/
TheEvaluationofHygroscopicInertiaandItsImportancetotheHygrothermalPerf TheEvaluationofHygroscopicInertiaandItsImportancetotheHygrothermalPerf

TheEvaluationofHygroscopicInertiaandItsImportancetotheHygrothermalPerf - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
364 views
Uploaded On 2015-08-10

TheEvaluationofHygroscopicInertiaandItsImportancetotheHygrothermalPerf - PPT Presentation

NMMRamosVPdeFreitasLFCBuildingPhysicsLaboratoryCivilEngineeringDepartmentFacultyofEngineeringUniversityofPorto4200465PortoPortugalemailnunoramosfeupptVPdeFreitasemailvpfreitafe ID: 104251

N.M.M.Ramos(V.P.deFreitasLFCBuildingPhysicsLaboratory CivilEngineeringDepartment FacultyofEngineering UniversityofPorto 4200-465Porto Portugale-mail:nuno.ramos@fe.up.ptV.P.deFreitase-mail:vpfreita@fe.

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "TheEvaluationofHygroscopicInertiaandItsI..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TheEvaluationofHygroscopicInertiaandItsImportancetotheHygrothermalPerformanceofBuildingsNunoM.M.RamosandVascoPeixotodeFreitasAbstractHeatingandventilatingarefundamentalactionsforthecontrolofhumidityintheindoorenvironment,butthehygroscopicinertiaprovidedbythematerialsthatcontacttheinsideaircanbeacomplementforthatcontrol.ThehygroscopicbehaviorofthewallsandceilingÞnishingmaterials,aswellasfurnitureandtextilesinsidethedwellings,deÞnestheirhygroscopicinertia.Reducingthepersistenceofhighrelativehumidityvaluesinsidebuildingsisessentialforthecontrolofmouldgrowthonmaterialsurfaces,thatcanotherwisecausedegradationandbringaboutsocialandeconomicalproblemsfortheusers.AsthehygroscopicinertiaconceptcanbeverydifÞculttoapproachforbuildingdesigners,adeÞnitionofdailyhygroscopicinertiaclassesispresented,basedonnumericalandlaboratoryworkonthissubject.Anoutlineofasimplemethod,usingthoseclasses,thatallowsfortheevaluationofthereductionofmouldgrowthpotentialassociatedtoaconÞgurationofinsideÞnishesisproposed.TheextensiveexperimentalcampaignaimingthecharacterizationofthemoisturebufferingcapacityofinteriorÞnishingsystemandtheassessmentofaroomÕshygroscopicinertiaisdescribed.TheMBVÑMoistureBufferValueisevaluatedfordifferentrevetments.TheassessmentofhygroscopicinertiaatroomlevelisimplementedusingaßuxchamberdesignedspeciÞcallyforthisexperiment.Adailyhygroscopicinertiaindex,,isdeÞnedusingMBVasabasisfortheassessmentofmaterialscontributiontothebufferingcapacityofaroom.Thecorrelationbetweenthatindexandpeakdampeningisprovedusingthepresentedexperimentalresults.Systematicsimulationofthesetofdynamicexperimentsoftransientmoisturetransferin N.M.M.Ramos(V.P.deFreitasLFCBuildingPhysicsLaboratory,CivilEngineeringDepartment,FacultyofEngineering,UniversityofPorto,4200-465Porto,Portugale-mail:nuno.ramos@fe.up.ptV.P.deFreitase-mail:vpfreita@fe.up.ptJ.M.P.Q.Delgado(ed.),HeatandMassTransferinPorousMediaAdvancedStructuredMaterials13,DOI:10.1007/978-3-642-21966-5_2,Springer-VerlagBerlinHeidelberg2012 thehygroscopicregionispresented;allowingtoverifyingandcorrectingthemodelingassumptionsandthebasicdatausedinsimulations,andconcludeonthemosteffectivestrategiestoconductthistypeofsimulations.1IntroductionThevariationofinsideRelativeHumidity(RH)isinßuencedbythemoistureexchangebetweenairandbuildingelements.Therelevanceofthatexchangeislinkedtotheactivemoisturebuffercapacitypresentinaroom,whichcanbeidentiÞedwithitshygroscopicinertia.Relativehumiditytheairinsidebuildingscanhaveaninßuenceonthermalcomfort,ontheperceptionofindoorairquality,usersÕhealth,materialsdurabilityandenergyconsumption.Thisdependencyhasbeenestablishedbysciencebutthecommonuserwillnotalwaysrecognizeit.MouldgrowthonbuildingelementÕssurfaces,ontheotherhand,iseasilyassociatedwiththepersistenceofhighRHlevelsevenbyusersandcanbetiednotonlytodurabilitybutalsotoPAQandTheworkofseveralresearchershasalreadydemonstratedthebeneÞtsfrominsiderelativehumidityvariationcontrolprovidedbyhygroscopicmaterialsls7,11],andtheInternationalEnergyAgency(IEA)researchproject,IEA-Annex41contributedtoadeeperunderstandingofthatprocess.Laboratoryexperimentsareawayofdemonstratingandquantifyingthatcapacityandcanbeimplementedinthreedifferentlevels.Atmateriallevel,internationalstandardsalreadysupportthedeterminationofthebasicpropertiesthatconditionmoisturestorageperformance,suchassorptionisotherms(ISO12571[])andvapourpermeability(ISO12572[]).ApropertydeÞnedasMBV,MoistureBufferValue,wasproposedby[],allowingforadirectexperimentalmeasureofthemoistureaccumulationcapacityofamaterialundertransientconditions.Atelementlevel,whereseveralmaterialscanbecombinedbytheirapplicationindifferentthicknesses,MBVcanalsobeappliedasanexperimentalmeasureofeachspeciÞcelementconÞgurationmoistureaccumulationcapacity.Atroomlevel,theauthorsbelievethatalaboratorymeasurementoftheactivemoisturebuffercapacityshouldbedirectlylinkedtotheRHpeakdampeningpromotedbytheroomÕsinteriorconÞguration,comparedtothepeaksinthesameroomwithoutanyactivehygroscopicsurfaces.TherelationbetweenthethreelevelsofexperimentalmeasurementsisexploredusingnumericalsimulationofelementandroombehaviourusingthematerialpropertiesmeasuredintheÞrstlevel.ThistextalsodeÞnesdailyhygroscopicinertiaclassesandproposestheirimplementationasaneasywayofincludingthebuildingmaterialsmoisture26N.M.M.RamosandV.P.deFreitas storagecapacityinßuenceonRHvariationandmouldgrowthriskanalysis.AproperselectionofinteriorÞnishescanobviouslybeneÞtfromthatinclusion.2MaterialProperties2.1MaterialsIntheseexperiments,anoptionwasmadeinusingspecimensofcommoncom-mercialmaterialsusedÞnishingsystemsforwallsandceilings.Theexperimentswerethereforeperformedinspecimensof,gypsumplaster(1200kg/m)asbasematerial,eithernakedorcombinedwithacoating.Thistypeofgypsumisblendedinfactoryand,afteradditionofwater,canimmediatelybeapplied.Thecoatingisalsocommerciallyavailableand,therefore,formulationisunknown.Itwasknown,however,thatitwascomposedof25acrylicprimerand50mvinylÞnishinglayer.Theprocedureforthepreparationofthegypsumplasterspecimenstriedtoreplicatetheconditionsthatareusedinpractice.Thedryplasterpowder(2kg)wasmechanicallymixedwithwater(1dm),during5min,toproduceahomo-geneousmass.Aftercastinginwoodframesfor24h,thespecimensweredriedintheair.2.2SorptionIsothermMostbuildingmaterialsarehygroscopic,whichmeansthattheyadsorbvapourfromtheenvironmentuntilequilibriumconditionsareachieved.Thisbehaviourcanbedescribedbysorptioncurvesoverahumidityrangeof0Ð95%RH.ThesorptionisothermsrepresenttheequilibriummoisturecontentsofaporousmaterialasafunctionofrelativehumidityataspeciÞctemperature.TheexperimentswereperformedinaccordancewithISO12571standard.Atatemperatureof23C,fourofÞveavailablerelativehumidityambienceswereusedinthecharacterizationofeachofthethreebasematerials.EachambiencewasobtainedindesiccatorsusingaspeciÞcsaturatedsaltsolution(NH4Cl-77%,NH4Cl-84%andKNO3-91%)orinaclimaticchamber(33and50%).Thegypsumplasterspecimenshaddimensionsof606mm.Thespecimenswereinitiallydriedatambienttemperature,during30days,indesic-catorscontainingCaCl,guaranteeingarelativehumiditybelow0.5%.Forsorptionmeasurements,thetestspecimenisplacedconsecutivelyinaseriesoftestenvironments,withrelativehumidityincreasinginstages,untilequilibriumisreachedineachenvironment.Equilibriumbetweenmoisturecontentandrelativehumidityhasbeenreachedwhensuccessiveweightings,TheEvaluationofHygroscopicInertia27 attimeintervalsofatleastoneweek,showadifferenceinmasslesserthan0.1%.Thestartingpointforthedesorptionmeasurementswasabove91%RH.Whilemaintainingaconstanttemperature,thespecimenisplacedconsecutivelyinaseriesoftestenvironments,withrelativehumiditydecreasinginstages,untilequilibriumisreachedineachenvironment.Withtheobjectivetogaintime,differentspecimenswereusedforthedifferentambiencesinthesorptionphase.Finally,thespecimensweredriedattheappropriatetemperaturetoconstantmass.Fromthemeasuredmasschanges,theequilibriummoisturecontent(),ateachtestcondition,couldbecalculatedandthesorption/desorptionisothermdrawn(seeFig.2.3VapourPermeabilityVapourpermeabilitywasdeterminedforsamplesofthebasematerial,bothnakedandcombinedwiththecoating.ThetestswereconductedaccordingtoISO12572standard.Foreachcombinationofbasematerialandcoating,threepermeabilityvaluesweredeÞned,correspondingtothreedifferentrangesofRHdifferencesacrossthesample.Priortotesting,allthespecimensarepreconditionedinaclimaticchamberatCand50%RH,foraperiodlongenoughtoobtainthreesuccessivedailydeterminationsoftheirweightlesserthan0.5%.Afterstabilisation,thespecimensareplacedincupswithasaturatedsaltsolutionbelowthebottomsurfaceofthespecimen.Thesidesofthespecimenswerecoveredwithvapourimpermeabletape.Duetothedimensionsofthecups,thedimensionsofthesamplescorrespondedto21011mm.Thechangeofweightofthecupwasmeasuredperiodically,withaprecisionof0.1mg,onanelectronicbalanceuntilthesteadystatewasobtained.ThesketchpresentedinFig.showstherelativehumidityproÞlesadmittedforthepaintedsamplesduringthepermeabilityexperiments,inaccordancewiththetheorypresentedbelow. Fig.1Sorptionisothermsobtainedforgypsumplaster28N.M.M.RamosandV.P.deFreitas Thevapourpermeability,,isamaterialpropertydeÞnedasthetransportcoefÞcientforvapourdiffusioninaporousmaterialsubjectedtoavapourpressuregradient.Thepermeabilitycanbecalculatedusing, isthemassßuxdensityandisthesamplethicknessexposedtoavapourpressuregradientOtherpropertiesderivedfromvapourpermeabilitycanbeused,asthetransportcoefÞcientunderavapourconcentrationgradient:vapourresistancefactor,orvapourdiffusionthickness,Althoughaconstantvalueisderivedforaftereachpermeabilitytest,itÕswellestablishedthatthispropertyisRHdependant,Todeterminethesefunc-tionsforthetestedmaterials,thepermeabilitytypeEq.,anditsadaptedformforvalue(3),proposedbyGalbraithetal.[],wasusedandtheregressionswerecarriedoutusingtheLevenbergÐMarquardtmethodandSPSS14.0program. TheempiricalconstantsofEq.werederivedbytheregressionmethoddescribedabovefornakedspecimensasAandAForthecoatedsamples,however,amorecomplexmethodologywasappliedintheresultsanalysis.Withtheknowledgeofthebasematerialsfunction,assumingÞxedvaluesforandacceptingthatforeachtestasrepresentedinFig.,itwaspossibletoobtainthecoefÞcientsforthefunctionofthecoatingappliedonthegypsumbasematerial.TheresultswereA1,A2showstheresultsobtainedforthemeasurementresultsforthevapourpermeabilityoftheunpaintedspecimensandsdvalueoftheappliedpaint. chambersolution d,ar,intd,gd,p 2 3 4 5Plaster Paint Fig.2RelativehumidityproÞlesduringthevapourpermeabilityexperimentsTheEvaluationofHygroscopicInertia29 3MoistureBufferValueTheMBVexperiments,asdescribedin[],proposeacyclicclimaticexposurewhichconsistsof8hofhighrelativehumidity,followedby16hoflowrelativehumidity.Thistesttriestoreplicatethecycleseeninbedrooms.ForthespeciÞctestsdescribedinthisarticle,lowvaluewasÞxedat33%RHandthehighvalueat75%RH,foraconstanttemperatureof23C,whichisthebasictestconÞgurationproposedintheprotocol.Thecycleswererepeateduntilthespecimenweightoverthecyclevariedlessthan5%fromdaytoday.Thetestswereconductedinaclimatechamberensuringagoodcontrollevelofthetestconditions.Allthesamplestestedwereputintothechamberatthesametime.ThreesimilarsamplesweretestedforeachconÞguration.Eachsamplewasputonabalancewhenitwaslikelytohavereachedastablemassvariationoverthecycle.Withthisprocedureitwaspossibletotestalargenumberofsamples.Thebalancewasconnectedtoacomputerallowingforacontinuousrecordofthesamplemassvariation.Thesampleswereplacedhorizontallyonthebalance.Thebackofthesampleswaspreviouslytreatedwithepoxypaintandthefouredgeswerecoveredwithaluminiumtape,allowingvapourtransferonlyinthemainface. Fig.3Vapourpermeabilityofgypsumplasterandsdvalueofappliedpaint30N.M.M.RamosandV.P.deFreitas ThestablecycleforeachconÞgurationispresentedinFig..Thistypeofexperimentisinterestinginthewayitprovidesaneasyassessmentofthetransientbehaviourofabuildingelement.Justbywatchingthecurves,theeffectofpaintingiseasilyhighlighted.4FluxChamberTests4.1TestFacilityThetestfacilityisasmallcompartmentwhereÞnishingmaterialscontributiontohygroscopicinertiacanbeevaluated.Todoso,aßuxchamberwhereRHcanßoatfreelyasafunctionofboundaryconditionsandamountofmoisturebufferingwasdeveloped.Astrictcontroloftheheat,airandmoisturebalancesofthatchamberwasthereforecrucial.Accordingtothisidea,severalguidelinesweredeÞned:thebaseelementshouldbeasmallsizechamberwithcontrolofmoistureandairßuxes;thewholesetshouldhavetemperaturecontroland;temperatureandRHshouldbecontinuouslymonitored.Figuredisplaysaschemeofthetestfacility,followingtheseguidelines.Theßuxchamberwasbuiltinsideanexistingclimaticchamber(Fig.).Thischamberhasacapacityforcontrollingtemperatureintherange15Ð35CandRHintherange30Ð90%.ThatcontrolcanbedoneusingÞxedvaluesorusingpro-grammablecyclesincludingvariationofoneorbothparameters.Acontinuouslogoftheactualvaluesisregisteredinacomputer.Thesizeoftheßuxchamber(Fig.),tobestoredinside,correspondstoaboxwithavolumeof(1500584)mm.Thinkingofaregularbedroomwith2.7)m,thevolumescalefactorisaround1/70.Byplacingalltheelementsinsideaclimaticchamber,astricttemperaturecontrolwassecured.Theventilationsystemusesapump(Fig.)controlledbyßowmeters(Fig.)thatextractsairintwopointsinsidetheboxandaninleton Fig.4MassvariationstablecycleinMBVexperimentswithgypsumplasterbasedmaterialsTheEvaluationofHygroscopicInertia31 Fig.5Fluxchamberscheme Fig.6Climaticachamber32N.M.M.RamosandV.P.deFreitas topallowsfortheairtogetinand,atthesametime,preventspressuredifferences.Theairthatenterstheboxcomesdirectlyfromtheclimaticchamber,andthereforeitscharacteristicsareknown.Theairßuxvaluecorrespondstoarangeoftheairexchangerate(ach)of0.26Ð17hThetemperatureandhumidityoftheairbeingsuckedinsideareknown,sincethewholesetisinsidetheclimaticchamber.Alsoforthatreason,inÞltrationthroughtheopeningsdoesnÕtaffecttheoverallbalancesofheat,airandmoisture.Themonitoringsystem(Figs.)iscomposedofasetoftemperatureandRelativeHumiditysensorsconnectedtoadatalogger.Thedataloggeris Fig.7Fluxchamber Fig.8AirpumpTheEvaluationofHygroscopicInertia33 Fig.9Flowmeters Fig.10Monitoringsystem34N.M.M.RamosandV.P.deFreitas Fig.11Datalogger Fig.12TemperatureandrelativehumiditysensorsTheEvaluationofHygroscopicInertia35 connectedtoacomputerallowingtokeeptrackofresultsandstoretheminahard-drive.4.2TestResultsThetestsperformedintheßuxchamberreportedinthistext,consistedofthedeÞnitionofthestabledailyRHcycleforahygrothermalscenario.TheselectedscenariowasdeÞnedassumingthenumberofairchangesperhour,Rph,of0.5handavapourproductionof2g/h,during8hinthedailycycle.AsthetemperatureofthesystemwasÞxedat23C,thevapourproductionwasobtainedwiththeRHvariationoftheclimaticchamberbetween40and80%RH.Usingthosescenarios,differentcombinationsofsampleswereplacedinsidetheßuxchamber,resultingindifferentRHcycles.ForeachconÞguration,thedailyhygrothermalcycleisrepeateduntiltheßuxchamberRHfallsinastablecycle.ThedifferenttestconditionsusedarespeciÞedinTableTheresultsofthetestsarepresentedinTableandFig.displaystheRHvariationinsidetheßuxchamberforthetestedcombinations.ForquantiÞcationofthetestresults,thedifferencebetweentheaverageRHandtheRH90thpercentile,,isused.TheaverageRHvalueobtainedforeachstablecycleshowedasmallvariation,demonstratingthehighcontrolleveloftheexperiments.TheseresultsclearlyillustratetheapplicationoftheßuxchamberinmeasuringtheactualRHdampeningcausedbythepresenceofdifferentlevelsofmoisturebufferingincontactwithinsideair.TheobservedvariationshighlightthecontributionofdifferentelementstohygroscopicinertiaanditseffectonRHpeakdampening.TestHI1resultedina Table1FluxchambertestsconÞgurationTestPeriod(h)ClimaticchamberFluxchamberC)RH(%)Rph(h)SamplesHI10Ð823800.5Ð8Ð242340HI20Ð823800.50.75m8Ð242340HI30Ð823800.50.75m8Ð242340 Table2FluxchambertestsEnsaioRH(%)RH(%)RHHI154.673.218.6HI254.363.99.6HI354.766.812.136N.M.M.RamosandV.P.deFreitas differencebetweenpeakandaverageof18.6%RH.Theintroductionintheßuxchamberofaporousmaterial,nakedgypsumplaster,inHI2testresultedinadifferencebetweenpeakandaverageof9.6%,acleareffectofhygroscopicinertia.Thesametypeofmaterial,butwithacoatingapplied,correspondingtotestHI3,resultedinlesspeakdampening,adifferencebetweenpeakandaverageof12.1%RH.Thisresultclearlydemonstrateshowacoatinginßuencesmaterialscontri-butiontohygroscopicinertia.5HygroscopicInertiaClassesAmethodofbringingthehygroscopicinertiaconceptclosertopractitionershasbeendevelopedandexperimentallyevaluatedby[].Thebasicidea,illustratedin,istohaveapredictiontoolthatcanestablisharelationbetweenthedampeningoftheRHvariationinaroomanditshygroscopicitylevel,whichismainlydependantonthesurfaceÞnishingmaterialsandfurnishing.Accordingtotheprinciple,ahygroscopicinertiaindexwasdeÞnedasasinglenumber,representingthehygroscopicinertiaofaroomandthatcancorrelatetotheexpectedreductionoftheRHßuctuation.ItwasdecidedthatthisindexshouldconcentrateonlyondailycyclesanditshouldbederivedfromroomconÞgurationandknownmaterialproperties.TheMBVÑMoistureBufferValuewastheselectedmaterial/elementpropertythusactingasabaseforthatindexdeÞnition.Theproposeddailyhygroscopicinertiaindex,,isdeÞnedby[]asafunctionofMBV,accordingtoexpression),whereMoisturebuffervalueofelement(g/(m.%RH));ofelementMoisturebuffervalueofcomplexelement(g/%RH);ImperfectmixingreductioncoefÞcient(=airexchangerate(roomvolume(mVapourproductionperiod().ThecanbeunderstoodastheroomMBV,homogenizedtoairrenovationconditionsandvapourproductionperiodvariations. PniCr;iMBViSiþPmjCr;jMBVobj;jNVTG! gm3%HR4Þ Fig.13RHvariationinsidetheßuxchamber(fc)andtheclimaticchamber(cc)TheEvaluationofHygroscopicInertia37 TheevaluationofaRHvariationcurveintimeshouldbebasedonasinglenumber,keepinginmindtheprincipledescribed.TheAMDRparameterwasdeÞnedaccordingtoEq.,whereHRistheaveragerelativehumidityvariationand standsforthedailyaverageofthe90thpercentileoftherelativehumidityvariation.TheindexreferstothebasescenarioofaroomwithouthygroscopicityandidentiÞesascenariounderstudyforthatsameroom.TheAMDRparametercanthereforebeinterpretedasrelativedailyaverageamplitudeofaRHvariationofaroomhygroscopiccon-Þguration.ThisparameterisinterestingsincetheaverageRHvariationinlong-termanalysiswillnotbeaffectedbydailyhygroscopicinertia.AMDR HR90HRm Theselectedparameterswereprovenby[]tobeconnectedbyEq..TheresultingcurvesupportsthedeÞnitionofdailyhygroscopicinertiaclasses,accordingtoFig. 0,00,20,40,60,81,0 CLASS I CLASS II CLASS III CLASS IV Fig.15GraphicrelationbetweenAMDRand RHit Hygroscopic inertia indexRHi peak-avg difference III Classes No hygroscopicity Hygroscopic room Fig.14HygroscopicinertiaclassesdeÞnitionprinciple38N.M.M.RamosandV.P.deFreitas AMDR TheadoptedclassessupportanewclassiÞcationofbuildingelementscontri-butiontothehygroscopicinertiaofaroom,basedontheirMBVandonaratiobetweenroomvolumeandareaofapplicationof0.7(Fig.6NumericalSimulation6.1NumericalModelAdecisionwasmadetonumericallysimulatethebehaviourofaroomandthemoisturebuffercapacityofthematerialsusedintheroomsimulation.Thispro-videddatathatcanillustratethedesiredrelationbetweenhygroscopicinertiaandroomconÞguration.TheauthorschosetouseforthesesimulationsthesoftwareprogramHAM-Tools[].TheInternationalBuildingPhysicsToolbox,isasoftwarelibraryspe-ciallyconstructedforHAMsystemanalysisinbuildingphysics.AspartofIBPT,HAM-ToolsisopensourceandpubliclyavailableontheInternet.Thelibrarycontainsblocksfor1DcalculationofHeat,AirandMoisturetransferthroughbuildingmaterials.ThetoolboxisconstructedasamodularstructureofthestandardbuildingelementsusingthegraphicalprogramminglanguageSimulink.Allmodelsaremadeasblockdiagramsandareeasilyassembledinacomplexsystemthroughthewell-deÞnedcommunicationsignalsandports.6.2MBVSimulationsAnassemblyofHAM-ToolsmoduleswasusedforsimulatingtheMBVexperi-ment.Thesimulationswereperformedusingthevirtualspecimenslistedin.Thedataforthechosenmaterialsusedinthesimulationswasretrievedfrom[].Thedifferent(convectivewatervapourtransfercoefÞcient)valuesused Fig.16BuildingelementclassiÞcationasafunctionoftheircontributiontoaroomÕshygroscopicinertiaTheEvaluationofHygroscopicInertia39 representthepossibilityofcoatingswithdifferentadditionalvapourresistancesappliedinthegypsumboardspecimens.InFig.,themassvariationofallthespecimensinthesteadycycleispre-sented.TheMBVforeachspecimenispresentedinTable.Aswecansee,thisnumber,whenassociatedtothetestedelements,providesthemeanstocomparethem.Butasitwassaidbefore,thisnumberisusedaheadforhygroscopicinertiaanalysis.6.3RoomSimulationsAdifferentHAM-ToolsmodulesassociationallowedforthesimulationofaroomÕshygrothermalbehaviourinyearlycycles.Thevirtualroomis2.5m,withoneexteriorwall,containinga1mwindow,facingsouth.Thesurroundingroomsareassumedtohavesimilarconditionsoftem-peratureandrelativehumidityasthesimulatedroom.TheclimateconditionsweredeÞnedforLisbon,usingMeteonormsoftware.TheinsidetemperaturewasallowedtoßoatbetweenTminand28C,andRHwasallowedtoßoatbelow90%.Theventilationrateisconstantandthevapourproductiontakesplacebetween0and8h,withaconstantvalue.Onwallsandceilingtheadmittedmaterialwasgypsumboardandontheßoorspruce.Tablesdescribetheconditionsthatwerechangedforeachsimulation.Itcanbeeasilyinferredthattheroomcon-ÞgurationintheÞrstlineofTablestandsfortheroomwithnohygroscopicinertia,thereferenceroom.PartialresultsfromsimulationsSG1andSG2arepresentedinFigs.illustratingthetestedscenarios. 04812162024 W (kg/m2) Specimen2 Specimen 3 Specimen 4 Fig.17Moisturecontentvariationofallthespecimensinastablecycle Table3VirtualspecimenÕsSpecimenMaterial(s/m)Thickness(m)1Gypsumboard2e-80.012Gypsumboard2e-90.013Gypsumboard2e-100.014Spruce2e-80.0140N.M.M.RamosandV.P.deFreitas Thetemperaturevariations,presentedinFig.showedalmostnoinßuenceofhygroscopicinertia.Therelativehumidityvariation,ontheotherhand,ishighlyinßuencedbyhygroscopicinertia,asitcanbeseeninFig..Thatresultisalsovisibleinvapourpressurevariation,presentedinFig..Thatinßuencehowever,isonlyimportantonpeaklevel.Theaveragevalueswilltendtobethesame,withorwithouthygroscopicinertia.ThatisquiteclearonFig.wheremonthlyvaluesarecloseandasperiodsaremoreextended,thatdifferencetendstobeevensmaller. Table4MBVforthefourspecimenstestedSpecimen1234)0.09710.03660.00450.0832 Table5parametersadoptedinSimulationsTmin(C)G(g/h)N(hSG1ÐSG2181001.0SG11ÐSG12181501.0SG15ÐSG16151001.0SG19ÐSG20211001.0SG23ÐSG24181000.67SG27ÐSG28181000.33 Table6RoomconÞgurationsSimulationsWallsCeilingFloorArea(m(s/m)Area(m(s/m)Area(mSG:1-11-15-19-23-27342e-1212.252e-1212.252e-12SG:2-12-16-20-24-28342e-812.252e-812.252e-12 Fig.18ResultsfromsimulationsSG1andSG2ÑtemperaturevaluesfromOctobertoMarchTheEvaluationofHygroscopicInertia41 020406080100120140160180 Fig.19ResultsfromsimulationsSG1andSG2ÑrelativehumidityvaluesfromOctoberto Fig.20ResultsfromsimulationsSG1andSG2ÑvapourpressurevaluesfromOctobertoMarch Fig.21ResultsfromsimulationsSG1andSG2Ñrelativehumidityaverage42N.M.M.RamosandV.P.deFreitas 6.4HygroscopicInertiaAnalysisTheapplicationofthehygroscopicinertiaclassesmethodallowsforthedeÞnitionofparametersAMDRandcorrespondingtothesimulationscenarios.ThevaluesobtainedarepresentedinTable,andrevealthatthescenarioshygro-scopicalyactivewouldbeplacedinclassIII-IV.6.5MouldGrowthRiskAssessmentSeveralauthorshavestudiedtherelationshipbetweenwateractivityinasubstrateandthedevelopmentofmouldonitssurface(e.g.[]).Themoulddevelopmentundertransientconditionsoftemperatureandhumidityishighlycomplex.Ref-erence[]proposedamodelbasedontheTOW(timeofwetness)concepttosolvethisproblem.TOWisthequotientbetweenthetimeperiodwherethesurfaceRHisabove80%andthetotaldurationoftheperiodunderanalysis.Usingthatmodelinseverallaboratorytests,therewasevidencethatforTOW0.5theriskformouldgrowthisverylow.UsingtheTOWconceptwhensimulatingaroomÕshygrothermalbehaviouritispossibletodeÞnethenumberofdayswithwith0.5,ndnd0.5,asasimplisticindicatorofthemouldgrowthrisk.Thisapproachlosesaccuracyifthesimulationsindicateactualsurfacecondensationandtheanalysistoolisunabletotreatthatprocesswithhighprecision.Additionally,theauthorsuseanotherparameter,nd,representingthenumberofdayswhensurfacecondensationwasdetected.Theobjectiveoftheseindicatorsisnottoaccuratelyestimatemouldgrowthrisk,butrathertocomparehygrothermalscenarios.Usingtheseparametersintheabovesimulatedscenariosandimposinganadditionalconditionoftheexistenceofaratherextremethermalbridge,deÞnedby theresultsforeachscenarioareaspre-sentedinFig.ThisresultshowstheimportanceofhygroscopicinertiaandthebeneÞtsthatcanderivefromasssRHvariationwithimportantpeakreduction.Adesignmethodforthepreventionofmouldgrowthcanbederivedfromthisanalysis.Themethoditselfcanhavedifferentlevelsofcomplexity.Thebasicideais: Table7Parametersforhygroscopicinertiaanalysis.%RH))AMDR(%)SG:1-11-15-19-23-2701.0SG20.4380.23SG120.4380.24SG160.4380.24SG200.4380.23SG240.6530.18SG281.3260.12TheEvaluationofHygroscopicInertia43 deÞnetheriskassociatedwiththeroomÕsRHvariationforthefourclassesofhygroscopicinertia;selecttheadequatevalueanddeÞnetheroomÕsrenderingstoprovidethat7ConclusionsThistextpresentsresearchthatallowsforthefollowingconclusions:Moisturebufferingtestswereconductedatelementlevel.RenderingsÞnishedwithdifferentcoatingsweretestedforMBVdetermination,allowingforbuffereffectcomparison.TheÞnishingcoatinghasarelevantinßuenceonthateffect. 20406080100160180SG1 - SG2SG11 - SG12SG15 - SG16SG19 - SG20SG23 - SG24SG27 - SG28max(ndcond, nd�TOW0,5) (days) ref Fig.22Mouldgrowthrisk Fig.23Therelevanceofbalancebetweenhygroscopicinertiaandsurfaceprotection44N.M.M.RamosandV.P.deFreitas Hygroscopicinertiatestswereconductedinaßuxchamberthatrepresentsasmallscaleroom.TheinßuenceofdifferentelementsonRHvariationwasobtained.Theexperimentalevidenceofdailyhygroscopicinertiawasdemon-ThedeÞnitionofdailyhygroscopicinertiaclassesbasedonaroomÕsindexallowsforthepredictionoftheRHvariationamplitude;TheMBVpropertycanbeusedasanindicatorofanelementÕscontributiontotheroomÕshygroscopicinertia;Mouldgrowthriskislowerforhighervaluesofhygroscopicinertia,admittingthesamecompositionofthesurfaceÕsÞnalrendering;ThedesignandselectionofinteriorÞnishesinpracticecanbeneÞtfromtheproposedapproachtothehygroscopicinertiaconcept.ButthebalancebetweentheMBVsuppliedbyasurfaceanditsprotectionagainstbiologicaldefacement)mustbeachieved.1.Adan,O.:OnthefungaldefacementofinteriorÞnishes.Ph.D.thesis,EindhovenUniversityofTechnology(1994)2.Galbraith,G.,MClean,R.,Guo,J.:Moisturepermeabilitydatapresentedasamathematicalrelationship.Build.Res.Inf.(3),157Ð168(1998)3.ISO12571:2000:HygrothermalperformanceofbuildingmaterialsandproductsÑDeterminationofhygroscopicsorptionproperties(2000)4.ISO12572:2001:HygrothermalperformanceofbuildingmaterialsandproductsÑDeterminationofwatervapourtransmissionproperties(2001)5.Kalagasidis,A.:HAM-Tools:anintegratedsimulationtoolforheat,airandmoisturetransferanalysesinbuildingphysics,DepartmentofBuildingTechnology,BuildingPhysicsDivision,ChalmersUniversityofTechnology,Gothemburg,Sweden(2004)6.Kumaran,M.:Heat,airandmoisturetransferthroughnewandretroÞttedinsulatedenvelopeparts(Hamtie),IEAANNEX24(1996)7.PadÞeld,T.:Theroleofabsorbentbuildingmaterialsinmoderatingchangesofrelativehumidity.Ph.D.thesis.DepartmentofStructuralEngineeringandMaterials,Lyngby,TechnicalUniversityofDenmark150(1998)8.Ramos,N.:Theimportanceofhygroscopicinertiainthehygrothermalbehaviourofbuildings(inPortuguese).Ph.D.thesis,DepartmentofCivilEngineering,FEUP,Porto,Portugal(2007)9.Rode,C.,Peuhkuri,R.,Mortensen,L.,Hansen,K.,Time,B.,Gus-Tavsen,A.,Svennberg,K.,Arfvidsson,J.,Harderup,L.,Ojanen,T.,Ahonnen,J.:Moisturebufferingofbuildingmaterials,ReportBYG-DTUR-126,DepartmentofCivilEngineering,DTU,Lyngby,Denmark(2005)10.Sedlbauer,K.:Predictionofmouldfungusformationonthesurfaceofandinsidebuildingcomponents.Ph.D.thesisÑreport,FraunhoferInstituteforBuildingPhysics,Germany(2001)11.Simonson,C.,Salonvaara,M.,Ojanen,T.:Theeffectofstructuresonindoorhumidity-possibilitytoimprovecomfortandperceivedairquality.IndoorAir,243Ð251(2002)TheEvaluationofHygroscopicInertia45

Related Contents


Next Show more