/
538BiochemicalSocietyTransactions(2013)Volume41,part2 538BiochemicalSocietyTransactions(2013)Volume41,part2

538BiochemicalSocietyTransactions(2013)Volume41,part2 - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
371 views
Uploaded On 2017-01-26

538BiochemicalSocietyTransactions(2013)Volume41,part2 - PPT Presentation

KnotlocalizationinproteinsEricJRawdonKennethCMillett ID: 514302

KnotlocalizationinproteinsEricJ.Rawdon* KennethC.Millett

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "538BiochemicalSocietyTransactions(2013)V..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

538BiochemicalSocietyTransactions(2013)Volume41,part2 KnotlocalizationinproteinsEricJ.Rawdon*,KennethC.Millett,JoannaI.Su›kowska‚§andAndrzejStasiak*DepartmentofMathematics,UniversityofSt.Thomas,2115SummitAvenue,St.Paul,MN55105,U.S.A.,DepartmentofMathematics,UniversityofCaliforniaSantaBarbara,552UniversityRoad,SantaBarbara,CA93106,U.S.A.,CenterforTheoreticalBiologicalPhysics,UniversityofCaliforniaSanDiego,9500GilmanDrive,SanDiego,CA92037,U.S.A.,FacultyofChemistry,UniversityofWarsaw,Pasteura1,02-093Warsaw,Polandand Thebackbonesofproteinsformlinearchains.Inthecaseofsomeproteins,thesechainscanbecharacterizedasforminglinearopenknots.Theknottypeofthefullchainrevealsonlylimitedinformationabouttheentanglementofthechainsince,forexample,subchainsofanunknottedproteincanformknotsandsubchainsofaknottedproteincanformdifferenttypesofknotsthantheentireprotein.Tounderstandfullytheentanglementwithinthebackboneofagivenprotein,acompleteanalysisoftheknottingwithinallof Fromthefirstdiscoveryofknotsinthebackbonesofproteins TopologicalAspectsofDNAFunctionandProteinFolding539 Figure1 MatrixpresentationsfortheproteinswithPDBcodes3FR8(left)and2WSX(right)Eachsquarecellinthematrixshowstheknottypeofonesubchainoftheprotein.TheN-terminalaminoacidpositionofthatsubchainisindicatedonthe-axis,anditsC-terminalaminoacidpositionisindicatedonthe-axis.Thusthelower-left-handcornershowstheknottypeoftheentirechainandcellsnearthediagonalcorrespondtoveryshortsubchainsoftheprotein.Theintensityofthecolourwithineachcellcorrespondstothepercentageofclosuresformingthegivendominantknottypeforthesubchain.Thecolourbarontherightshowstheknottypesobtainedfortheproteinaswellasagradientforthecolouringintensitybystepsof10%.Forchiralknottypes,thesignsindicatetheright-andleft-handedforms CharacterizingtheknottinginproteinsBeforewediscusstheknottingpatterns,wemustbeclearabouthowweclassifyknottinginanopenchain.Indeed,definingtheknottypeofanopenchainisaninterestingprobleminitselfanddifferentalgorithmsarediscussedinanotherarticleinthisissueofBiochemicalSocietyTransactions[8].Inthatarticle,wepresenttheuniformclosuremethod[9–11],wherebytheknottingofanopenchainisclassifiedasadistributionofknottypesobtainedbyconnectingthefreeendsoftheopenchaintopointsuniformlychosenonalargesphereenvelopingthechain.Thedominantknottypeisthenlabelledastheknottypeofthechain.Fortheremainderofthepresentarticle,weusethatstrategytoclassifythetypesofknotsinopenchains.Oncewehaveagreedonhowtodefinetheknottingofanopenchain,wecancomputetheknottypeoftheentireproteinchainandofallofitssubchains.Kingetal.[7]definedamatriximagepresentationforencodingtheknottingofallsubchainsofagivenprotein.In[11],webuiltonthispresentationusingtheuniformclosuremethod[8–10].Figure1explainshowtoidentifytheknottingwithinthesubchainsofaproteinfromitsmatrixpresentation.Knottedproteins,suchasketol-acidreductoisomerasefromrice(PDBcode3FR8)havethelower-left-handcornerofthematrixpresentation(correspondingtotheknottypeoftheentireproteinchain)coloured,whereasslipknottedproteins,suchasthecarnitinetransporterfromEscherichiacoli(PDBcode2WSX),containcolouredregionselsewhereinthematrix,buthaveagreylower-left-handcorner(signifyinganunknottedarc).Inadditiontoknotsandslipknots,wesometimesobserveisolatedregionsinthematrixpresentationcontainingthesameknottype,asinthetwotrefoilregionsfor2WSX.Knotting“ngerprintsForagivenprotein,weusethetermknottingfingerprinttodenotetheentiretyoftheknottinginformationpresentinthematrixpresentation,includingtypesofknotspresentandtheregions’sizesandshapes.Forknottedorslipknottedproteins,oneseesatleastoneroughlyrectangularregionofknotting.Eachsuchregioncorrespondstoanestedsetofsubchainswithaparticularknottype.Theshortestsubchainwithintheregion(thesubchaincorrespondingtothecellclosesttothediagonal)oftheparticularknottypedefinestheknottedorslipknottedcore.Theroughlyrectangularknottingregionsarenotalwaysfullyfilledin,sincetheboundariesaretransitionareaswhereonecanhavetwoormoreknottypeswithsimilarprobabilities.Becauseofthenearlyconstantdistancebetweensequentialcarbonsandthestericexclusionofpolypeptidechains,proteinsbehaveessentiallyassmooththicktubes[12].Forthisreason,theknottingfingerprintsofproteinsarerathertame,i.e.changingasubchainlengthbyoneaminoacidcanresultinachangeofknottypethatcouldbeproducedbyatmostoneintersegmentalpassage[13].Suchabehaviourwouldnotbeexpectedforrandomchains,forexample,whereshorteningasubchainbyonesegmentcanresultinachangeofknottypethatwouldrequiremorethanoneintersegmentalpassage.Byobservingsomeknottingfingerprints,wecanseewhythesearchfortheknottedcoresometimesgivesadifferentresultwhenitiscarriedoutusingatop-downapproachincontrastwithabottom-upapproach[14].Inthetop-downapproach,oneremovesterminalverticesuntiltheknottypedetectedfortheentireproteinisnolongerpresent,whereasinthebottom-upapproach,onesearchesfortheshortestsequenceofaminoacidsformingthesameknotastheentireprotein.TheknottingfingerprintoftheDehIprotein(PDBcode3BJX)(Figure2A)showsthatthetop-downapproachwouldgivea6coresizethatisapproximately40aminoacidslargerthanthe6coresizedetectedusingthebottom-upapproach.Alsonotethattheprecisepatternintheknottingfingerprintdependsonthealgorithmusedtodeterminetheknottypeofanopenchain.WhentheterminiofanopenTheAuthorsJournalcompilation2013BiochemicalSociety 540BiochemicalSocietyTransactions(2013)Volume41,part2 Figure2 MatrixpresentationsfortheproteinswithPDBcodes3BJX(left)and2AXC(right)Left:thedeterminationoftheknottedcorefortheDehIprotein(PDBcode3BJX)variesbyapproximately40aminoacidsdependingonwhetheroneusesatop-downorbottom-upapproachsincetherearetwodistinctregionsformingthe6knot.Right:theN-terminaltranslocationdomainforcolicinE7inE.coli(PDBcode2AXC)showsfourdifferenttrefoilregions. Figure3 TheubiquitinC-terminalhydrolasesfrom(PDBcode2WDT)(left)andhumans(PDBcode3IRT)(right)havealmostidenticalknotting“ngerprintsdespiteonly32%sequencesimilarity chainareonthe‘outside’ofachain(whichistypicallythecasefortheentireproteinchain),thedifferentalgorithmsgenerallyagreeinassigningaknottypetothechain.However,whentheterminiare‘nearthecentre’ofachain(whichhappensextensivelywhenanalysingsubchainsofproteins),thealgorithmscandisagreeinassigningaknottypetothechain.Thesingleclosurealgorithms(suchaschainsimplification)[8]oftenrequiresome‘choices’tobemadeinordertoassignanappropriateclosure,andthusknottype,forthechain.Thestochasticalgorithms,suchastheuniformclosureprocedureusedhere,requireno‘choices’intheseambiguoussituationssincetheyuniformlysamplefrompotentialknottedstatesandthusremainunbiased.Forexample,in[11],wefoundthattheLeuT(Aa)protein(PDBcode2A65),containssubchainsforming3and4knots.Kingetal.[7]found3and5knotsfor2A65.The‘choices’one,inevitably,isforcedtomakewhenusingsingleclosurealgorithmsisaseriousdeficiencyintheapproach,andthuswebelievethatthestochasticalgorithmsprovideamoresolidcharacterizationoftheknottingwithinsubchains.However,notethat,despitethedifferencesinknotdetectionalgorithms,generallythereisonlyasmallfractionofsubchainsforwhichthedifferentalgorithmsdisagree.Wethencandefineanotationfortheknottingregionspresentintheprotein.WebeginwithaKorS,representingthattheproteiniseitherknottedorslipknottedrespectively.Thisisfollowedbyalistoftheknottypescorrespondingtotheregions(withmultiplicityifthereismorethanoneregionwithagivenknottype)indecreasingorderofknottedcorelengthwithintheregions.Forexample,inFigure1,theprotein3FR8isoftypeK4andprotein2WSXisS3Thisnamingisnotsensitivetothesize,shapeorplacementoftheregionsintheknottingfingerprint.Inparticular,therearemanyproteinsthataredescribedsimplyasK3orS3butwhosematrixpresentationslookmuchdifferent.Onemightassumethattheknottingfingerprintsareuniquetoeachprotein.However,wefoundthatmanyknottingfingerprintmotifsreappearthroughoutourcalculations.Furthermore,wefoundthatproteinswiththesamefunctionindifferentorganismsshowedsimilarknottingfingerprintsdespitelargedifferencesintheaminoacidsequences.Forexample,thematrixpresentationfortheubiquitinC-terminalhydrolases3IRT(human),1CMX(yeast)and2WDT)arenearlyidentical(Figure3)despiteverylowsequenceidentities(rangingfrom25%to32%).ThisknottingfingerprintmotifhaspersistedthroughhundredsofTheAuthorsJournalcompilation2013BiochemicalSociety TopologicalAspectsofDNAFunctionandProteinFolding541 millionsofyearsofevolutionaryseparation,suggestingthattheknottingisindeedcriticaltothefunctionoftheprotein.Wepresentseveralsimilarcasesin[11].Althoughtheexactfunctionoftheknottingisnotyetestablished,thecaseofcloacinsandS-pyocinsprovidespossiblecluestothismystery.CloacinsandS-pyocinsaretoxinswhicharereleasedbysomebacteria.Theyenterotherbacterialcellsviamembranetranslocation.TheknottingfingerprintinFigure2(B)fortheN-terminaltranslocationdomainforcolicinE7inE.coli(PDBcode2AXC)showsfourisolatedregionsof3knots(seetheschematicdrawinginFigure2Btoseehowtheseregionsarecreated).Theproteinformsalargeloopstrappingtogetherseveral-strands.Infollowingthechain,onealternatesbetweenbeingondifferentsidesofthestrappingloop.Ifasubchainterminatesononesideoftheloop,itformsatrefoilknot,butifitterminatesontheothersideoftheloop,anunknotisformed.Sincethelargeloopembracesasignificantportionoftheprotein,oneistemptedtoconjecturethatthisembracingstabilizestherelevantpartsoftheproteins.Thisisconsistentwithresultsofmanyresearchers(see,e.g.,[15–19]).Today,basicinformationaboutknottedproteinsiseasilyaccessiblethroughmanywebpages[20–23]thatallowresearcherstodeterminetheknottypeofaproteinaswellastolocateknottedpositionsalongthebackbone.Furthermore,theentiretyoftheknottingandslipknottingwithintheproteinscannowbevisualizedusingthematrixpresentation.Thefutureanalysisoftheknottingfingerprintmotifswithinthematrixpresentationswillyieldnewcluesintothecriticallinkbetweenthegeometricalconfigurationandthefunctionofproteins. WethanktheIsaacNewtonInstituteforMathematicalSciencesforsponsoringtheTopologicalAspectsofDNAFunctionandProteinFoldingworkshopandforhostingourstaysattheInstitute. Funding E.J.R.wassupportedbytheNationalScienceFoundation(NSF)[grantnumber1115722].J.I.S.wassupportedbytheFoundationofPolishScience[grantnumberPHY-0822283]andbytheCenterforTheoreticalBiologicalPhysicssponsoredbytheNationalScienceFoundation[grantnumberMCB-1214457].A.S.wassupportedbytheSwissNationalScienceFoundation[grantnumber31003A-138367]. 1Trabi,M.andCraik,D.J.(2002)Circularproteins:noendinsight.TrendsBiochem.Sci.,132…1382Boutz,D.R.,Cascio,D.,Whitelegge,J.,Perry,L.J.andYeates,T.O.(2007)Discoveryofathermophilicproteincomplexstabilizedbytopologicallyinterlinkedchains.J.Mol.Biol.,1332…13443Cao,Z.B.,Roszak,A.W.,Gourlay,L.J.,Lindsay,J.G.andIsaacs,N.W.(2005)BovinemitochondrialperoxiredoxinIIIformsatwo-ringcatenane.,1661…16644Mans“eld,M.L.(1994)Arethereknotsinproteins?Nat.Struct.Biol.5Mans“eld,M.L.(1997)Fittobetied.Nat.Struct.Biol.,166…1676Taylor,W.R.(2000)Adeeplyknottedproteinstructureandhowitmightfold.Nature,916…9197King,N.P.,Yeates,E.O.andYeates,T.O.(2007)Identi“cationofrareslipknotsinproteinsandtheirimplicationsforstabilityandfolding.J.Mol.Biol.,153…1668Millett,K.C.,Rawdon,E.J.,Stasiak,A.andSu›kowska,J.I.(2012)Identifyingknotsinproteins.Biochem.Soc.Trans.,533…5379Millett,K.C.,Dobay,A.andStasiak,A.(2005)Linearrandomknotsandtheirscalingbehavior.Macromolecules,601…60610Millett,K.C.andSheldon,B.M.(2005)Tyingdownopenknots:astatisticalmethodforidentifyingopenknotswithapplicationstoproteins.Ser.KnotsEverything,203…21711Su›kowska,J.I.,Rawdon,E.J.,Millett,K.C.,Onuchic,J.N.andStasiak,A.(2012)Conservationofcomplexknottingandslipknottingpatternsinproteins.Proc.Natl.Acad.Sci.U.S.A.,E1715…E172312Banavar,J.R.,Hoang,T.X.,Maddocks,J.H.,Maritan,A.,Poletto,C.,Stasiak,A.andTrovato,A.(2007)Structuralmotifsofbiomolecules.Proc.Natl.Acad.Sci.U.S.A.,17283…1728613Darcy,I.K.,Scharein,R.G.andStasiak,A.(2008)3Dvisualizationsoftwaretoanalyzetopologicaloutcomesoftopoisomerasereactions.NucleicAcidsRes.,3515…352114Tubiana,L.,Orlandini,E.andMicheletti,C.(2011)Probingtheentanglementandlocatingknotsinringpolymers:acomparativestudyofdifferentarcclosureschemes.Prog.Theor.Phys.Suppl.15Sayre,T.C.,Lee,T.M.,King,N.P.andYeates,T.O.(2011)Proteinstabilizationinahighlyknottedproteinpolymer.ProteinEng.,Des.Sel.,627…63016Su›kowska,J.I.,Su›kowski,P.,Szymczak,P.andCieplak,M.(2008)Stabilizingeffectofknotsonproteins.Proc.Natl.Acad.Sci.U.S.A.17Virnau,P.,Mirny,L.A.andKardar,M.(2006)Intricateknotsinproteins:functionandevolution.PLoSComput.Biol.,1074…107918Su›kowska,J.I.,Su›kowski,P.andOnuchic,J.N.(2009)Jammingproteinswithslipknotsandtheirfreeenergylandscape.Phys.Rev.Lett.19Bornschlogl,T.,Anstrom,D.M.,Mey,E.,Dzubiella,J.,Rief,M.andForest,K.T.(2009)Tighteningtheknotinphytochromebysingle-moleculeatomicforcemicroscopy.Biophys.J.,1508…151420Comoglio,F.andRinaldi,M.(2011)AtopologicalframeworkforthecomputationoftheHOMFLYpolynomialanditsapplicationtoproteins.PLoSONE,e1869321Kolesov,G.,Virnau,P.,Kardar,M.andMirny,L.A.(2007)Proteinknotserver:detectionofknotsinproteinstructures.NucleicAcidsRes.22Lai,Y.L.,Chen,C.C.andHwang,J.K.(2012)pKNOTv.2:theproteinKNOTwebserver.NucleicAcidsRes.,W228…W23123Lua,R.C.(2012)PyKnot:aPyMOLtoolforthediscoveryandanalysisofknotsinproteins.Bioinformatics,2069…2071 Received5November2012TheAuthorsJournalcompilation2013BiochemicalSociety