/
CommunicatedbyJonathanVictorTheTime-RescalingTheoremandItsApplicationt CommunicatedbyJonathanVictorTheTime-RescalingTheoremandItsApplicationt

CommunicatedbyJonathanVictorTheTime-RescalingTheoremandItsApplicationt - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
364 views
Uploaded On 2015-10-11

CommunicatedbyJonathanVictorTheTime-RescalingTheoremandItsApplicationt - PPT Presentation

NOTE 326ENBrownRBarbieriVVenturaREKassandLMFrankplementaryeye ID: 157051

NOTE 326E.N.Brown R.Barbieri V.Ventura R.E.Kass andL.M.Frankplementaryeye

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "CommunicatedbyJonathanVictorTheTime-Resc..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

NOTE CommunicatedbyJonathanVictorTheTime-RescalingTheoremandItsApplicationtoNeuralSpikeTrainDataAnalysisEmeryN.Brownbrown@srlb.mgh.harvard.eduNeuroscienceStatisticsResearchLaboratory,DepartmentofAnesthesiaandCriticalCare,MassachusettsGeneral 326E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankplementaryeyeŽeldofamacquemonkeyandacomparisonoftemporalandspatialsmoothers,inhomogeneousPoisson,inhomogeneousgamma,andinhomogeneousinversegaussianmodelsofrathippocampalplacecellspikingactivity.Tohelpmakethelogicbehindthetime-rescalingthe-oremmoreaccessibletoresearchersinneuroscience,wepresentaproofusingonlyelementaryprobabilitytheoryarguments.Wealsoshowhowthetheoremmaybeusedtosimulateageneralpointprocessmodelofaspiketrain.Ourparadigmmakesitpossibletocompareparametricandhistogram-basedneuralspiketrainmodelsdirectly.Theseresultssug-gestthatthetime-rescalingtheoremcanbeavaluabletoolforneuralspiketraindataanalysis.1Introduction Thedevelopmentofstatisticalmodelsthataccuratelydescribethestochasticstructureofneuralspiketrainsisagrowingareaofquantitativeresearchinneuroscience.EvaluatingmodelgoodnessofŽt—thatis,measuringquan-titativelytheagreementbetweenaproposedmodelandaspiketraindataseries—iscrucialforestablishingthemodel’svaliditypriortousingittomakeinferencesabouttheneuralsystembeingstudied.AssessinggoodnessofŽtforpointneuralspiketrainmodelsisamorechallengingproblemthanformodelsofcontinuous-valuedprocesses.Thisisbecausetypicaldistancediscrepancymeasuresappliedincontinuousdataanalyses,suchastheaver-agesumofsquareddeviationsbetweenrecordeddatavaluesandestimatedvaluesfromthemodel,cannotbedirectlycomputedforpointprocessdata.Goodness-of-Žtassessmentsareevenmorechallengingforhistogram-basedmodels,suchasperistimulustimehistograms(PSTH)andratefunctionsestimatedbyspiketrainsmoothing,becausetheprobabilityassumptionsneededtoevaluatemodelpropertiesareoftenimplicit.Berman(1983)andOgata(1988)developedtransformationsthat,underagivenmodel,convertpointprocesseslikespiketrainsintocontinuousmeasuresinordertoassessmodelgoodnessofŽt.Oneofthetheoreticalresultsusedtoconstructthesetransformationsisthetime-rescalingtheorem.Aformofthetime-rescalingtheoremiswellknowninelementaryprob-abilitytheory.ItstatesthatanyinhomogeneousPoissonprocessmayberescaledortransformedintoahomogeneousPoissonprocesswithaunitrate(Taylor&Karlin,1994).TheinversetransformationisastandardmethodforsimulatinganinhomogeneousPoissonprocessfromaconstantrate(homo-geneous)Poissonprocess.Meyer(1969)andPapangelou(1972)establishedthegeneraltime-rescalingtheorem,whichstatesthatanypointprocesswithanintegrableratefunctionmayberescaledintoaPoissonprocesswithaunitrate.BermanandOgataderivedtheirtransformationsbyapplyingthegeneralformofthetheorem.Whilethemoregeneraltime-rescalingtheo-remiswellknownamongresearchersinpointprocesstheory(BrÂemaud,1981;Jacobsen,1982;Daley&Vere-Jones,1988;Ogata,1988;Karr,1991),the TheTime-RescalingTheorem327theoremislessfamiliartoneuroscienceresearchers.Thetechnicalnatureoftheproof,whichreliesonthemartingalerepresentationofapointprocess,mayhavepreventeditssigniŽcancefrombeingmorebroadlyappreciated.Thetime-rescalingtheoremhasimportanttheoreticalandpracticalim-plicationsforapplicationofpointprocessmodelsinneuralspiketraindataanalysis.Tohelpmakethisresultmoreaccessibletoresearchersinneu-roscience,wepresentaproofthatusesonlyelementaryprobabilitytheoryarguments.Wedescribehowthetheoremmaybeusedtodevelopgoodness-of-Žttestsforbothparametricandhistogram-basedpointprocessmodelsofneuralspiketrains.Weapplythesetestsintwoexamples:acompar-isonofPSTH,inhomogeneousPoisson,andinhomogeneousMarkovin-tervalmodelsofneuralspiketrainsfromthesupplementaryeyeŽeldofamacquemonkeyandacomparisonoftemporalandspatialsmoothers,inhomogeneousPoisson,inhomogeneousgamma,andinhomogeneousin-versegaussianmodelsofrathippocampalplacecellspikingactivity.Wealsodemonstratehowthetime-rescalingtheoremmaybeusedtosimulateageneralpointprocess.2Theory 2.1TheConditionalIntensityFunctionandtheJointProbabilityDen-sityoftheSpikeTrain.DeŽneaninterval(0,T],andlet0u1u2,...,un¡1un·Tbeasetofevent(spike)timesfromapointprocess.Fort2(0,T],letN(t)bethesamplepathoftheassociatedcountingprocess.Thesamplepathisarightcontinuousfunctionthatjumps1attheeventtimesandisconstantotherwise(Snyder&Miller,1991).Inthisway,N(t)countsthenumberandlocationofspikesintheinterval(0,t].Therefore,itcontainsalltheinformationinthesequenceofeventsorspiketimes.Fort2(0,T],wedeŽnetheconditionalorstochasticintensityfunctionasl(t|Ht)DlimDt!0Pr(N(tCDt)¡N(t)D1|Ht) Dt,(2.1)whereHtDf0u1u2,...,uN(t)tgisthehistoryoftheprocessuptotimetanduN(t)isthetimeofthelastspikepriortot.IfthepointprocessisaninhomogeneousPoissonprocess,thenl(t|Ht)Dl(t)issimplythePoissonratefunction.Otherwise,itdependsonthehistoryoftheprocess.Hence,theconditionalintensitygeneralizesthedeŽnitionofthePoissonrate.Itiswellknownthatl(t|Ht)canbedeŽnedintermsoftheevent(spike)timeprobabilitydensity,f(t|Ht),asl(t|Ht)Df(t|Ht) 1¡RtuN(t)f(u|Ht)du,(2.2)fort�uN(t)(Daley&Vere-Jones,1988;Barbieri,Quirk,Frank,Wilson,&Brown,2001).Wemaygaininsightintoequation2.2andthemeaningofthe 328E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankconditionalintensityfunctionbycomputingexplicitlytheprobabilitythatgivenHt,aspikeukoccursin[t,tCDt)wherekDN(t)C1.Todothis,wenotethattheeventsfN(tCDt)¡N(t)D1|Htgandfuk2[t,tCDt)|Htgareequivalentandthattherefore,Pr(N(tCDt)¡N(t)D1|Ht)DPr(uk2[t,tCDt)|uk�t,Ht)DPr(uk2[t,tCDt)|Ht) Pr(uk�t|Ht)DRtCDttf(u|Ht)du 1¡RtuN(t)f(u|Ht)du¼f(t|Ht)Dt 1¡RtuN(t)f(u|Ht)duDl(t|Ht)Dt.(2.3)DividingbyDtandtakingthelimitgiveslimDt!0Pr(uk2[t,tCDt)|Ht) DtDf(t|Ht) 1¡RtuN(t)f(u|Ht)duDl(t|Ht),(2.4)whichisequation2.1.Therefore,l(t|Ht)Dtistheprobabilityofaspikein[t,tCDt)whenthereishistorydependenceinthespiketrain.Insurvivalanalysis,theconditionalintensityistermedthehazardfunctionbecauseinthiscase,l(t|Ht)Dtmeasurestheprobabilityofafailureordeathin[t,tCDt)giventhattheprocesshassurviveduptotimet(Kalbeisch&Prentice,1980).Becausewewouldliketoapplythetime-rescalingtheoremtospiketraindataseries,werequirethejointprobabilitydensityofexactlyneventtimesin(0,T].Thisjointprobabilitydensityis(Daley&Vere-Jones,1988;Barbieri,Quirk,etal.,2001)f(u1,u2,...,un\N(T)Dn)Df(u1,u2,...,un\unC1�T)Df(u1,u2,...,un\N(un)Dn)Pr(unC1�T|u1,u2,...,un)DnYkD1l(uk|Huk)exp»¡Zukuk¡1l(u|Hu)du¼¢exp(¡ZTunl(u|Hu)du),(2.5) TheTime-RescalingTheorem329wheref(u1,u2,...,un\N(un)Dn)DnYkD1l(uk|Huk)exp»¡Zukuk¡1l(u|Hu)du¼(2.6)Pr(unC1�T|u1,u2,...,un)Dexp(¡ZTunl(u|Hu)du),(2.7)andu0D0.Equation2.6isthejointprobabilitydensityofexactlyneventsin(0,un],whereasequation2.7istheprobabilitythatthenC1steventoccursafterT.Theconditionalintensityfunctionprovidesasuccinctwaytorepresentthejointprobabilitydensityofthespiketimes.Wecannowstateandprovethetime-rescalingtheorem.Time-RescalingTheorem.Let0u1u2,...,unTbearealizationfromapointprocesswithaconditionalintensityfunctionl(t|Ht)satisfying0l(t|Ht)forallt2(0,T].DeŽnethetransformationL(uk)DZuk0l(u|Hu)du,(2.8)forkD1,...,n,andassumeL(t)1withprobabilityoneforallt2(0,T].ThentheL(uk)’sareaPoissonprocesswithunitrate.Proof.LettkDL(uk)¡L(uk¡1)forkD1,...,nandsettTDRTunl(u|Hu)du.Toestablishtheresult,itsufŽcestoshowthatthetksareindependentandidenticallydistributedexponentialrandomvariableswithmeanone.Becausethetktransformationisone-to-oneandtnC1&#x 00;tTifandonlyifunC1&#x 00;T,thejointprobabilitydensityofthetk’sisf(t1,t2,...,tn\tnC1&#x 00;tT)Df(t1,...,tn)Pr(tnC1&#x 00;tT|t1,...,tn).(2.9)Weevaluateeachofthetwotermsontherightsideofequation2.9.Thefollowingtwoeventsareequivalent:ftnC1&#x 00;tT|t1,...,tngDfunC1&#x 00;T|u1,u2,...,ung.(2.10)HencePr(tnC1&#x 00;tT|t1,t2,...,tn)DPr(unC1&#x 00;T|u1,u2,...,un)Dexp(¡ZTunl(u|Hun)du)Dexpf¡tTg,(2.11) 330E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankwherethelastequalityfollowsfromthedeŽnitionoftT.Bythemultivariatechange-of-variableformula(Port,1994),f(t1,t2,...,tn)D|J|f(u1,u2,...,un\N(un)Dn),(2.12)whereJistheJacobianofthetransformationbetweenuj,jD1,...,nandtk,kD1,...,n.Becausetkisafunctionofu1,...,uk,Jisalowertriangularmatrix,anditsdeterminantistheproductofitsdiagonalelementsdeŽnedas|J|D|QnkD1Jkk|.Byassumption0l(t|Ht)andbyequation2.8andthedeŽnitionoftk,themappingofuintotisone-to-one.Therefore,bytheinversedifferentiationtheorem(Protter&Morrey,1991),thediagonalelementsofJareJkkD@uk @tkDl(uk|Huk)¡1.(2.13)Substituting|J|andequation2.6intoequation2.12yieldsf(t1,t2,...,tn)DnYkD1l(uk|Huk)¡1nYkD1l(uk|Huk)¢exp»¡Zukuk¡1l(u|Hu)du¼DnYkD1expf¡[L(uk)¡L(uk¡1)]gDnYkD1expf¡tkg.(2.14)Substitutingequations2.11and2.14into2.9yieldsf(t1,t2,...,tn\tnC1�tT)Df(t1,...,tn)Pr(tnC1�tT|t1,...,tn)D³nYkD1expf¡tkg´expf¡tTg,(2.15)whichestablishestheresult.Thetime-rescalingtheoremgeneratesahistory-dependentrescalingofthetimeaxisthatconvertsapointprocessintoaPoissonprocesswithaunitrate.2.2AssessingModelGoodnessofFit.Wemayusethetime-rescalingtheoremtoconstructgoodness-of-Žttestsforaspikedatamodel.Oncea TheTime-RescalingTheorem331modelhasbeenŽttoaspiketraindataseries,wecancomputefromitsestimatedconditionalintensitytherescaledtimestkDL(uk)¡L(uk¡1).(2.16)Ifthemodeliscorrect,then,accordingtothetheorem,thetksareindepen-dentexponentialrandomvariableswithmean1.IfwemakethefurthertransformationzkD1¡exp(¡tk),(2.17)thenzksareindependentuniformrandomvariablesontheinterval(0,1).Be-causethetransformationsinequations2.16and2.17arebothone-to-one,anystatisticalassessmentthatmeasuresagreementbetweenthezksandauni-formdistributiondirectlyevaluateshowwelltheoriginalmodelagreeswiththespiketraindata.Herewepresenttwomethods:Kolmogorov-Smirnovtestsandquantile-quantileplots.ToconstructtheKolmogorov-Smirnovtest,weŽrstorderthezksfromsmallesttolargest,denotingtheorderedvaluesasz(k)s.Wethenplottheval-uesofthecumulativedistributionfunctionoftheuniformdensitydeŽnedasbkDk¡1 2 nforkD1,...,nagainstthez(k)s.Ifthemodeliscorrect,thenthepointsshouldlieona45-degreeline(Johnson&Kotz,1970).ConŽdenceboundsforthedegreeofagreementbetweenthemodelsandthedatamaybeconstructedusingthedistributionoftheKolmogorov-Smirnovstatistic.Formoderatetolargesamplesizesthe95%(99%)conŽdenceboundsarewellapproximatedasbk§1.36/n1/2(bk§1.63/n1/2)(Johnson&Kotz,1970).WetermsuchaplotaKolmogorov-Smirnov(KS)plot.Anotherapproachtomeasuringagreementbetweentheuniformprob-abilitydensityandthezksistoconstructaquantile-quantile(Q-Q)plot(Ventura,Carta,Kass,Gettner,&Olson,2001;Barbieri,Quirk,etal.,2001;Hogg&Tanis,2001).Inthisdisplay,weplotthequantilesoftheuniformdistribution,denotedherealsoasthebks,againstthez(k)s.AsinthecaseoftheKSplots,exactagreementoccursbetweenthepointprocessmodelandtheexperimentaldataifthepointslieona45-degreeline.PointwiseconŽ-dencebandscanbeconstructedtomeasurethemagnitudeofthedepartureoftheplotfromthe45-degreelinerelativetochance.Toconstructpoint-wisebands,wenotethatifthetksareindependentexponentialrandomvariableswithmean1andthezksarethusuniformontheinterval(0,1),theneachz(k)hasabetaprobabilitydensitywithparameterskandn¡kC1deŽnedasf(z|k,n¡kC1)Dn! (n¡k)!(k¡1)!zk¡1(1¡z)n¡k,(2.18)for0z1(Johnson&Kotz,1970).Wesetthe95%conŽdenceboundsbyŽndingthe2.5thand97.5thquantilesofthecumulativedistribution 332E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.Frankassociatedwithequation2.18forkD1,...,n.Theseexactquantilesarereadilyavailableinmanystatisticalsoftwarepackages.Formoderatetolargespiketraindataseries,areasonableapproximationtothe95%(99%)conŽdenceboundsisgivenbythegaussianapproximationtothebino-mialprobabilitydistributionasz(k)§1.96[z(k)(1¡z(k))/n]1/2(z(k)§2.575[z(k)(1¡z(k))/n]1/2).Toourknowledge,theselocalconŽdenceboundsfortheQ-Qplotsbasedonthebetadistributionandthegaussianapproxi-mationarenew.Ingeneral,theKSconŽdenceintervalswillbewiderthanthecorre-spondingQ-Qplotintervals.Toseethis,itsufŽcestocomparethewidthsofthetwointervalsusingtheirapproximateformulasforlargen.Fromthegaussianapproximationtothebinomial,themaximumwidthofthe95%conŽdenceintervalfortheQ-Qplotsoccursatthemedian:z(k)D0.50andis2[1.96/(4n)1/2]D1.96n¡1/2.Fornlarge,thewidthofthe95%conŽdenceintervalsfortheKSplotsis2.72n¡1/2atallquantiles.TheKSconŽdenceboundsconsiderthemaximumdiscrepancyfromthe45-degreelinealongallquantiles;the95%bandsshowthediscrepancythatwouldbeexceeded5%ofthetimebychanceiftheplotteddataweretrulyuniformlydistributed.TheQ-QplotconŽdenceboundsconsiderthemaximumdiscrepancyfromthe45-degreelineforeachquantileseparately.Thesepointwise95%con-Ždenceboundsmarktheamountbywhicheachvaluez(k)woulddeviatefromthetruequantile5%ofthetimepurelybychance.TheKSboundsarebroadbecausetheyarebasedonthejointdistributionofallndeviations,andtheyconsiderthedistributionofthelargestofthesedeviations.TheQ-Qplotboundsarenarrowerbecausetheymeasurethedeviationateachquantileseparately.Usedtogether,thetwoplotshelpapproximateupperandlowerlimitsonthediscrepancybetweenaproposedmodelandaspiketraindataseries.3Applications 3.1AnAnalysisofSupplementaryEyeFieldRecordings.FortheŽrstapplicationofthetime-rescalingtheoremtoagoodness-of-Žtanalysis,weanalyzeaspiketrainrecordedfromthesupplementaryeyeŽeld(SEF)ofamacaquemonkey.NeuronsintheSEFplayaroleinoculomotorprocesses(Olson,Gettner,Ventura,Carta,&Kass,2000).Astandardparadigmforstudyingthespikingpropertiesoftheseneuronsisadelayedeyemovementtask.Inthistask,themonkeyŽxates,isshownlocationsofpotentialtargetsites,andisthencuedtothespeciŽctargettowhichitmustsaccade.Next,apreparatorycueisgiven,followedarandomtimelaterbyagosignal.Uponreceivingthegosignal,theanimalmustsaccadetothespeciŽctargetandholdŽxationforadeŽnedamountoftimeinordertoreceiveareward.BeginningfromthepointofthespeciŽctargetcue,neuralactivityisrecordedforaŽxedintervaloftimebeyondthepresentationofthegosignal.Afterabriefrestperiod,thetrialisrepeated.Multipletrialsfromanexperiment TheTime-RescalingTheorem333suchasthisarejointlyanalyzedusingaPSTHtoestimateŽringrateforaŽniteintervalfollowingaŽxedinitiationpoint.Thatis,thetrialsaretimealignedwithrespecttoaŽxedinitialpoint,suchasthetargetcue.ThedataacrosstrialsarebinnedintimeintervalsofaŽxedlength,andtherateineachbinisestimatedastheaveragenumberofspikesintheŽxedtimeinterval.KassandVentura(2001)recentlypresentedinhomogeneousMarkovin-terval(IMI)modelsasanalternativetothePSTHforanalyzingmultiple-trialneuralspiketraindata.ThesemodelsuseaMarkovrepresentationfortheconditionalintensityfunction.OneformoftheIMIconditionalintensityfunctiontheyconsideredisl(t|Ht)Dl(t|uN(t),h)Dl1(t|h)l2(t¡uN(t)|h),(3.1)whereuN(t)isthetimeofthelastspikepriortot,l1(t|h)modulatesŽr-ingasafunctionoftheexperimentalclocktime,l2(t¡uN(t)|h)repre-sentsMarkovdependenceinthespiketrain,andhisavectorofmodelparameterstobeestimated.KassandVenturamodeledlogl1(t|h)andlogl2(t¡uN(t)|h)asseparatepiecewisecubicsplinesintheirrespectiveargumentstandt¡uN(t).Thecubicpieceswerejoinedatknotssothattheresultingfunctionsweretwicecontinuouslydifferentiable.Thenumberandpositionsoftheknotswerechoseninapreliminarydataanalysis.Inthespecialcasel(t|uN(t),h)Dl1(t|h),theconditionalintensityfunctioninequation3.1correspondstoaninhomogeneousPoisson(IP)modelbecausethisassumesnotemporaldependenceamongthespiketimes.KassandVenturausedtheirmodelstoanalyzeSEFdatathatconsistedof486spikesrecordedduringthe400msecfollowingthetargetcuesignalin15trialsofadelayedeyemovementtask(neuronPK166afromOlsonetal.,2000,usingthepatterncondition).TheIPandIMImodelswereŽtbymaximumlikelihood,andstatisticalsigniŽcancetestsonthesplineco-efŽcientswereusedtocomparegoodnessofŽt.Includedintheanalysisweresplinemodelswithhigher-orderdependenceamongthespiketimesthantheŽrst-orderMarkovdependenceinequation3.1.TheyfoundthattheIMImodelgaveastatisticallysigniŽcantimprovementintheŽtrelativetotheIPandthataddinghigher-orderdependencetothemodelgavenofurtherimprovements.TheŽtoftheIMImodelwasnotimprovedbyin-cludingtermstomodelbetween-trialdifferencesinspikerate.TheauthorsconcludedthattherewasstrongŽrst-orderMarkovdependenceintheŽr-ingpatternofthisSEFneuron.KassandVenturadidnotprovideanoverallassessmentofmodelgoodnessofŽtorevaluatehowmuchtheIMIandtheIPmodelsimprovedoverthehistogram-basedratemodelestimatedbythePSTH.UsingtheKSandQ-Qplotsderivedfromthetime-rescalingtheorem,itispossibletocomparedirectlytheŽtsoftheIMI,IP,andPSTHmodelsandtodeterminewhichgivesthemostaccuratedescriptionoftheSEFspiketrainstructure.TheequationsfortheIPratefunction,lIP(t|hIP)Dl1(t|hIP), 334E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankandfortheIMIconditionalintensityfunction,lIMI(t|uN(t),hIMI)Dl1(t|hIMI)l2(t¡uN(t),hIMI),aregivenintheappendix,alongwithadis-cussionofthemaximumlikelihoodprocedureusedtoestimatetheco-efŽcientsofthesplinebasiselements.Theestimatedconditionalinten-sityfunctionsfortheIPandIMImodelsare,respectively,lIP(t|,OhIP)andlIMI(t|uN(t),OhIMI),whereOhisthemaximumlikelihoodestimateofthespeciŽcsplinecoefŽcients.ForthePSTHmodel,theconditionalintensityestimateisthePSTHcomputedbyaveragingthenumberofspikesineachof4010msecbins(the400msecfollowingthetargetcuesignal)acrossthe15trials.ThePSTHistheŽtofanotherinhomogeneousPoissonmodelbecauseitassumesnodependenceamongthespiketimes.TheresultsoftheIMI,IP,andPSTHmodelŽtscomparedbyKSandQ-QplotsareshowninFigure1.FortheIPmodel,thereislackofŽtatlowerquantiles(below0.25)becauseinthatrange,itsKSplotliesjustout-sidethe95%conŽdencebounds(seeFigure1A).Fromquantile0.25andbeyond,theIPmodeliswithinthe95%conŽdencebounds,althoughbe- TheTime-RescalingTheorem335yondthequantile0.75,itslightlyunderpredictsthetrueprobabilitymodelofthedata.TheKSplotofthePSTHmodelissimilartothatoftheIPexceptthatitliesentirelyoutsidethe95%conŽdencebandsbelowquan-tile0.50.Beyondthisquantile,itiswithinthe95%conŽdencebounds.TheKSplotofthePSTHunderpredictstheprobabilitymodelofthedatatoagreaterdegreeintheupperrangethantheIPmodel.TheIMImodeliscompletelywithinthe95%conŽdenceboundsandliesalmostexactlyonthe45-degreelineofcompleteagreementbetweenthemodelandthedata.TheQ-Qplotanalyses(seeFigure1B)agreewithKSplotanalyseswithafewexceptions.TheQ-QplotanalysesshowthatthelackofŽtoftheIPandPSTHmodelsisgreateratthelowerquantiles(0–0.50)thansug-gestedbytheKSplots.TheQ-QplotsfortheIPandPSTHmodelsalsoshowthatthedeviationsofthesetwomodelsnearquantiles0.80to0.90arestatisticallysigniŽcant.Withtheexceptionofasmalldeviationbelowquantile0.10,theQ-QplotoftheIMIliesalmostexactlyonthe45-degreeline. Figure1:Facingpage.(A)Kolmogorov-Smirnov(K-S)plotsoftheinhomoge-neousMarkovinterval(IMI)model,inhomogeneousPoisson(IP),andperstim-ulustimehistogram(PSTH)modelŽtstotheSEFspiketraindata.Thesolid45-degreelinerepresentsexactagreementbetweenthemodelandthedata.Thedashed45-degreelinesarethe95%conŽdenceboundsforexactagree-mentbetweenthemodelandexperimentaldatabasedonthedistributionoftheKolmogorov-Smirnovstatistic.The95%conŽdenceboundsarebk§1.36n¡1 2,wherebkD(k¡1 2)/nforkD1,...,nandnisthetotalnumberofspikes.TheIMImodel(thick,solidline)iscompletelywithinthe95%conŽdenceboundsandliesalmostexactlyonthe45-degreeline.TheIPmodel(thin,solidline)haslackofŽtatlowerquantiles(0.25).Fromthequantile0.25andbe-yond,theIPmodeliswithinthe95%conŽdencebounds.TheKSplotofthePSTHmodel(dottedline)issimilartothatoftheIPmodelexceptthatitliesoutsidethe95%conŽdencebandsbelowquantile0.50.Beyondthisquantile,itiswithinthe95%conŽdencebounds,yetitunderpredictstheprobabilitymodelofthedatatoagreaterdegreeinthisrangethantheIPmodeldoes.TheIMImodelagreesmorecloselywiththespiketraindatathaneithertheIPorthePSTHmodels.(B)Quantile-quantile(Q-Q)plotsoftheIMI(thick,solidline),IP(thin,solidline),andPSTH(dottedline)models.Thedashedlinesarethelocal95%conŽdenceboundsfortheindividualquantilescomputedfromthebetaprobabilitydensitydeŽnedinequation2.18.Thesolid45-degreelinerepresentsexactagreementbetweenthemodelandthedata.TheQ-QplotssuggeststhatthelackofŽtoftheIPandPSTHmodelsisgreateratthelowerquantiles(0–0.50)thansuggestedbytheKSplots.TheQ-QplotsfortheIPandPSTHmodelsalsoshowthatthedeviationsofthesetwomodelsnearquantiles0.80to0.90arestatisticallysigniŽcant.Withtheexceptionofasmalldevia-tionbelowquantile0.10,theQ-QplotoftheIMIliesalmostexactlyonthe45-degreeline. 336E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankWeconcludethattheIMImodelgivesthebestdescriptionoftheseSEFspiketrains.InagreementwiththereportofKassandVentura(2001),thisanalysissupportsaŽrst-orderMarkovdependenceamongthespiketimesandnotaPoissonstructure,aswouldbesuggestedbyeithertheIPorthePSTHmodels.ThisanalysisextendstheŽndingsofKassandVenturabyshowingthatofthethreemodels,thePSTHgivesthepoorestdescriptionoftheSEFspiketrain.TheIPmodelgivesabetterŽttotheSEFdatathanthePSTHmodelbecausethemaximumlikelihoodanalysisoftheparametricIPmodelismorestatisticallyefŽcientthanthehistogram(methodofmo-ments)estimateobtainedfromthePSTH(Casella&Berger,1990).Thatis,theIPmodelŽtbymaximumlikelihoodusesallthedatatoestimatetheconditionalintensityfunctionatalltimepoints,whereasthePSTHanal-ysisusesonlyspikesinaspeciŽedtimebintoestimatetheŽringrateinthatbin.TheadditionalimprovementoftheIMImodelovertheIPisduetothefactthattheformerrepresentstemporaldependenceinthespiketrain.3.2AnAnalysisofHippocampalPlaceCellRecordings.Asasecondexampleofusingthetime-rescalingtheoremtodevelopgoodness-of-Žttests,weanalyzethespikingactivityofapyramidalcellintheCA1regionoftherathippocampusrecordedfromananimalrunningbackandforthonalineartrack.Hippocampalpyramidalneuronshaveplace-speciŽcŽring(O’Keefe&Dostrovsky,1971);agivenneuronŽresonlywhentheanimalisinacertainsubregionoftheenvironmenttermedtheneuron’splaceŽeld.Onalineartrack,theseŽeldsapproximatelyresembleone-dimensionalgaussiansurfaces.Theneuron’sspikingactivitycorrelatesmostcloselywiththean-imal’spositiononthetrack(Wilson&McNaughton,1993).Thedataseriesweanalyzeconsistsof691spikesfromaplacecellintheCA1regionofthehippocampusrecordedfromaratrunningbackandforthfor20minutesona300cmU-shapedtrack.Thetrackwaslinearizedforthepurposesofthisanalysis(Frank,Brown,&Wilson,2000).Therearetwoapproachestoestimatingtheplace-speciŽcŽringmapsofahippocampalneuron.OneapproachistousemaximumlikelihoodtoŽtaspeciŽcparametricmodelofthespiketimestotheplacecelldataasinBrown,Frank,Tang,Quirk,andWilson(1998)andBarbieri,Quirk,etal.(2001).Ifx(t)istheanimal’spositionattimet,wedeŽnethespatialfunctionfortheone-dimensionalplaceŽeldmodelasthegaussiansurfaces(t)Dexp»a¡b(x(t)¡m)2 2¼,(3.2)wheremisthecenterofplaceŽeld,bisascalefactor,andexpfagisthemaximumheightoftheplaceŽeldatitscenter.Werepresentthespiketimeprobabilitydensityoftheneuronaseitheraninhomogeneousgamma(IG) TheTime-RescalingTheorem337model,deŽnedasf(uk|uk¡1,h)Dys(uk) C(y)µZukuk¡1ys(u)du¶y¡1exp»¡Zukuk¡1ys(u)du¼,(3.3)orasaninhomogeneousinversegaussian(IIG)model,deŽnedasf(uk|uk¡1,h)Ds(uk) µ2phRukuk¡1s(u)dui3¶1 2exp8�&#x 00;:¡1 2±Rukuk¡1s(u)du¡y²2 y2Rukuk¡1s(u)du9�=�;,(3.4)wherey�0isalocationparameterforbothmodelsandhD(m,a,b,y)isthesetofmodelparameterstobeestimatedfromthespiketrain.IfwesetyD1inequation3.3,weobtaintheIPmodelasaspecialcaseoftheIGmodel.Theparametersforallthreemodels—theIP,IG,andtheIIG—canbeestimatedfromthespiketraindatabymaximumlikelihood(Barbieri,Quirk,etal.,2001).Themodelsinequations3.3and3.4areMarkovsothatthecurrentvalueofeitherthespiketimeprobabilitydensityortheconditionalintensity(rate)functiondependsononlythetimeofthepreviousspike.Becauseofequation2.2,specifyingthespiketimeprobabilitydensityisequivalenttospecifyingtheconditionalintensityfunction.IfweletOhdenotethemaximumlikelihoodestimateofh,thenthemaximumlikelihoodestimateoftheconditionalintensityfunctionforeachmodelcanbecomputedfromequation2.2asl(t|Ht,Oh)Df(t|uN(t),Oh) 1¡RtuN(t)f(u|uN(t),Oh)du.(3.5)fort�uN(t).Theestimatedconditionalintensityfromeachmodelmaybeusedinthetime-rescalingtheoremtoassessmodelgoodnessofŽtasdescribedinSection2.1.Thesecondapproachistocomputeahistogram-basedestimateoftheconditionalintensityfunctionbyusingeitherspatialsmoothing(Muller&Kubie,1987;Franketal.,2000)ortemporalsmoothing(Wood,Dudchenko,&Eichenbaum,1999)ofthespiketrain.Tocomputethespatialsmooth-ingestimateoftheconditionalintensityfunction,wefollowedFranketal.(2000)anddividedthe300cmtrackinto4.2cmbins,countedthenumberofspikesperbin,anddividedthecountbytheamountoftimetheanimalspendsinthebin.WesmooththebinnedŽringratewithasix-pointgaus-sianwindowwithastandarddeviationofonebintoreducetheeffectof 338E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.Frankrunningvelocity.Thespatialconditionalintensityestimateisthesmoothedspatialratefunction.Tocomputethetemporalratefunction,wefollowedWoodetal.(1999)anddividedtheexperimentintotimebinsof200msecandcomputedtherateasthenumberofspikesper200msec.Thesetwosmoothingproceduresproducehistogram-basedestimatesofl(t).Botharehistogram-basedestimatesofPoissonratefunctionsbe-causeneithertheestimatedspatialnorthetemporalratefunctionsmakeanyhistory-dependenceassumptionaboutthespiketrain.Asintheanaly-sisoftheSEFspiketrains,weagainusetheKSandQ-QplotstocomparedirectlygoodnessofŽtoftheŽvespiketrainmodelsforthehippocampalplacecells.TheIP,IG,andIIGmodelswereŽttothespiketraindatabymax-imumlikelihood.Thespatialandtemporalratemodelswerecomputedasdescribed.TheKSandQ-Qplotgoodness-of-ŽtcomparisonsareinFigure2.TheIGmodeloverestimatesatlowerquantiles,underestimatesatinter-mediatequantiles,andoverestimatesattheupperquantiles(seeFigure2A). TheTime-RescalingTheorem339TheIPmodelunderestimatesthelowerandintermediatequantilesandoverestimatestheupperquantiles.TheKSplotofthespatialratemodelissimilartothatoftheIPmodelyetclosertothe45-degreeline.Thetemporalratemodeloverestimatesthequantilesofthetrueprobabilitymodelofthedata.ThisanalysissuggeststhattheIG,IP,andspatialratemodelsaremostlikelyoversmoothingthisspiketrain,whereasthetemporalratemodelun-dersmoothsit.OftheŽvemodels,theonethatisclosesttothe45-degreelineandliesalmostentirelywithintheconŽdenceboundsistheIIG.Thismodeldisagreesonlywiththeexperimentaldatanearquantile0.80.BecauseallofthemodelswiththeexceptionoftheIIGhaveappreciablelackofŽtintermsoftheKSplots,theŽndingsintheQ-Qplotanalysesarealmostidentical(seeFigure2B).AsintheKSplot,theQ-QplotfortheIIGmodelisclosetothe45-degreelineandwithinthe95%conŽdenceboundswiththeexceptionofquantilesnear0.80.TheseanalysessuggestthatIIGratemodelgivesthebestagreementwiththespikingactivityofthispyramidalneuron.ThespatialandtemporalratefunctionmodelsandtheIPmodelhavethegreatestlackofŽt.3.3SimulatingaGeneralPointProcessbyTimeRescaling.Asasec-ondapplicationofthetime-rescalingtheorem,wedescribehowthethe-oremmaybeusedtosimulateageneralpointprocess.WestatedintheIntroductionthatthetime-rescalingtheoremprovidesastandardapproachforsimulatinganinhomogeneousPoissonprocessfromasimplePoisson Figure2:Facingpage.(A)KSplotsoftheparametricandhistogram-basedmodelŽtstothehippocampalplacecellspiketrainactivity.TheparametricmodelsaretheinhomogeneousPoisson(IP)(dottedline),theinhomogeneousgamma(IG)(thin,solidline),andtheinhomogeneousinversegaussian(IIG)(thick,solidline).Thehistogram-basedmodelsarethespatialratemodel(dashedline)basedon4.2cmspatialbinwidthandthetemporalratemodel(dashedanddottedline)baseda200msectimebinwidth.The45-degreesolidlinerepresentsexactagree-mentbetweenthemodelandtheexperimentaldata,andthe45-degreethin,solidlinesarethe95%conŽdenceboundsbasedontheKSstatistic,asinFigure1.TheIIGmodelKSplotliesalmostentirelywithintheconŽdencebounds,whereasalltheothermodelsshowsigniŽcantlackofŽt.ThissuggeststhattheIIGmodelgivesthebestdescriptionofthisplacecelldataseries,andthehistogram-basedmodelsagreeleastwiththedata.(B)Q-QplotsoftheIP(dottedline),IG(thin,solidline),andIIG(thick,solidline)spatial(dashedline)temporal(dottedanddashedline)models.The95%localconŽdencebounds(thindashedlines)arecomputedasdescribedinFigure1.TheŽndingsintheQ-QplotanalysesarealmostidenticaltothoseintheKSplots.TheQ-QplotfortheIIGmodelisclosetothe45-degreelineandwithinthe95%conŽdencebounds,withtheexceptionofquantilesnear0.80.ThisanalysisalsosuggeststhatIIGratemodelgivesthebestagreementwiththespikingactivityofthispyramidalneuron.ThespatialandtemporalratefunctionmodelsandtheIPmodelhavethegreatestlackofŽt. 340E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.Frankprocess.Thegeneralformofthetime-rescalingtheoremsuggeststhatanypointprocesswithanintegrableconditionalintensityfunctionmaybesim-ulatedfromaPoissonprocesswithunitratebyrescalingtimewithrespecttotheconditionalintensity(rate)function.Givenaninterval(0,T],thesim-ulationalgorithmproceedsasfollows:1.Setu0D0;SetkD1.2.Drawtkanexponentialrandomvariablewithmean1.3.FindukasthesolutiontotkDRukuk¡1l(u|u0,u1,...,uk¡1)du.4.Ifuk�T,thenstop.5.kDkC16.Goto2.Byusingequation2.3,adiscreteversionofthealgorithmcanbeconstructedasfollows.ChooseJlarge,anddividetheinterval(0,T]intoJbinseachofwidthDDT/J.ForkD1,...,JdrawaBernoullirandomvariableu¤kwithprobabilityl(kD|u¤1,...,u¤k¡1)D,andassignaspiketobinkifu¤kD1,andnospikeifu¤kD0.Whileinmanyinstancestherewillbefaster,morecomputationallyefŽ-cientalgorithmsforsimulatingapointprocess,suchasmodel-basedmeth-odsforspeciŽcrenewalprocesses(Ripley,1987)andthinningalgorithms(Lewis&Shedler,1978;Ogata,1981;Ross,1993),thealgorithmaboveissim-pletoimplementgivenaspeciŽcationoftheconditionalintensityfunction.Foranexampleofwherethisalgorithmiscrucialforpointprocesssimu-lation,weconsidertheIGmodelinequation3.2.ItsconditionalintensityfunctionisinŽniteimmediatelyfollowingaspikeify1.Ifinaddition,yistimevarying(yDy(t)1forallt),thenneitherthinningnorstandardalgorithmsformakingdrawsfromagammaprobabilitydistributionmaybeusedtosimulatedatafromthismodel.Thethinningalgorithmfailsbe-causetheconditionalintensityfunctionisnotbounded,andthestandardalgorithmsforsimulatingagammamodelcannotbeappliedbecauseyistimevarying.Inthiscase,thetime-rescalingsimulationalgorithmmaybeappliedaslongastheconditionalintensityfunctionremainsintegrableasyvariestemporally.4Discussion Measuringhowwellapointprocessmodeldescribesaneuralspiketraindataseriesisimperativepriortousingthemodelformakinginferences.Thetime-rescalingtheoremstatesthatanypointprocesswithanintegrablecon-ditionalintensityfunctionmaybetransformedintoaPoissonprocesswithaunitrate.Berman(1983)andOgata(1988)showedthatthistheoremmaybeusedtodevelopgoodness-of-Žttestsforpointprocessmodelsofseismo-logicdata.Goodness-of-Žtmethodsforneuralspiketrainmodelsbasedon TheTime-RescalingTheorem341time-rescalingtransformationsbutnotthetime-rescalingtheoremhavealsobeenreported(Reich,Victor,&Knight,1998;Barbieri,Frank,Quirk,Wilson,&Brown,2001).Here,wehavedescribedhowthetime-rescalingtheoremmaybeusedtodevelopgoodness-of-Žttestsforpointprocessmodelsofneuralspiketrains.Toillustrateourapproach,weanalyzedtwotypesofcommonlyrecordedspiketraindata.TheSEFdataareasetofmultipleshort(400msec)seriesofspiketimes,eachmeasuredunderidenticalexperimentalconditions.ThesedataaretypicallyanalyzedbyaPSTH.Thehippocampusdataarealong(20minutes)seriesofspiketimerecordingsthataretypicallyanalyzedwitheitherspatialortemporalhistogrammodels.ToeachtypeofdataweŽtbothparametricandhistogram-basedmodels.Histogram-basedmodelsarepopularneuraldataanalysistoolsbecauseoftheeasewithwhichtheycanbecomputedandinterpreted.TheseapparentadvantagesdonotoverridetheneedtoevaluatethegoodnessofŽtofthesemodels.Wepreviouslyusedthetime-rescalingtheoremtoassessgoodnessofŽtforparametricspiketrainmodels(Olsonetal.,2000;Barbieri,Quirk,etal.,2001;Venturaetal.,2001).Ourmainresultinthisarticleisthatthetime-rescalingtheoremcanbeusedtoevaluategoodnessofŽtofparametricandhistogram-basedmodelsandtocomparedirectlytheaccuracyofmodelsfromthetwoclasses.Werecommendthatbeforemakinganinferencebasedoneithertypeofmodel,agoodness-of-Žtanalysisshouldbeperformedtoestablishhowwellthemodeldescribesthespiketraindata.Ifthemodelanddataagreeclosely,thentheinferenceismorecrediblethanwhenthereissigniŽcantlackofŽt.TheKSandQ-QplotsprovideassessmentsofoverallgoodnessofŽt.ForthemodelsŽtbymaximumlikelihood,theseassessmentscanbeappliedalongwithmethodsthatmeasurethemarginalvalueandmarginalcostsofusingmorecomplexmodels,suchasAkaikie’sinformationcriterion(AIC)andtheBayesianinformationcriterion(BIC),inordertogainamorecompleteevaluationofmodelagreementwithexperimentaldata(Barbieri,Quirk,etal.,2001).WeassessedgoodnessofŽtbyusingthetime-rescalingtheoremtocon-structKSandQ-Qplotshaving,respectively,liberalandconservativecon-Ždencebounds.Together,thetwosetsofconŽdenceboundshelpcharacter-izetherangeofagreementbetweenthemodelandthedata.Forexample,amodelwhoseKSplotliesconsistentlyoutsidethe95%KSconŽdencebounds(theIPmodelforthehippocampaldata)agreespoorlywiththedata.Ontheotherhand,amodelthatiswithinallthe95%conŽdenceboundsoftheQ-Qplots(theIMImodelfortheSEFdata)agreescloselywiththedata.AmodelsuchastheIPmodelfortheSEFdata,thatis,withinnearlyalltheKSbounds,maylieoutsidetheQ-Qplotintervals.Inthiscase,ifthelackofŽtwithrespecttotheQ-Qplotintervalsissystematic(i.e.,isoverasetofcontiguousquantiles),thissuggeststhatthemodeldoesnotŽtthedatawell.Asasecondapplicationofthetime-rescalingtheorem,wepresentedanalgorithmforsimulatingspiketrainsfromapointprocessgivenitscondi- 342E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.Franktionalintensity(rate)function.Thisalgorithmgeneralizesthewell-knowntechniqueofsimulatinganinhomogeneousPoissonprocessbyrescalingaPoissonprocesswithaconstantrate.Finally,tomakethereasoningbehindthetime-rescalingtheoremmoreaccessibletotheneuroscienceresearchers,weproveditsgeneralformusingelementaryprobabilityarguments.Whilethiselementaryproofismostcer-tainlyapparenttoexpertsinprobabilityandpointprocesstheory(D.Brill-inger,personalcommunication;Guttorp,1995)itsdetails,toourknowledge,havenotbeenpreviouslypresented.Theoriginalproofsofthistheoremusemeasuretheoryandarebasedonthemartingalerepresentationofpointpro-cesses(Meyer,1969;Papangelou,1972;BrÂemaud,1981;Jacobsen,1982).Theconditionalintensityfunction(seeequation2.1)isdeŽnedintermsofthemartingalerepresentation.Ourproofuseselementaryargumentsbecauseitisbasedonthefactthatthejointprobabilitydensityofasetofpointprocessobservations(spiketrain)hasacanonicalrepresentationintermsofthecon-ditionalintensityfunction.Whenthejointprobabilitydensityisrepresentedinthisway,theJacobianinthechangeofvariablesbetweentheoriginalspiketimesandtherescaledinterspikeintervalssimpliŽestoaproductofthere-ciprocalsoftheconditionalintensityfunctionsevaluatedatthespiketimes.TheproofalsohighlightsthesigniŽcanceoftheconditionalintensityfunctioninspiketrainmodeling;itsspeciŽcationcompletelydeŽnesthestochasticstructureofthepointprocess.Thisisbecauseinasmalltimein-terval,theproductoftheconditionalintensityfunctionandthetimeintervaldeŽnestheprobabilityofaspikeinthatintervalgiventhehistoryofthespiketrainuptothattime(seeequation2.3).Whenthereisnohistorydependence,theconditionalintensityfunctionissimplythePoissonratefunction.AnimportantconsequenceofthissimpliŽcationisthatunlesshistorydepen-denceisspeciŽcallyincluded,thenhistogram-basedmodels,suchasthePSTH,andthespatialandtemporalsmoothersareimplicitPoissonmodels.InboththeSEFandhippocampusexamples,thehistogram-basedmodelsgavepoorŽtstothespiketrain.ThesepoorŽtsarosebecausethesemod-elsusedfewdatapointstoestimatemanyparametersandbecausetheydonotmodelhistorydependenceinthespiketrain.Ourparametricmod-elsusedfewerparametersandrepresentedtemporaldependenceexplicitlyasMarkov.Pointprocessmodelswithhigher-ordertemporaldependencehavebeenstudiedbyOgata(1981,1988),Brillinger(1988),andKassandVentura(2001)andwillbeconsideredfurtherinourfuturework.Paramet-ricconditionalintensityfunctionsmaybeestimatedfromneuralspiketraindatainanyexperimentswherethereareenoughdatatoestimatereliablyahistogram-basedmodel.ThisisbecauseifthereareenoughdatatoestimatemanyparametersusinganinefŽcientprocedure(histogram/methodofmo-ments),thenthereshouldbeenoughdatatoestimateasmallernumberofparametersusinganefŽcientone(maximumlikelihood).UsingtheK-SandQ-Qplotsderivedfromthetime-rescalingtheorem,itispossibletodeviseasystematicapproachtotheuseofhistogram-based TheTime-RescalingTheorem343models.Thatis,itispossibletodeterminewhenahistogram-basedmodelaccuratelydescribesaspiketrainandwhenadifferentmodelclass,temporaldependence,ortheeffectsofcovariates(e.g.,thethetarhythmandtheratrunningvelocityinthecaseoftheplacecells)shouldbeconsideredandthedegreeofimprovementthealternativemodelsprovide.Insummary,wehaveillustratedhowthetime-rescalingtheoremmaybeusedtocomparedirectlygoodnessofŽtofparametricandhistogram-basedpointprocessmodelsofneuralspikingactivityandtosimulatespiketraindata.Theseresultssuggestthatthetime-rescalingtheoremcanbeavaluabletoolforneuralspiketraindataanalysis.Appendix A.1MaximumLikelihoodEstimationoftheIMIModel.ToŽttheIMImodel,wechooseJlarge,anddividetheinterval(0,T]intoJbinsofwidthDDT/J.WechooseJsothatthereisatmostonespikeinanybin.Inthisway,weconvertthespiketimes0u1u2,...,un¡1un·Tintoabinarysequenceu¤j,whereu¤jD1ifthereisaspikeinbinjand0otherwiseforjD1,...,J.BydeŽnitionoftheconditionalintensityfunctionfortheIMImodelinequation3.1,itfollowsthateachu¤jisaBernoullirandomvariablewiththeprobabilityofaspikeatjDdeŽnedasl1(jD|h)l2(jD¡u¤N(jD)|h)D.WenotethatthisdiscretizationisidenticaltotheoneusedtoconstructthediscretizedversionofthesimulationalgorithminSection3.3.Thelogprobabilityofaspikeisthuslog(l1(jD|h))Clog(l2(jD¡u¤N(jD)|h)D),(A.1)andthecubicsplinemodelsforlog(l1(jD|h))andlog(l2(jD¡u¤N(jD)|h))are,respectively,log(l1(jD|h))D3XlD1hl(jD¡j1)lCCh4(jD¡j2)3CCh5(jD¡j3)3C(A.2)log(l2(jD¡u¤N(jD)|h))D3XlD1hlC5(jD¡u¤N(jD)¡c1)lCCh9(jD¡u¤N(jD)¡c2)3C,(A.3)wherehD(h1,...,h9)andtheknotsaredeŽnedasjlDlT/4forlD1,2,3andclistheobserved100l/3quantileoftheinterspikeintervaldistributionofthetrialspiketrainsforlD1,2.WehaveforSection3.1thathIPD(h1,...,h5) 344E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankandhIMID(h1,...,h9)arethecoefŽcientsofthesplinebasiselementsfortheIPandIMImodels,respectively.TheparametersareestimatedbymaximumlikelihoodwithDD1msecusingthegamfunctioninS-PLUS(MathSoft,Seattle)asdescribedinChap-ter11ofVenablesandRipley(1999).Theinputstogamaretheu¤js,thetimeargumentsjDandjD¡u¤N(jD),thesymbolicspeciŽcationofthesplinemod-els,andtheknots.Furtherdiscussiononspline-basedregressionmethodsforanalyzingneuraldatamaybefoundinOlsonetal.(2000)andVenturaetal.(2001).Acknowledgments WearegratefultoCarlOlsonforallowingustousethesupplementaryeyeŽelddataandMatthewWilsonforallowingustousethehippocampalplacecelldata.WethankDavidBrillingerandVictorSoloforhelpfuldiscussionsandthetwoanonymousrefereeswhosesuggestionshelpedimprovetheexposition.ThisresearchwassupportedinpartbyNIHgrantsCA54652,MH59733,andMH61637andNSFgrantsDMS9803433andIBN0081548.References Barbieri,R.,Frank,L.M.,Quirk,M.C.,Wilson,M.A.,&Brown,E.N.(2001).Diagnosticmethodsforstatisticalmodelsofplacecellspikingactivity.Neu-rocomputing,38–40,1087–1093.Barbieri,R.,Quirk,M.C.,Frank,L.M.,Wilson,M.A.,&Brown,E.N.(2001).Constructionandanalysisofnon-Poissonstimulus-responsemodelsofneu-ralspiketrainactivity. J.Neurosci.Meth.,105 ,25–37. Berman,M.(1983).Commenton“Likelihoodanalysisofpointprocessesanditsapplicationstoseismologicaldata”byOgata.BulletinInternatl.Stat.Instit.,50,412–418.BrÂemaud,P.(1981).Pointprocessesandqueues:Martingaledynamics.Berlin:Springer-Verlag.Brillinger,D.R.(1988).Maximumlikelihoodanalysisofspiketrainsofinteract-ingnervecells. Biol.Cyber.,59 ,189–200. Brown,E.N.,Frank,L.M.,Tang,D.,Quirk,M.C.,&Wilson,M.A.(1998).Astatisticalparadigmforneuralspiketraindecodingappliedtopositionpre-dictionfromensembleŽringpatternsofrathippocampalplacecells. Journal ofNeuroscience,18 ,7411–7425. Casella,G.,&Berger,R.L.(1990).Statisticalinference.Belmont,CA:Duxbury.Daley,D.,&Vere-Jones,D.(1988).Anintroductiontothetheoryofpointprocess.NewYork:Springer-Verlag.Frank,L.M.,Brown,E.N.,&Wilson,M.A.(2000).Trajectoryencodinginthehippocampusandentorhinalcortex. Neuron,27 ,169–178. Guttorp,P.(1995).StochasticmodelingofscientiŽcdata.London:Chapman&Hall. TheTime-RescalingTheorem345Hogg,R.V.,&Tanis,E.A.(2001).Probabilityandstatisticalinference(6thed.).EnglewoodCliffs,NJ:PrenticeHall.Jacobsen,M.(1982).Statisticalanalysisofcountingprocesses.NewYork:Springer-Verlag.Johnson,A.,&Kotz,S.(1970).Distributionsinstatistics:Continuousunivariatedistributions—2.NewYork:Wiley.Kalbeisch,J.,&Prentice,R.(1980).Thestatisticalanalysisoffailuretimedata.NewYork:Wiley.Karr,A.(1991).Pointprocessesandtheirstatisticalinference(2nded.).NewYork:MarcelDekker.Kass,R.E.,&Ventura,V.(2001).Aspiketrainprobabilitymodel. NeuralComput., 13 ,1713–1720. Lewis,P.A.W.,&Shedler,G.S.(1978).Simulationofnon-homogeneousPoissonprocessesbythinning.NavalRes.LogisticsQuart.,26,403–413.Meyer,P.(1969).DÂemonstrationsimpliŽÂeed’unthÂeor`emedeKnight.InSÂeminaireprobabilitÂeV(pp.191–195).NewYork:Springer-Verlag.Muller,R.U.,&Kubie,J.L.(1987).TheeffectsofchangesintheenvironmentonthespatialŽringofhippocampalcomplex-spikecells. JournalofNeuroscience, 7 ,1951–1968. Ogata,Y.(1981).OnLewis’simulationmethodforpointprocesses.IEEETrans-actionsonInformationTheory,IT-27,23–31.Ogata,Y.(1988).Statisticalmodelsforearthquakeoccurrencesandresidualanalysisforpointprocesses.JournalofAmericanStatisticalAssociation,83,9–27.O’Keefe,J.,&Dostrovsky,J.(1971).Thehippocampusasaspatialmap:Pre-liminaryevidencefromunitactivityinthefreely-movingrat. BrainRes.,34 , 171–175. Olson,C.R.,Gettner,S.N.,Ventura,V.,Carta,R.,&Kass,R.E.(2000).NeuronalactivityinmacaquesupplementaryeyeŽeldduringplanningofsaccadesinresponsetopatternandspatialcues. JournalofNeurophysiology,84 ,1369–1384. Papangelou,F.(1972).Integrabilityofexpectedincrementsofpointprocessesandarelatedrandomchangeofscale.Trans.Amer.Math.Soc.,165,483–506.Port,S.(1994).Theoreticalprobabilityforapplications.NewYork:Wiley.Protter,M.H.,&Morrey,C.B.(1991).AŽrstcourseinrealanalysis(2nded.).NewYork:Springer-Verlag.Reich,D.,Victor,J.,&Knight,B.(1998).Thepowerratioandtheintervalmap:Spikingmodelsandextracellularrecordings. JournalofNeuroscience, 18 ,10090–10104. Ripley,B.(1987).Stochasticsimulation.NewYork:Wiley.Ross,S.(1993).Introductiontoprobabilitymodels(5thed.).SanDiego,CA:Aca-demicPress.Snyder,D.,&Miller,M.(1991).Randompointprocessesintimeandspace(2nded.).NewYork:Springer-Verlag.Taylor,H.M.,&Karlin,S.(1994).Anintroductiontostochasticmodeling(rev.ed.).SanDiego,CA:AcademicPress.Venables,W.,&Ripley,B.(1999).ModernappliedstatisticswithS-PLUS(3rded.).NewYork:Springer-Verlag. 346E.N.Brown,R.Barbieri,V.Ventura,R.E.Kass,andL.M.FrankVentura,V.,Carta,R.,Kass,R.,Gettner,S.,&Olson,C.(2001).Statisticalanalysisoftemporalevolutioninsingle-neuronŽringrate.Biostatistics.Inpress.Wilson,M.A.,&McNaughton,B.L.(1993).Dynamicsofthehippocampalen-semblecodeforspace. Science,261 ,1055–1058. Wood,E.R.,Dudchenko,P.A.,&Eichenbaum,H.(1999).Theglobalrecordofmemoryinhippocampalneuronalactivity. Nature,397 ,613–616. ReceivedOctober27,2000;acceptedMay2,2001.

Related Contents


Next Show more