckoningalgorithmproducesthemostaccurateresultswithrespecttotheactual,exactEuclideandistanceassignment.2.De“nitionsandmethodsWe“rstpresenttheCDAforcompletenessandtodemonstratethesimilaritiesanddierencesbetweenitandtheDeadReckoningalgorithm(DRA).NotethatCDAhasbeenandDRAmaybeextendedtodistancetransformsinhigherdimen-sionalspacesbutwerestrictourdiscussionandanalysisto2Dforsimplicity.Acom-pleteoutlineoftheCDAappearsinFig.1.A2Dbinaryinputimage,,havingcolumnsandrowsisgivenasinputtotheCDA.Sinceisabinaryimage,foragivenpoint,,either0indicatingapointoutsideofanyobject1indicatingapointwithinanobject.Notethattheinputimagemaycon-sistofmorethanoneobject(andweassumethatitcontainsatleastoneobject).Fur-thermore,weassumethatnoobjectextendstotheborderof.Moreformally,G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 .(Ifthisisnotthecase,wesimplyembedofsizeofsize2).Theoutputwillbeagrayimage,,alsoofsizewherethevalueassignedtoapointintheoutputimagerepresentsthedistancefromthatpointinthebinaryimagetothenearestpointontheborderofanobject.Usingterminologyfromdigitaltopology[23]wecallaborderpointanelementoftheimmediateinterior,,i^½ Fig.1.OriginalBorgeforsChamferdistancealgorithmusinga33window.Typically,3and4.Thesectionsappearinginboldinthe“rstandsecondpasswouldbemodi“edtoaccommodatelargerwindows.(Wenotethatthetwosetsofinitializationloopsmaybecombinedintoasingleloopforamoreecientimplementation.)G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 Thisindicatesthatforanypointtobeanelementoftheimmediateinterioritmustbeinsomeobjectandatleastoneofits4-connectedneighbors(i.e.,twoadjacentpixelswitheithercoordinatesorcoordinatesthatdierbyexactlyone)mustbeoutsideofanyobject.Similarly,wecallaborderpointanelementoftheimme-diateexterior,,i^½Thealgorithmproceedsasfollows.Similarto[7],theCDAinitiallyassignsforallpoints.Thenextstepistoassign0toallpointsbelongingtoeitherorthe.Wenotethatsomedistancetransformalgorithmsincluding[7]re-strictthede“nitionofborderpointtoelementsofonly.Ouralgorithmeasilyaccommodatesthis(viaonelineintheinitializationofthestepinFigs.1and3).If,however,borderpointsconsistofofIE,theresultingdistancetransformexhibitsthepropertyofsymmetryundercomplement.Thismeansthatadistancevalueas-signedtoapixelwillbethesameregardlessofwhetherornotthepixelisinsideoroutsideofanyobjects.Toillustratethispoint,considerabinaryimageanditscomplement,where0if1otherwiseAdistancetransformwiththesymmetryundercomplementpropertyproducesthesameresultsregardlessofwhetherisusedasinput.Again,asillustratedinFigs.1and3,ouralgorithmeasilyaccommodatesbothde“nitions.Thentwopasses,oneforwardandonebackward,aremadethroughtheimagedata.Eachpassemployslocal(typically33,55,or77)neighborhoodopera-tions(roughlyanalogoustoconvolution)inwhichoneattemptstominimizethecur-rentdistancevalueassignedtothepixel,,atthecenterofthewindowbycomparingthecurrentdistancevaluewiththedistancevaluesassignedtoitsneigh-,plusthedistancefromtothegivenneighbor,,asspeci“edinthewindow.VariouswindowsareshowninFig.2.Forexample,considertheforwardpass33window,,asshowninFig.2.Letindicatethevalueofthecenterofthe33windowwhichiscenteredoverthe.Letbethecurrentdistancetoaborderpoint.Thealgorithmthenmakesthefollowingassignment:Theforwardwindowismovedthroughinaforwardpass.Thenabackwardwindowismovedthroughinabackwardpasstopropagateminimumdistancesthroughout.Asin[15]and[34],weadopttheconventionof0indicatingapointwithinanobject,i.e.,1and0indicatingapointoutsideofanyobject(G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 Borgeforscleverlydemonstrated:(i)usingasmallwindowandpropagatingdis-tanceinthismannerintroduceserrorsintheassigneddistancevaluesevenifdoubleprecision”oatingpointisusedtorepresentdistancevalues,(ii)theseerrorsmaybeminimizedbyusingvaluesotherthan1andforthedistancesbetweenneighbor-ingpixels,andsurprisingly,(iii)usingintegerwindowvaluessuchas3and4yieldsmoreaccurateresultsthanusingwindowvaluesof1andanddoessowithmuchbetterperformance,and(iv)largerwindowswithappropriatevaluesminimizeerrorsevenfurtheratincreasedcomputationalcost.Although,asinouralgorithmaswell, Fig.2.VariouswindowsusedbytheChamferDistancealgorithm.Euclidean33isincludedforcom-parison,asisthe33windowemployedbytheDeadReckoningalgorithm.indicatesthecenterofthewindow;-indicatesapointthatisnotused.G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 thecomputationalcomplexityremainsthesame,,evenforlargerandlargerwindowsizes.TheDRAontheotherhandisastraightforwardmodi“cationtotheCDAthat,employingequalsizedwindows,producesmoreaccurateresultsataslightlyin-creasedcomputationalcost.Furthermore,DRAusingonlya33windowtypically Fig.3.TheDeadReckoningalgorithm(usingonlya33window).SectionsinboldindicateareasthatdierfromtheChamferDistancealgorithm.(Wenotethatthetwosetsofinitializationloopsmaybecom-binedintoasingleloopforamoreecientimplementation.)G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 producesmoreaccurateresults(seeTable5)thanCDAwitha77window(withsimilarexecutiontimes,seeTable2).Inadditiontowhichforagivenpoint,,istheminimumdistancefromtothenearestborderpoint,theDRAin-troducesanadditionaldatastructure,,whichisusedtoindicatetheactualbordersuchthatthatIEanddðx;yÞisminimumsimilartothatem-ployedDanielssonin[7].(Danielsson[7]in4SEDemploys3minimizationiterationsinboththeforwardandbackwardpasses.OurmethodasintheCDA[1,25]employsonly1ineachpass).NotethatastheCDAprogresses,maybeupdatedmanytimes.IntheDRA,eachtimethatisupdated,isupdatedaswell.WenotethattheorderinwhichthestatementsinFig.3areevaluatedmayin”uencetheassignmentofandsubsequently,thevalueassignedto.Regardless,ourresultsdemonstratethatouralgorithmremainsmoreaccurateusingonlya3neighborhoodthanCDAusinga77neighborhood.AlthoughtheDRAemploysa3(orlarger)windowtoguidetheupdate/minimizationofdistanceprocessas Fig.3.(G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 doesCDA,theactualvaluesassignedtoarenotthesameasCDAasshowninEq.(3).Letdenotethecomponentof,anddenotethecomponentof.DRAusesinsteadtheactualEuclideandistancefromthebordertothepointatthecenterofthewindowasshowninEq.(4).Usingonlya33window,theDRAtypicallydeterminesamoreaccurateesti-mationoftheexactEuclideandistancewithintheframeworkoftheCDA.DetailsoftheDRAareshowninFig.3.3.ResultsanddiscussionWecomparedDRAwithotherdistancetransformalgorithms,CDA33,cityblock,chessboard,CDA55,CDA77,andEuclidean33,onthebasisofbothexecutionspeedandaccuracyoftheresultingdistancetransformsforknownimages.3.1.ExecutiontimesTodetermineexecutionspeeds,wecompiledandexecutedallprogramsona2GHzPentium4basedDellPrecision340with1GbofRAMrunningunderRedHatLinuxrelease7.1.AllalgorithmswereimplementedinC++andwerecompiledwithg++version2.96usingthe…O3optionformaximumoptimizationforspeed.Testimagesconsistedofanumberofinputbinaryimagesofvarioussizescontainingasingleobjectpointatthecenterofeachimage.Forinputtestimagesofsizeslessthan50005000,executiontimeswereaveragedover100iterations.Forthe5000image,executiontimeswereaveragedover10iterations(wede“neaniterationtobeonecompleteexecutionofadistancetransformalgorithm).ExecutiontimesappearinTables1and2.Forthosedistancetransformwindowsthatuseanintegerrepresentationfordistance(viz.,CDA33,cityblock,chessboard,CDA5,andCDA77),anoptionalnormalizationstepmaybeperformedtoconvertnon-unitadjacentwindowvaluestounit1asshowninEq.(5).Thisallowsustocomparecalculateddistancevalueswithactual,knownEuclid-eandistancevaluesfortestimages. ExecutiontimeswithandwithoutthisconversionarereportedinTable1,andareincludedinallofthetimesinTable2.Wenotethatalthoughcityblockandchessboarduseanintegerrepresentation,theydonotrequirenormalizationsinceG.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 theyemployunitdistancesalready.Sincecityblockisthefastestwithorwithoutnormalization,thispointismoot.Itisthefastestbecauseourimplementationen-tirelyeliminatestheunnecessarycomputationofintheforwardandbackwardpasses,respectively.SinceCDA33,chessboard,andEuclidean33allemploy33windows,theyexhibitapproximatelythesameexecutiontimeseventhoughtheEuclidean33methodrepresentsdistancesusing”oatingpoint.Actually,chessboardwasfasterthanCDA3andEuclidean33becausenormalizationwasnotrequired.AlsoCDA3 Table2Timeinsecondstoperformonecomplete2DdistancetransformforvariousimagesizesandalgorithmsImagesize256512512100010005000CDA330.010.020.092.30Cityblock0.010.020.082.01Chessboard0.010.020.092.34CDA550.010.030.123.02CDA770.010.050.184.42Euclidean330.010.020.092.22DeadReckoning330.010.050.153.94DeadReckoning770.020.080.266.864SED0.010.040.123.118SED0.010.040.153.888SED(improved)0.010.040.133.38Alltimesreportedfor33,cityblock,chessboard,55,and77includenormalizationofintegerdistancevaluestodoubles.Allinputimagesconsistedofasolitarypointatthecenter. Table1Resultsoftimingcomparisonforvariousdistancetransformalgorithmsappliedtotestimagesofsizes1000and5000Representa-Window10005000Nonormali-Nonormali-CDA33Integer330.090.062.301.50CityblockInteger330.080.052.011.19ChessboardInteger330.090.062.341.47CDA55Integer550.120.093.022.19CDA77Integer770.180.144.423.62Euclidean33Double330.092.22DeadReckoningDouble330.153.94DeadReckoningDouble770.266.864SEDDouble330.123.118SEDDouble330.153.888SED(improved)Double330.133.38Allinputimagesconsistedofasolitarypointatthecenter.G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 wasslightlyfasterthanEuclidean33whichcanbeattributedtointegervs.”oatingpointperformance.(Inourimplementation,thecalculationofinEuclidean3andinDRAonlyoccursonceandnotrepeatedly.)ThenextfastestwasCDAwitha5window,DRA33,CDAwitha77window,andDRA77whichwastheslowest.AlthoughDRA33uses”oatingpointandtheextrastepsoftheDRA,itwasfasterthanCDAwitha77windowandnormalization(andonlyslightlyslowerthanCDAwitha77windowwithoutnormalization).Insummary,thealgorithmsfromfastesttoslowestwerecityblock,chessboard,CDA33,Eu-clidean33,CDA55,DRA33,CDA77,andDRA77(allincludingnormalizationifnecessary).3.2.TestimagesandquantitativeevaluationTonumericallyevaluatetheaccuracyofthevariousdistancetransforms,wede-“nedanumberofinputbinaryimagesofvarioussizes.The“rsttestconsistsofim-agesofsizes256256,512512,10001000,and50005000consistingofasingleobjectpointatthecenterofeachimage.Let()bethiscenterpoint.Then¼fð¼fð.Asmentionedpre-viously,initially0forallallIE(x0,y0).ThenforanypointtheimageweknowthattheactualEuclideandistance,,fromtotheboundarycanbecalculateddirectlyby,by,IEjfg:ð6ÞThisisthevaluethatshouldbeassignedbyanydistancetransformalgorithmforanypointinthisparticulartestimage.Toassesstheaccuracyofaparticulardistancetransformalgorithm,wecalculatetherootmeansquarederror(RMSE).ThequantitativeresultsarereportedinTable3,respectively,forvariousinputimagesizes.Fromthistable,onecanseethattheDRAwasthemostaccuratewithanRMSEof0.ThesecondandthirdmostaccuratewereCDAusinga77window Table3RootmeansquarederrorforaparticulardistancetransformfromtheknownEuclideandistanceforinputtestimagesconsistingofasinglepoint/objectatthecenteroftheimageImagesize256512512100010005000CDA333.827.6614.9874.97Cityblock34.8970.19137.49689.08Chessboard17.5835.1768.69343.45CDA550.992.003.9319.74CDA770.621.262.4812.50Euclidean335.7611.6622.90115.03DeadReckoning33141413DeadReckoning771414134SED0.390.390.390.398SED2228SED(improved)141413G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 andCDAwitha55window,respectively.TheaccuracyofCDA77overCDA5overCDA33wasdemonstratedingeneralbyBorgeforsanalysisandthisanalysisdemonstratesitforaspeci“cimage.CDAwitha33windowhadthefourthbestRMSEwhileEuclideanwitha33windowhadthe“fthbestRMSE.Thesixthandseventh(least)accuratemethodswerechessboardandcityblock,respectively.Thisisnotsurprisingbecausechessboardemploysanincorrectunitdiagonaldistanceandcityblockneveremploysthediagonaldistancesoittendstooverestimatethem.Thesecondsetoftestimagesconsistsofaspeci“ccon“gurationofthreepointsthatareknowntoproduceerrorsfordistancetransformalgorithmsthatemploy33win-dows[4,5].Wegeneratedtestimagesofvarioussizes(3232to50005000)asfol-lows.Lettheinputimagebeofsizeandlet2.Thenwesetthefollowingpoints:and1.TheresultsareshowninTable4whichshowsthatforextremelysmallimages(3232to Table4RootmeansquarederrorforaparticulardistancetransformfromtheknownEuclideandistancefortheinputtestimageconsistingofthreeseparatepointsknowntobeparticularlyproblematic(seetext)Imagesize326464128128256256512512100010005000CDA330.420.881.843.767.6114.9375.92CDA770.060.130.290.601.242.4612.480.110.240.380.460.510.540.560.000.000.030.060.080.090.100.000.010.010.010.010.010.01 Table5AveragerootmeansquarederrorforaparticulardistancetransformfromtheknownEuclideandistancefor100inputtestimages(each256256)consisting1000randompointsAlgorithmAvgrmseCDA330.16Cityblock1.19Chessboard0.69CDA550.04CDA770.02Euclidean330.22DeadReckoning330.01DeadReckoning770.000034SED0.368SED0.358SED(improved)0.0008G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 Fig.4.Resultsofvariousdistancetransformalgorithmsappliedtoaninputtestimagecontaininganob-jectconsistingofasinglepointatthecenteroftheimage.Theresultofeachdistancetransform(leftineachpair)isthresholded(rightineachpair).Theresultofaperfectdistancetransformshouldbecircularforthisparticularinputimage. Fig.5.ComparisonofartifactspresentinCDA77andabsentinDRA.Althoughtheresultsappearsimilar,this“guredemonstratesthatartifactsarestillpresentinCDA7G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 128)withthisspeci“ccon“guration,CDA77performsbetterthanDRA3butDRA33outperformsCDA77formorerealisticimagesizesof256to50005000.Sinceouralgorithmisreadilyadaptableto77windows, Fig.6.Distancetransformresults(leftineachpair)foranotherinputtestimageconsistingof3singlepointobjects,andthethresholdedversionillustratingartifactsinallG.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 weevaluatedDRA77aswell.TheresultsshowthatDRA77outperformedCDA77forallinputimagesizes.Thethirdandlastsetoftestimagesconsistsof100randomlygenerated256binaryimageswith1000randompointsineachimagesettoone.Theresultsofvar-iousdistancetransformalgorithmsarethenappliedtoeachoftheseimagesandeval-uatedintermsofRMSE.Table5reportstheaverageRMSEforthese100imagesforvariousalgorithms.DRA33andDRA77outperformalloftheothermethodswithDRA77onlyslightlybetterthanDRA33.3.QualitativeevaluationTodemonstratetheartifacts(linearsegmentsattheperipheryofthecirculariso-contour,introducedbythevariousdistancetransformalgorithmsandthelackofar-tifactsfortheDRA),consideragainthebinaryinputimageconsistingofasinglepoint/objectatthecenteroftheimage.Theresultinggreydistancetransform,viewedasanimage,shouldconsistofconcentric,circularisovaluecontoursthatarecen-teredaboutandradiatingfromthecenter.Furthermore,ifwechooseathresholdva-lueandapplyittothegraydistancetransformresult,acircularobjectcenteredaboutthecenterpointshouldresult.TheresultsofthisqualitativetestareshowninFig.4.AlldistancetransformalgorithmsDRA33(andDRA77)ex-hibitedartifacts.EventhoughartifactsappearabsentforCDA77,closerinspec-tionrevealsthattheyarestillpresentinCDA77andabsentinDRA33asshowninFig.5.Toillustratetheseartifactsfurther,consideradierentinputbinaryimagecon-sistingofthreeobjects,eachconsistingofasinglepoint/objectseparatedbysome“nitedistances.Fig.6illustratestheresultsofapplyingCDA33,CDA7andDRA33tothistestimage.AgainthethresholdedCDA33and77bothexhibitartifactsbutartifactsareabsentinDRA34.ConclusionsWehavepresentedanewdistancetransformalgorithm,DeadReckoning,thatisastraightforwardmodi“cationofthewell-knownChamferdistancealgorithm.Wealsodevelopedandpresentedaframeworkbywhichonecanevaluatedistancetransformmethodswithregardtoboththeirquantitativeaswellasqualitativeas-pects.WedemonstratedthatthisnewalgorithmexecuteswithacomputationalcostapproximatelythesameasthemostaccurateChamferdistancealgorithm,CDA77,butismuchmoreaccurate.Inthefuture,weintendtoprovethatthisnewalgorithmisindeedadistancemetric.Wealsointendtocomparethisalgo-rithmwithotheralgorithms(suchasDijkstras)intermsofspeed,computationalcomplexity,andaccuracyusingatestingframeworkthatweareintheprocessofdeveloping.FreesourcecodeforDRAaswellasCDAandothermethodsmentionedinthispapermaybeobtainedfromhttp://www.mipg.upenn.edu/~grevera/codeG.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 AcknowledgmentsTheauthorgratefullyacknowledgesNIHGrantsNS37172andP01-CA85424forsupportofthiswork.References[1]G.Borgefors,Distancetransformationsindigitalimages,Comput.Vis.Graph.ImageProcess.34(1986)344…371.[2]G.Borgefors,Ondigitaldistancetransformsinthreedimensions,Comp.Vis.ImageUnderstand.64(3)(1996)368…376.[3]M.A.Butt,P.Maragos,Optimumdesignofchamferdistancetransforms,IEEETrans.ImageProcess.7(10)(1998)1477…1484.[4]O.Cuisenaire,Distancetransformations:fastalgorithmsandapplicationstomedicalimageprocessing.Ph.D.thesis,UniversiteCatholiquedeLouvian,October1999.[5]O.Cuisenaire,B.Macq,FastEuclideandistancetransformationbypropagationusingmultipleneighborhoods,Comp.Vis.ImageUnderstand.76(2)(1999)163…172.[6]L.daFontouraCosta,RobustskeletonizationthroughexactEuclideandistancetransformanditsapplicationtoneuromorphometry,Real-TimeImag.6(2000)415…431.[7]P.-E.Danielsson,Euclideandistancemapping,Comp.Graph.ImageProcess.14(1980)227…248.[8]G.J.Grevera,J.K.Udupa,Shape-basedinterpolationofmultidimensionalgrey-levelimages,IEEETrans.Med.Imag.15(6)(1996)881…892.[9]G.J.Grevera,J.K.Udupa,Anobjectivecomparisonof3-Dimageinterpolationmethods,IEEETrans.Med.Imag.17(4)(1998)642…652.[10]G.J.Grevera,J.K.Udupa,Y.Miki,Atask-speci“cevaluationofthree-dimensionalimageinterpolationtechniques,IEEETrans.Med.Imag.18(2)(1999)137…143.[11]G.T.Herman,J.Zheng,C.A.Bucholtz,Shape-basedinterpolation,IEEEComp.Graph.Appl.12(3)(1992)69…79.[12]D.Kozinska,MultidimensionalalignmentusingtheEuclideandistancetransform,Graph.ModelsImageProcess.59(6)(1997)373…387.[13]D.W.Paglieroni,Directionaldistancetransformsandheight“eldpreprocessingforecientraytracing,Graph.ModelsImageProcess.59(4)(1997)253…264.[14]C.Pudney,Distance-orderedhomotopicthinning:askeletonizationalgorithmfor3Ddigitalimages,Comp.Vis.ImageUnderstand.72(3)(1998)404…413.[15]S.P.Raya,J.K.Udupa,Shape-basedinterpolationofmultidimensionalobjects,IEEETrans.Med.Imag.9(1)(1990)32…42.[16]E.Remy,E.Thiel,Computing3Dmedialaxisforchamferdistances,DiscreteGeom.Comput.Imagery(2000)418…430.[17]E.Remy,E.Thiel,Medialaxisforchamferdistances:computinglook-uptablesandneighbourhoodsin2Dor3D,PatternRecogn.Lett.23(6)(2002)649…662.[18]A.Rosenfeld,J.L.Pfaltz,Distancefunctionsondigitalpictures,PatternRecogn.1(1)(1968)33…61.[19]G.SannitidiBaja,Well-shaped,stable,andreversibleskeletonsfromthe(3,4)-distancetransform,J.Vis.Commun.ImageRepresent.5(1)(1994)107…115.[20]J.A.Schnabel,L.Wang,S.R.Arridge,ShapedescriptionofspinalcordatrophyinpatientswithMS,Comput.Assist.Radiol.(1996)286…291.[21]S.Svensson,G.Borgefors,Onreversibleskeletonizationusinganchor-pointsfromdistancetransforms,J.Vis.Commun.ImageRepresent.10(1999)379…397.[22]A.J.Travis,D.J.Hirst,A.Chesson,Automaticclassi“cationofplantcellsaccordingtotissuetypeusinganatomicalfeaturesobtainedbythedistancetransform,Ann.Bot.78(1996)325…331.[23]J.K.Udupa,Multidimensionaldigitalboundaries,Comput.Vis.Graph.ImageProcess.:Graph.ModelsImageProcess.56(4)(1994)311…323.G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333 [24]G.W.A.M.VanDerHeijden,J.G.VanDeVooren,C.C.M.VanDeWiel,Measuringcellwalldimensionsusingthedistancetransform,Ann.Bot.75(1995)545…552.[25]U.Montanari,Amethodforobtainingskeletonsusingaquasi-Euclideandistance,J.ACM15(1968)[26]S.Marchand-Maillet,Y.M.Sharaiha,Euclideanorderingviachamferdistancecalculations,CVIU73(3)(1999)404…413.[27]B.J.H.Verwer,P.W.Verbeek,S.T.Dekker,Anecientuniformcostalgorithmappliedtodistancetransforms,IEEETrans.PAMI11(4)(1989)425…429.[28]F.Leymarie,M.D.Levine,Fastrasterscandistancepropagationonthediscreterectangularlattice,CVGIP:IU55(1)(1992)84…94.[29]I.Ragnemalm,Neighborhoodsfordistancetransformationsusingorderedpropagation,CVGIP:IU56(3)(1992)399…409.[30]W.Guan,S.Ma,Alist-processingapproachtocomputeVoronoidiagramsandtheEuclideandistancetransform,IEEETrans.PAMI20(7)(1998)757…761.[31]H.Eggers,TwofastEuclideandistancetransformationsinZ2basedonsucientpropagation,CVIU69(1)(1998)106…116.[32]L.Boxer,R.Miller,EcientcomputationoftheEuclideandistancetransform,CVIU80(2000)379…[33]R.A.Lotufo,A.A.Falcao,F.A.Zampirolli,FastEuclideandistancetransformusingagraph-searchalgorithm,IEEEProc.Comput.Graph.ImageProcess.(2000)269…275.[34]R.Satherley,M.W.Jones,Vector-cityvectordistancetransform,CVIU82(2001)238…254.[35]T.Saito,J.-I.Toriwaki,Newalgorithmsforeuclideandistancetransformationofann-dimensionaldigitizedpicturewithapplication,PatternRecognit.27(11)(1994)1551…1565.[36]A.Meijster,J.B.T.M.Roerdink,W.H.Hesselink,Ageneralalgorithmforcomputingdistancetransformsinlineartime,in:J.Goutsias,L.Vincent,D.S.Bloombers(Eds.),MathematicalMorphologyanditsApplicationstoImageandSignalProcessing,Kluwer,2000,pp.331…340.G.J.Grevera/ComputerVisionandImageUnderstanding95(2004)317…333

Related Contents


Next Show more