/
DIRACANDMAJORANAFERMIONSP.J.MuldersNikhefandDepartmentofPhysicsandAstr DIRACANDMAJORANAFERMIONSP.J.MuldersNikhefandDepartmentofPhysicsandAstr

DIRACANDMAJORANAFERMIONSP.J.MuldersNikhefandDepartmentofPhysicsandAstr - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
373 views
Uploaded On 2016-12-13

DIRACANDMAJORANAFERMIONSP.J.MuldersNikhefandDepartmentofPhysicsandAstr - PPT Presentation

September2012notesacademiclectures Contents1Relativisticwaveequations111TheKleinGordonequation112ModeexpansionofsolutionsoftheKGequation213S ID: 501178

September2012(notesacademiclectures) Contents1Relativisticwaveequations11.1TheKlein-Gordonequation.................................11.2ModeexpansionofsolutionsoftheKGequation.....................21.3S

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "DIRACANDMAJORANAFERMIONSP.J.MuldersNikhe..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DIRACANDMAJORANAFERMIONSP.J.MuldersNikhefandDepartmentofPhysicsandAstronomy,FacultyofSciences,VUUniversity,1081HVAmsterdam,theNetherlandsE-mail:mulders@few.vu.nl September2012(notesacademiclectures) Contents1Relativisticwaveequations11.1TheKlein-Gordonequation.................................11.2ModeexpansionofsolutionsoftheKGequation.....................21.3SymmetriesoftheKlein-Gordonequation.........................22ThePoincareGroup42.1TheLorentzgroup......................................42.2ThegeneratorsofthePoincaregroup............................53TheDiracequation63.1TheLorentzgroupandSL(2C)..............................63.2Spin1=2representationsoftheLorentzgroup.......................73.3Generalrepresentationsof\rmatricesandDiracspinors.................83.4Planewavesolutions.....................................114Classicallagrangian eldtheory164.1Euler-Lagrangeequations..................................164.2Lagrangiansforspin0and1/2 elds............................175Quantizationof elds195.1Therealscalar eld.....................................195.2Thecomplexscalar eld...................................205.3TheDirac eld........................................216Discretesymmetries236.1Parity.............................................236.2Chargeconjugation......................................246.3Timereversal.........................................257Thestandardmodel287.1Thestartingpoint:SU(2)W\nU(1)Y............................287.2FamilymixingintheHiggssectorandneutrinomasses..................331 2ReferencesAsmostdirectlyrelatedbookstothesenotes,IrefertothebookofSrednicki[1]andRyder[2].OthertextbooksofQuantumFieldTheorythatareusefularegiveninrefs[3-6].ThenotesarepartofthelecturenotesforthecourseonQuantumFieldTheory(nextfullcoursescheduledNovember2012throughJanuary2013).1.M.Srednicki,QuantumFieldTheory,CambridgeUniversityPress,2007.2.L.H.Ryder,QuantumFieldTheory,CambridgeUniversityPress,1985.3.M.E.PeskinandD.V.Schroeder,AnintroductiontoQuantumFieldTheory,Addison-Wesly,1995.4.M.Veltman,Diagrammatica,CambridgeUniversityPress,1994.5.S.Weinberg,Thequantumtheoryof elds;Vol.I:Foundations,CambridgeUniversityPress,1995;Vol.II:ModernApplications,CambridgeUniversityPress,1996.6.C.ItzyksonandJ.-B.Zuber,QuantumFieldTheory,McGraw-Hill,1980. Chapter1Relativisticwaveequations1.1TheKlein-GordonequationWelookattheKlein-Gordon(KG)equationtodescribeafreespinlessparticlewithmassMwitha' eld'+M2(r;t)=2 @t2r2+M2(r;t)=0(1.1)Althoughitisstraightforwardto ndthesolutionsofthisequation,namelyplanewavescharacterizedbyawavenumberkk(r;t)=exp(ik0t+ikr)(1.2)with(k0)2=k2+M2,theinterpretationofthisequationasasingle-particleequationinwhichisacomplexwavefunctionposesproblemsbecausetheenergyspectrumisnotboundedfrombelowandtheprobabilityisnotpositivede nite.Theenergyspectrumisnotboundedfrombelow:consideringtheabovestationaryplanewavesolutions,oneobtainsk0=p k2+M2=Ek(1.3)i.e.therearesolutionswithnegativeenergy.Probabilityisnotpositive:inquantummechanicsonehastheprobabilityandprobabilitycurrent= (1.4)j=i 2M( r (r ) )i 2M $r :(1.5)Theysatisfythecontinuityequation,@ @t=rj(1.6)whichfollowsdirectlyfromtheSchrodingerequation.Thiscontinuityequationcanbewrittendowncovariantlyusingthecomponents(;j)ofthefour-currentjj=0(1.7)Therefore,relativisticallythedensityisnotascalarquantity,butratherthezerocomponentofafourvector.TheappropriatecurrentcorrespondingtotheKGequation(seeExcercise2.2)isj=i$or(;j)=i$0;i$r(1.8)1 Relativisticwaveequations2Itiseasytoseethatthiscurrentisconservedif(and)satisfytheKGequation.TheKGequation,however,isasecondorderequationandand@=@tcanbe xedarbitrarilyatagiventime.Thisleadstotheexistenceofnegativedensities.Theseproblemsarerelatedandhavetodowiththeexistenceofparticlesandantiparticles,forwhichweneedtheinterpretationofitselfasanoperator,ratherthanasawavefunction.Thisoperatorhasallpossiblesolutionsinitmultipliedwithcreation(andannihilation)operators.Atthatpointthedependenceonpositionrandtimetisjustadependenceonnumbers/parametersonwhichtheoperatordepends,justasthedependenceontimewasinordinaryquantummechanics.Then,therearenolongerfundamentalobjectionstomixupspaceandtime,whichiswhatLorentztransformationsdo.And,itissimplyamatterofbeingcarefulto ndaconsistent(covariant)theory.1.2ModeexpansionofsolutionsoftheKGequationBeforequantizing elds,havingtheKGequationasaspace-timesymmetric(classical)equation,wewantthemostgeneralsolution.Forthiswenotethatanarbitrarysolutionforthe eldcanalwaysbewrittenasasuperpositionofplanewaves,(x)=Zd4k (2)42(k2M2)eikx~(k)(1.9)with(inprinciplecomplex)coecients~(k).Theintegrationoverk-modesclearlyiscovariantandrestrictedtothe`mass'-shell(asrequiredbyEq.1.1).Itispossibletorewriteitasanintegrationoverpositiveenergiesonlybutthisgivestwoterms(usetheresultofexercise2.3),(x)=Zd3k (2)32Ekeikx~(Ekk)+eikx~(Ekk)(1.10)Introducing~(Ekk)a(k)and~(Ekk)b(k)onehas(x)=Zd3k (2)32Ekeikxa(k)+eikxb(k)=+(x)+(x)(1.11)InEqs1.10and1.11onehaselimatedk0andinbothequationskx=Ektkx.Thecoecientsa(k)andb(k)aretheamplitudesofthetwoindependentsolutions(two,afterrestrictingtheenergiestobepositive).Theyarereferredtoasmodeandanti-modeamplitudes(orbecauseoftheiroriginpositiveandnegativeenergymodes).Thechoiceofaandballowsaneasierdistinctionbetweenthecasesthatisreal(a=b)orcomplex(aandbareindependentamplitudes).1.3SymmetriesoftheKlein-GordonequationWewillexplicitlydiscusstheexampleofadiscretesymmetry,forwhichweconsiderspaceinversion,i.e.changingthesignofthespatialcoordinates,whichimplies(x)=(t;x)!(t;x)(~x)(1.12)TransformingeverywhereintheKGequationx!~xoneobtains~~+M2(~x)=0(1.13)Sinceab=~a~b,itiseasytoseethat+M2(~x)=0(1.14) Relativisticwaveequations3implyingthatforeachsolution(x)thereexistsacorrespondingsolutionwiththesameenergy,P(x)(~x)(Pforparity).ItiseasytoshowthatP(x)=(~x)=Zd3k (2)32Ekeik~xa(k)+eik~xb(k)=Zd3k (2)32Ekei~kxa(k)+ei~kxb(k)=Zd3k (2)32Ekeikxa(k)+eikxb(k)(1.15)orsinceonecande neP(x)Zd3k (2)32EkeikxaP(k)+eikxbP(k)(1.16)onehasforthemodeamplitudesaP(k)=a(k)andbP(k)=b(k).Thisshowshowparitytrans-formsk-modesintokmodes.AnothersymmetryisfoundbycomplexconjugatingtheKGequation.Itistrivialtoseethat+M2(x)=0(1.17)showingthatwitheachsolutionthereisacorrespondingchargeconjugatedsolutionC(x)=(x).IntermsofmodesonehasC(x)=(x)=Zd3k (2)32Ekeikxb(k)+eikxa(k)Zd3k (2)32EkeikxaC(k)+eikxbC(k)(1.18)i.e.forthemodeamplitudesaC(k)=b(k)andbC(k)=a(k).Forthereal eldonehasaC(k)=a(k).Thisshowshowchargeconjugationtransforms'particle'modesinto'antiparticle'modesandviceversa. Chapter2ThePoincareGroup2.1TheLorentzgroupSpinhasbeenintroducedasarepresentationoftherotationgroupSU(2)withoutworryingmuchabouttherestofthesymmetriesoftheworld.Weconsideredthegeneratorsandlookedforrepresentationsin nitedimensionalspaces,e.g.=2inatwo-dimensional(spin1/2)case.InthissectionweconsiderthePoincaregroup,consistingoftheLorentzgroupandtranslations.TheLorentztransformationsaredividedintorotationsandboosts.Rotationsaroundthez-axisaregivenbyR(';^z)=exp(i'J3),in nitesimallygivenbyR(';^z)I+i'J3.Thus8���������:V00V10V20V309���������;=8���������:10000cos'sin'00sin'cos'000019���������;8���������:V0V1V2V39���������;!J3=8���������:000000i00i0000009���������;(2.1)Boostsalongthez-directionaregivenbyB(;^z)=exp(iK3),in nitesimallygivenbyB(;^z)IiK3.Thus8���������:V00V10V20V309���������;=8���������:cosh00sinh01000010sinh00cosh9���������;8���������:V0V1V2V39���������;!K3=8���������:000i00000000i0009���������;(2.2)Theparameterrunsfrom11.Notethatthevelocity =v=v=candtheLorentzcontractionfactor\r=(1 2)12correspondingtotheboostarerelatedtoas\r=cosh \r=sinh.Usingtheseexplicittransformations,wehavefoundthegeneratorsofrotations,J=(J1;J2;J3),andthoseoftheboosts,K=(K1;K2;K3),whichsatisfythecommutationrelations(check!)!)Ji;Jj]=iijkJkkJi;Kj]=iijkKkkKi;Kj]=iijkJkThe rsttwosetsofcommutationrelationsexhibittherotationalbehaviorofJandKasvectorsinE(3)underrotations.Fromthecommutationrelationsoneseesthattheboosts(pureLorentztransformations)donotformagroup,sincethegeneratorsKdonotformaclosedalgebra.Thecommutatoroftwoboostsindi erentdirections(e.g.thedi erenceof rstperformingaboostinthey-directionandthereafterinthex-directionandtheboostsinreversedorder)containsarotation(intheexamplearoundthez-axis).ThisistheoriginoftheThomasprecession.4 ThePoincareGroup52.2ThegeneratorsofthePoincaregroupForthefullPoincaregroup,includingthetranslations,writingthegeneratorP=(H=c;P)intermsoftheHamiltonianandthethree-momentumoperators,oneobtainssPi;Pj]=[Pi;H]=[Ji;H]=00Ji;Jj]=iijkJkkJi;Pj]=iijkPkkJi;Kj]=iijkKkkKi;H]=iPiiKi;Kj]=iijkJk=c22Ki;Pj]=iijH=c2(2.3)Wehaveherereinstatedc,becauseonethenseesthatbylettingc!1thecommutationrelationsoftheGalileigroup,knownfromnon-relativisticquantummechanicsareobtained.Inthatcaseboostsandrotationsdecouple!ExercisesExercise3.7(optional)OnemightwonderifitisactuallypossibletowritedownasetofoperatorsthatgeneratethePoincaretransformations,consistentwiththe(canonical)commutationrelationsofaquantumtheory.Thisispossibleforasingleparticle.Dothisbyshowingthatthesetofoperators,H=p p2c2+m2c4P=pJ=rp+sK=1 2c2(rH+Hr)tp+ps H+mc2satisfythecommutationrelationsofthePoincaregroupiftheposition,momentumandspinoperatorssatisfythecanonicalcommutationrelations,[ri;pj]=iijand[si;sj]=iijksk;theothersvanish,,ri;rj]=[pi;pj]=[ri;sj]=[pi;sj]=0.Hint:fortheHamiltonian,show rsttheoperatoridentity[r;f(p)]=irpf(p);ifyoudon'twanttodothisingeneral,youmightjustcheckrelationsinvolvingJorKbytakingsome(relevant)explicitcomponents.Comment:extendingthistomoreparticlesisahighlynon-trivialprocedure,butitcanbedone,althoughthepresenceofaninteractiontermV(r1r2)inevitablyleadstointeractiontermsintheboostoperators.Thesedonotmatterinthenon-relativisticlimit(c!1),that'swhymany-particlenon-relativisticquantummechanicsis'easy'. Chapter3TheDiracequation3.1TheLorentzgroupandSL(2;C)InsteadofthegeneratorsJandKofthehomogeneousLorentztransformationswecanusethe(hermitean)combinationsA=1 2(J+iK)(3.1)B=1 2(JiK)(3.2)whichsatisfythecommutationrelationssAi;Aj]=iijkAk(3.3))Bi;Bj]=iijkBk(3.4))Ai;Bj]=0(3.5)ThisshowsthattheLiealgebraoftheLorentzgroupisidenticaltothatofSU(2)\nSU(2).Thistellsushowto ndtherepresentationsofthegroup.Theywillbelabeledbytwoangularmomentacorre-spondingtotheAandBgroups,respectively,(j;j0).Specialcasesarethefollowingrepresentations:TypeI:(j;0)K=iJ(B=0)(3.6)TypeII:(0;j)K=iJ(A=0)(3.7)Fromtheconsiderationsabove,italsofollowsdirectlythattheLorentzgroupishomeomorphicwiththegroupSL(2C),similarlyasthehomeomorphismbetweenSO(3)andSU(2).ThegroupSL(2C)isthegroupofcomplex22matriceswithdeterminantone.ItissimplyconnectedandformsthecoveringgroupofL+.ThematricesinSL(2C)canbewrittenasaproductofaunitarymatrixUandahermiteanmatrixHM=expi 2'exp1 2=U(')H()U(') H()(3.8)with=^nand'='^n,wherewerestrict(for xed^n)theparameters0'2and01.Withthischoiceofparameter-spacestheplusandminussignsareactuallyrelevant.Theypreciselycorrespondtothetwotypesofrepresentationsthatwehaveseenbefore,becomingthede ningrepresentationsofSL(2C):TypeI(denotedM):J= 2K=i 2(3.9)TypeII(denoted M):J= 2K=+i 2(3.10)6 TheDiracequation7Letusinvestigatethede ning(two-dimensional)representationsofSL(2C).Onede nesspinorsandtransformingsimilarlyunderunitaryrotations(Uy=U1 U(Uy)1=U)!U;!U;(3.11)U(')=exp(i'=2)butdi erentlyunderhermiteanboosts(Hy=H H(Hy)1=H1),namely!H;! H;(3.12)H()=exp(=2) H()=exp(=2)Consideringandasspinstatesintherest-frame,onecanuseaboosttotheframewithmomentump.ChoosingtheboostparameterssuchthatE=M\r=Mcosh()andp=M \r^n=Msinh()^ntheboostisgivenbyH(p)=exp 2=cosh 2+^nsinh 2=M+E+p p 2M(E+M)(3.13)(exercise4.2).AlsousefulistherelationH2(p)=~p=M=(E+p)=M,whereweusedthesetsoffouroperatorsde nedby(1)~(1)(3.14)satisfyingTr(~)=2gandTr()=2g=2(thematrices,thus,arenotcovariant!).3.2Spin1=2representationsoftheLorentzgroupBothrepresentations(01 2)and(1 20)ofSL(2C)aresuitableforrepresentingspin1/2particles.Therepresentations(01 2)and(1 20),furthermore,areinequivalent,i.e.theycannotbeconnectedbyaunitarytransformation.WithintheLorentzgroup,theycanbeconnected,butbyatransformationbelongingtotheclassP.Underparityonehas(01 2)!(1 20)(3.15)Innatureparityturns(often)outtobeagoodquantumnumberforelementaryparticlestates.Forthespin1/2representationsofthePoincaregroupincludingparitywe,therefore,mustcombinetherep-resentations,i.e.considerthefourcomponentspinorthattransformsunderaLorentztransformationasu=8��:9��;!8��:M()00 M()9��;8��:9��;(3.16)where M()=M()1.Foraparticleatrestonlyangularmomentumisimportantandwecanchoose(0;m)=(0;m)=m,thewell-knowntwo-componentspinorforaspin1/2particle.TakingM()=H(p),theboostinEq.3.13,weobtainforthetwocomponentsofuwhichwewillrefertoaschiralrightandchiralleftcomponents,u(p;m)=8�����:uRuL9�����;=8�����:H(p)00 H(p)9�����;8�����:mm9�����;(3.17)withH(p)=E+M+p p 2M(E+M)(3.18)H(p)=E+Mp p 2M(E+M)=H1(p)(3.19) TheDiracequation8Itisstraightforwardtoeliminatemandobtainthefollowingconstraintonthecomponentsofu8�����:0H2(p)H2(p)09�����;8�����:uRuL9�����;=8�����:uRuL9�����;(3.20)orexplicitlyinthesocalledWeylrepresentation8�����:ME+pEpM9�����;8�����:uRuL9�����;=0;;(3.21)whichisanexplicitrealizationofthe(momentumspace)Diracequation,whichingeneralisalinearequationinp(p\rM)u(p)(/pM)u(p)=0(3.22)where\rare44matricescalledtheDiracmatrices1Asinsection2wecanuseP=i@asarepresentationforthemomenta(translationoperators)infunctionspace.ThisleadstotheDiracequationfor (x)=u(p)eipxincoordinatespace,(i\rM) (x)=0(3.23)whichisacovariant(linear) rstorderdi erentialequation.ItisofaformthatwealsoplayedwithinExercise2.7.Thegeneralrequirementsforthe\rmatricesarethuseasilyobtained.Applying(i\r+M)fromtheleftgives\r\r+M2 (x)=0(3.24)Sinceissymmetric,thiscanberewritten1 2f\r;\rg+M2 (x)=0(3.25)Toachievealsothattheenergy-momentumrelationp2=M2issatis edforu(p),onemustrequirethatfor (x)theKlein-Gordonrelation2+M2 (x)=0isvalidforeachcomponentseparately).FromthisoneobtainstheCli ordalgebrafortheDiracmatrices,f\r;\rg=2g(3.26)suppressingontheRHStheidentitymatrixinDiracspace.TheexplicitrealizationappearinginEq.3.21isknownastheWeylrepresentation.Wewilldiscussanotherexplicitrealizationofthisalgebrainthenextsection.3.3Generalrepresentationsof\rmatricesandDiracspinorsThegeneralalgebrafortheDiracmatricesisf\r;\rg=2g(3.27)Twooftenusedexplicitrepresentationsarethefollowing2:Thestandardrepresentation:\r0=3\n1=8��:10019��;;\rk=i2\nk=8��:0kk09��;;(3.28) 1Wede neforafourvectorathecontraction/a=a\r2Weusei\njwithbothandbeingthestandard22Paulimatrices. TheDiracequation9TheWeyl(orchiral)representation:\r0=1\n1=8��:01109��;;\rk=i2\nk=8��:0kk09��;(3.29)Di erentrepresentationscanberelatedtoeachotherbyunitarytransformations,\r!S\rS1(3.30) !S :(3.31)WenotethattheexplicitmatrixtakingusfromtheWeylrepresentationtothestandardrepresentation,(\r)S:R:=S(\r)W:R:S1,isS=1 p 28��:11119��;(3.32)Forallrepresentationsonehas\ry=\r0\r\r0(3.33)andanadjointspinorde nedby = y\r0(3.34)Anothermatrixwhichisoftenusedis\r5de nedas\r5=i\r0\r1\r2\r3=i\r0\r1\r2\r3=i 4!\r\r\r\r(3.35)Itsatis esf\r5;\rg=0andexplicitlyonehas(\r5)S:R:=1\n1=8��:01109��;(\r5)W:R:=3\n1=8��:10019��;(3.36)ForinstanceintheWeylrepresentation(butvalidgenerally),itiseasytoseethatPR=L=1 2(1\r5)(3.37)areprojectionoperators,thatprojectoutchiralright/leftstates,whichinthecaseoftheWeylrepresentationarejusttheupperandlowercomponents.LorentzinvarianceTheLorentztransformationscanalsobewrittenintermsofDiracmatrices.Forexample,therotationandboostgeneratorsinWeylrepresentationinEqs3.9and3.10arerepresentedbymatricesSJ3=S12=1 28��:30039��;=i 44\r1;\r2]=i 2\r1\r2K3=S30=1 28��:i300i39��;=i 44\r3;\r0]=i 2\r3\r0andingeneralonehasthetransformation !L =expi 2!S ;(3.38)withS=1 2=i 44\r;\r].Wenotethat !L and ! L1,whileL1\rL=\r.ThelatterassuresLorentzinvarianceoftheDiracequation(seeExercise4.4) TheDiracequation10ParityThereareanumberofsymmetriesintheDiracequation,e.g.parity.Itiseasytoconvinceoneselfthatif (x)isasolutionoftheDiracequation,(i/M) (x)=0(3.39)onecanapplyspaceinversion,x=(t;x)!~x=(t;x)andviaafewmanipulationsobtainagaintheDiracequation(i/M) p(x)=0(3.40)butwith p(x)p\r0 (~x)(Exercise4.7).Notethatwehave(asexpected)explicitlyinWeylrepresentationinDiracspace =8��:9��;P! p=\r0 =8��:9��;(3.41)ChargeconjugationTheexistenceofpositiveandnegativeenergysolutionsimpliesanothersymmetryintheDiracequa-tion.Thissymmetrydoesnotchangethespin1/2nature,butitdoes,forinstance,reversethechargeoftheparticle.Aswithparitywelookforatransformation,calledchargeconjugation,thatbrings ! c,whichisagainasolutionoftheDiracequation.Startingwith(i/M) (x)=0wenotethatbyhermiteanconjugatingandtransposingtheDiracequationoneobtainsi\rT+M T(x)=0(3.42)InanyrepresentationamatrixCexist,suchthatC\rTC1=\r(3.43)e.g.(C)S:R:=i\r2\r0=i1\n2=8��:0i2i209��;=8��:009��;(3.44)(C)W:R:=i\r2\r0=i3\n2=8��:i200i29��;=8��:009��;(3.45)Thuswe ndbacktheDiracequation,(i/M) c(x)=0(3.46)withthesolution c(x)=cC T(x)=cC\r0 (x)(3.47)wherecisanarbitrary(unobservable)phase,usuallytobetakenunity.Notethatthelaststep(relating cand isvalidinrepresentationswhere\r0isreal.SomepropertiesofCareC1=CyandCT=C.Onehas c= TC1.InS.R.(orW.R.)andallrepresentationsconnectedviaareal(uptoanoverallphase)matrixSCisrealandonehasC1=Cy=CT=Cand[C;\r5]=0.Thelatterimpliesthattheconjugateofaright-handedspinor, cR,isaleft-handedspinor.Explicitly,inWeylrepresentationwe ndinDiracspace =8��:9��;C! c=C T=8��:9��;(3.48) TheDiracequation113.4PlanewavesolutionsForafreemassiveparticle,thebestrepresentationtodescribeparticlesatrestisthestandardrepre-sentation,inwhich\r0isdiagonal(seediscussionofnegativeenergystatesinsection4.1).TheexplicitDiracequationinthestandardrepresentationreads8������:i@ @tMiriri@ @tM9������; (x)=0(3.49)Lookingforpositiveenergysolutions/exp(iEt)one ndstwosolutions, (x)=us(p)eipx,withE=Ep=+p p2+M2,whereusatis es8�����:EpMpp(Ep+M)9�����;u(p)=0,(/pM)u(p)=0(3.50)Therearealsotwonegativeenergysolutions, (x)=vs(p)eipx,wherevsatis es8�����:(Ep+M)pp(EpM)9�����;v(p)=0,(/p+M)v(p)=0(3.51)Explicitsolutionsinthestandardrepresentationareu(p;s)=p Ep+M8������:sp Ep+Ms9������;;v(p;s)=p Ep+M8������:p Ep+Mss9������;(3.52)wheresaretwoindependent(s=)two-componentspinors..Notethatthespinorsinthenegativeenergymodes(antiparticles)couldbetwodi erentspinors.Choosing=(theequivalentspin1/2conjugaterepresentation),thespinorssatisfyCuT(p;s)=v(p;s)andCvT(p;s)=u(p;s).Thesolutionsarenormalizedtou(p;s)u(p;s0)=2Mss0v(p;s)v(p;s0)=2Mss0(3.53)u(p;s)v(p;s0)=v(p;s)u(p;s0)=0(3.54)uy(p;s)u(p;s0)=vy(p;s)v(p;s0)=2Epss0(3.55)Anarbitraryspin1/2 eldcanbeexpandedintheindependentsolutions.Afterseparatingpositiveandnegativeenergysolutionsasdoneinthecaseofthescalar eldonehas (x)=XsZd3k (2)32Eku(k;s)eikxb(k;s)+v(k;s)eikxd(k;s)(3.56)Itisstraightforwardto ndprojectionoperatorsforthepositiveandnegativeenergystatesP+=Xsu(p;s)u(p;s) 2M=/p+M 2M(3.57)P=Xsv(p;s)v(p;s) 2M=/p+M 2M(3.58)Inordertoprojectoutspinstates,thespinpolarizationvectorintherestframeisthestartingpoint.Inthatframeisaspacelikeunitvectors=(0^s).Inanarbitraryframeonehassp=0ands(p)cane.g.beobtainedbyaLorentztransformation.ItiseasytocheckthatPs=1\r5/s 2=1 28��:1^s001^s9��;(3.59) TheDiracequation12(thelastequalityintherestframeandinstandardrepresentation)projectsoutspin1=2states(checkthisintherestframefor^s=^z).NotethatforsolutionsofthemasslessDiracequation/p =0.Therefore,\r5/p =0butalso/p\r5 =\r5/p =0.Thismeansthatinthesolutionspaceformasslessfermionsthechiralitystates, R=LPR=L areindependentsolutions.Inprinciplemasslessfermionscanbedescribedbytwo-componentspinors.ThechiralityprojectionoperatorsinEq.3.37replacethespinprojectionoperatorswhicharenotde ned(bylackofarestframe).Explicitexamplesofspinorsareusefultoillustratespineigenstates,helicitystates,chirality,etc.Forinstancewiththez-axisasspinquantizationaxis,onehasinstandardrepresentation:u(p;+1=2)=1 p E+M8���������:E+M0p3p1+ip29���������;;u(p;1=2)=1 p E+M8���������:0E+Mp1ip2p39���������;(3.60)v(p;+1=2)=1 p E+M8���������:p1ip2p30E+M9���������;;v(p;1=2)=1 p E+M8���������:p3p1+ip2E+M09���������;(3.61)Helicitystates(palong^z)inStandardrepresentationare:up;=+1 2=8���������:p E+M0p EM09���������;;up;=1 2=8���������:0p E+M0p EM9���������;(3.62)vp;=+1 2=8���������:0p EM0p E+M9���������;;vp;=1 2=8���������:p EM0p E+M09���������;(3.63)BywritingthehelicitystatesinWeylrepresentationitiseasytoprojectoutrighthanded(uppercomponents)andlefthanded(lowercomponents).One ndsforthehelicitystatesu(p;)andv(p;)inWeylrepresentation:u(p;+)=1 p 28���������:p E+M+p EM0p E+Mp EM09���������;;u(p;)=1 p 28���������:0p E+Mp EM0p E+M+p EM9���������;v(p;+)=1 p 28���������:0p E+Mp EM0p E+Mp EM9���������;;v(p;)=1 p 28���������:p E+M+p EM0p E+M+p EM09���������;NotethatforhelicitystatesCuT(p;)=v(p;)andCvT(p;)=u(p;).IntroducingtheWeylhelicityspinorsUR=L(p;),UR(p;+) p 2E=8���������:10009���������;UR(p;) p 2E=8���������:01009���������;UL(p;+) p 2E=8���������:00109���������;UL(p;) p 2E=8���������:00019���������; TheDiracequation13wegetu(p;=+1=2)=p 12UR(p;+)+UL(p;+)u(p;=1=2)=p 12UL(p;)+UR(p;)v(p;=+1=2)=p 12UL(p;)+UR(p;)v(p;=1=2)=p 12UR(p;+)UL(p;+)where=p E+Mp EM 2p E=M p E(p E+M+p EM)ME=)M 2Ewhichvanishesintheultra-relativisticlimitEMorinthemasslesscase.Athighenergypositivehelicityfermions(=+1=2)areinessencerighthanded,whilethenegativehelicityfermions(=1=2)aremostlylefthanded.Foramasslessfermionright-andleft-handedsolutionscoincidewithhelicitystates.up;=+1 2=vp;=1 2=UR(p;+)andup;=1 2=vp;=+1 2=UL(p;)ExerciseInthischapterwehaveusedtworepresentations(StandardandWeyl)forthegammamatrices,basedonf\r;\rg=2gandanticommutingwith\r5=i\r0\r1\r2\r3,thusf\r5;\rg=0.Thehermiteanconjugatematricesobey\ry=\r0\r\r0andthetransposedmatricesarefoundusingCde nedasC\rTC1=\r.WehaveStandardRepresentation\r0=3\n1=8��:10019��;\rj=i2\nj=8��:0jj09��;\r5=1\n1=8��:01109��;C=i\r2\r0=i1\n2=8��:009��;C\r0=2\n2=8��:009��;Kj=i 2\r3\r0=i 21j=1 28��:0ijij09��;WeylRepresentation\r0=1\n1=8��:01109��;\rj=i2\nj=8��:0jj09��;\r5=3\n1=8��:10019��;C=i\r2\r0=i3\n2=8��:009��;C\r0=2\n2=8��:009��;Kj=i 2\r3\r0=i 23j=1 28��:ij00ij9��;Constructthesesamematricesin1+1dimensionanddiscusstheimplicationsforparity,chirality,particle-antiparticle,....(solution)Thegeneralrelationsaresimilarexceptfor\r5,whichnowisgivenby\r5=\r0\r1.Explicitlyonehas2-dimensionalmatricesgivenby TheDiracequation14StandardRepresentation\r0=3=8��:10019��;\r1=i2=8��:01109��;\r5=1=8��:01109��;C=\r1=i2=8��:01109��;C\r0=1=8��:01109��;K1=i 2\r3\r0=i 2\r5=i 21=1 28��:0ii09��;WeylRepresentation\r0=1=8��:01109��;\rj=i2=8��:01109��;\r5=3=8��:10019��;C=\r1=i2=8��:01109��;C\r0=3=8��:10019��;K1=i 2\r1\r0=i 2\r5=i 23=1 28��:i00i9��;Notethatthereisnogeneratorforrotationsin1+1dimensionandonlyoneboost.Excercise(a)ProveEq.3.13,H(p)=exp 2=M+E+p p 2M(E+M)whereE=M\r=Mcosh()andp=M \r^n=Msinh()^n.Forthisyouneedtoexpresscosh(=2)andsinh(=2)intermsofenergyandmomentum.AnothersimplecheckthatyoucanperformisthattheRHSindeedalsoisequaltoH2(p)=exp()=(E+p)=M=~p=M:(b)ThefullboostoperatorinDiracspacecanbewrittenasexp(iK).WiththeexplicitmatricesinExercise4.1onee.g.immediatelyreproducestheresultinWeylrepresentation(Eq.3.17),exp(iK)=1 p 2M(E+M)8��:E+M+p00E+Mp9��;GivethefullboostoperatorinStandardrepresentation.Checkthattheexplicitboostoperatorsappliedtoarest-framespinorimmediatelygivetheexplicitspinorsstartingwithEq.3.60.(solution)exp(iK)=1 p 2M(E+M)8��:E+MppE+M9��;(b)Constructforbothrepresentationstheexplicitboostoperatorsin1+1dimensionandgivetheexplicitspinorsu(jp)andv(jp)withp=+p E2M2,discussingtheirnature(suchasparity,chirality,particle-antiparticle).(solution)TheboostoperatorinStandardRepresentationexp(iK)=1 p 2M(E+M)8��:E+MppE+M9��; TheDiracequation15andinWeylRepresentationexp(iK)=1 p 2M(E+M)8��:E+M+p00E+Mp9��;givingStandardRepresentationspinorsu(jp)=8��:p E+Mp EM9��;v(jp)=8��:p EMp E+M9��;andWeylRepresentationspinorsu(jp)=1 p 28��:p E+Mp EMp E+Mp EM9��;v(jp)=1 p 28��:p EM+p E+Mp EMp E+M9��;TheWeylRepresentationresultsshowthatin1+1dimensionforM=0,right-handedfermionsareright-moversandleft-handedfermionsareleft-movers(ratherthanspeci chelicitystatesin3+1dimensions).ExcerciseApplyspace-inversion,x!~x,totheDiracequationandusethistoshowthatthespinor p(x)=\r0 (~x),where~x=(t;x)isalsoasolutionoftheDiracequation. Chapter4Classicallagrangian eldtheory4.1Euler-LagrangeequationsInclassical eldtheoryoneproceedsincompleteanalogytoclassicalmechanicsbutusingfunctionsdependingonspaceandtime(classical elds,thinkforinstanceofatemperatureordensitydistributionorofanelectromagnetic eld).ConsideralagrangiandensityLwhichdependsonthesefunctions,theirderivativesandpossiblyontheposition,L((x);@(x);x)andanactionSS]=Zt2t1dtL=Zdtd3xL((x);@(x))=ZRd4xL((x);@(x))(4.1)HereRindicatesaspace-timevolumeboundedby(R3;t1)andR3;t2),alsoindicatedby@R(amoregeneralvolumeinfour-dimensionalspace-timewithsomeboundary@Rcanalsobeconsidered).Variationsintheactioncancomefromthecoordinatesorthe elds,indicatedasx0=x+x(4.2)0(x)=(x)+(x)(4.3)orcombined0(x0)=(x)+(x)(4.4)with(x)=(x)+()x.TheresultingvariationoftheactionisS=ZRd4x0L(0;@0;x0)ZRd4xL(;@;x)(4.5)Thechangeinvariablesx!x0intheintegrationvolumeinvolvesasurfacevariationoftheformZ@RdLxNoteforthespeci cchoiceofthesurfaceforconstanttimest1andt2Z@Rd:::=Z(R3;t2)d3x:::Z(R3;t1)d3x::::(4.6)Furthermorethevariationsand@contributetoS,giving1S=ZRd4xL ()()+L +Z@RdLx=ZRd4xL L ()+Z@RdL ()+Lx(4.7) 1Takingafunctionalderivative,indicatedwithF[]=shouldposenoproblems.Wewillcomebacktoitinabitmoreformalwayinsection9.2.16 Classicallagrangian eldtheory17Withforthesituationofclassical eldsallvariationsofthe eldsandcoordinatesatthesurfacevanishing,thesecondtermisirrelevant.Theintegrandofthe rsttermmustvanish,leadingtotheEuler-Lagrangeequations,L ()=L (4.8)4.2Lagrangiansforspin0and1/2 eldsByanappropriatechoiceoflagrangiandensitytheequationsofmotiondiscussedinpreviouschaptersforthescalar eld(spin0),theDirac eld(spin1/2)andthevector eld(spin1)canbefound.Thescalar eldItisstraightforwardtoderivetheequationsofmotionforarealscalar eldfromthelagrangiandensities,L=1 2@1 2M22(4.9)=1 2+M2;(4.10)whichdi eronlybysurfaceterms,leadingto(2+M2)(x)=0(4.11)Forthecomplexscalar eldoneconventionallyusesL=M2(4.12)=+M2;(4.13)whichcanbeconsideredasthesumofthelagrangiandensitiesfortworealscalar elds1and2with=(1+i2)=p 2.Oneeasilyobtains(2+M2)(x)=0(4.14)(2+M2)(x)=0(4.15)TheDirac eldTheappropriatelagrangianfromwhichtoderivetheequationsofmotionisL=i 2 $/@ M =i 2 !/@ i 2 /@ M (4.16)= (i/M) ;(4.17)wherethesecondlineisnotsymmetricbutintheactiononlydi ersfromthesymmetricversionbyasurfaceterm(partialintegration).Usingthevariationsin (inthesymmetricform),L ( )=i 2\r L  =i 2!/@ M ;oneobtainsimmediatelyi!/M =0(4.18) Classicallagrangian eldtheory18andsimilarlyfromthevariationwithrespectto i /+M=0(4.19)Itisoftenusefultolinktothetwo-componentspinorsandwhichwestartedwithinchapter4,orequivalentlyseparatethe eldintoright-andlefthandedones.Inthatcaseone ndstriviallyL=1 2 Ri$/@ R+1 2 Li$/@ LM( R L+ L R)(4.20)showinge.g.thatthelagrangianseparatesintotwoindependentpartsforM=0.Usingthetwo-spinorsand,themasstermintheDiraclagrangian4.20isgivenbyLM(Dirac)=My+y(4.21)Thereexistsanotherpossibilitytowritedownamasstermwithonlyonekindof elds,namelyLM(Majorana)=+1 2MyMT(4.22)Thesetwotermsareeachothersconjugate2Attheleveloftheequationsofmotiononehas,usingthePaulimatricesand~inEq.3.14,foraDiracfermioni()=MDandi(~)=MD:(4.23)WiththemassterminEq.4.22thisbecomesforMajoranafermionsi()=Mori(~)=M;andi(~)=M(4.24)inwhichthemasscanbecomplex.Squaringgives(2jM2)=(2jM2)=0.Itisalsopossibletointroducea'real'(four-component)spinorsatisfyingc=ofwhichtheleftpartcoincideswith LL= L=8��:09��;)8��:9��;(4.25)forwhich0=0.Wenotethat cL( L)c=C LT=8��:09��;=R(4.26)SincethekineticterminLseparatesnaturallyinleftandrightparts(orand),itisintheabsenceofaDiracmasstermpossibletointroducealagrangianinwhichonlyleft elds Land cLappearoronecanworkwith'real'spinorsorMajoranaspinorsL=1 2 Li$/@ L1 2M cL L+M L cL(4.27)=1 4 i$/1 2M RL+M LR(4.28)ThisgivesanexpressionwithamasstermthatisactuallyofthesameformastheDiracmassterm,butnotethefactor1/2ascomparedtotheDiraclagrangian,whichcomesbecauseweinessenceuse'real'spinors.TheMajoranacaseisinfactmoregeneral,sincealagrangianwithbothDiracandMajoranamasstermscanberewrittenasthesumoftwoMajoranalagrangiansafterrede ningthe elds(Seee.g.PeshkinandSchroederorExercise12.7). 2ThistermiswrittendownwithbeingananticommutingGrassmannnumberforwhich = ;( )=  =  ;andthus(  )=  = .ThereasonsforGrassmannvariableswillbecomeclearinthenextchapter. Chapter5Quantizationof elds5.1Therealscalar eldWehaveexpandedthe(classical) eldinplanewavesolutions,whichwehavesplitintopositiveandnegativeenergypieceswith(complex)coecientsa(k)anda(k)multiplyingthem.Thequantizationofthe eldisachievedbyquantizingthecoecientsintheFourierexpansion,e.g.therealscalar eld(x)becomes(x)=Zd3k (2)32Eka(k)eikx+ay(k)eikx(5.1)wheretheFouriercoecientsa(k)anday(k)arenowoperators.Notethatwewilloftenwritea(k)oray(k),butoneneedstorealizethatinthatcasek0=Ek=p k2+M2.Thecanonicalmomentumbecomes(x)=(x)=i 2Zd3k (2)3a(k)eikxay(k)eikx(5.2)Itiseasytocheckthattheseequationscanbeinverted(seeExercise2.4fortheclassical eld)a(k)=Zd3xeikxi$0(x)(5.3)ay(k0)=Zd3x(x)i$0eik0x(5.4)Itisstraightforwardtoprovethattheequaltimecommutationrelationsbetween(x)and(x0)areequivalentwith'harmonicoscillator-like'commutationrelationsbetweena(k)anday(k0),i.e..(x)(x0)]x0=x00=i3(xx0)andd(x);(x0)]x0=x00=[(x)(x0)]x0=x00=0(5.5)isequivalentwithha(k);ay(k0)]=(2)32Ek3(kk0)andda(k);a(k0)]=[ay(k);ay(k0)]=0(5.6)19 Quantizationof elds20ThehamiltoniancanberewrittenintermsofanumberoperatorN(k)=N(k)=ay(k)a(k),whichrepresentsthe'numberofparticles'withmomentumkH=Zd3x1 2(0)2+1 2(r)2+1 2M22=Zd3k (2)32EkEk 2ay(k)a(k)+a(k)ay(k)(5.7)=Zd3k (2)32EkEkN(k)+Evac(5.8)wherethenecessitytocommutea(k)ay(k)(asinthecaseofthequantummechanicscase)leadstoazero-pointenergy,in eldtheoryalsoreferredtoasvacuumenergyEvac=1 2VZd3k (2)3Ek(5.9)whereV=(2)33(0)isthespace-volume.Thistermwillbeadressedbelow.ForthemomentumoperatoronehasPi=Zd3x0i(x)=1 2Zd3x@0@i=Zd3k (2)32EkkiN(k)(5.10)wherethevacuumcontributiondisappearsbecauseofrotationalsymmetry.Justasinthecaseoftheharmonicoscillatoritisessential(axiom)thatthereexistsagroundstate0ithatisannihilatedbya(k),a(k)0i=0.5.2Thecomplexscalar eldInspiteofthesimilaritywiththecaseofthereal eld,wewillconsideritasarepetitionofthequantizationprocedure,extendingitwiththechargeoperatorandtheintroductionofparticleandantiparticleoperators.The eldsatis estheKlein-Gordonequationandthedensitycurrent(U(1)transformations)andtheenergy-momentumtensorarej=i$;(5.11)=Lg(5.12)Thequantized eldsarewrittenas(x)=Zd3k (2)32Eka(k)eikx+by(k)eikx(5.13)y(x)=Zd3k (2)32Ekb(k)eikx+ay(k)eikx(5.14)andsatisfytheequaltimecommutationrelation(onlynonzeroones))(x);@0y(y)]x0=y0=i3(xy)(5.15)whichisequivalenttotherelations(onlynonzeroones))a(k);ay(k0)]=[b(k);by(k0)]=(2)32Ek3(kk0)(5.16) Quantizationof elds21ThehamiltonianisasbeforegivenbythenormalorderedexpressionH=Zd3x:00(x):=Zd3k (2)32EkEkay(k)a(k)+b(k)by(k)=Zd3k (2)32EkEkay(k)a(k)+by(k)b(k)(5.17)i.e.particles(createdbyay)andantiparticles(createdbyby)withthesamemomentumcontributeequallytotheenergy.Alsothechargeoperatorrequiresnormalordering(inordertogivethevacuumeigenvaluezero),Q=iZd3xy00y(x)=Zd3k (2)32Ekay(k)a(k)b(k)by(k)=Zd3k (2)32Ekay(k)a(k)by(k)b(k)(5.18)Thecommutatorofandyisasforthereal eldgivenbyy(x);y(y)]=i(xy)(5.19)5.3TheDirac eldFromthelagrangiandensityL=i 2 \r$ M ;(5.20)theconserveddensityandenergy-momentumcurrentsareeasilyobtained,j= \r ;(5.21)=i 2 \r$ i 2 $/@ M g(5.22)Thecanonicalmomentumandthehamiltonianaregivenby(x)=L  (x)=i y(x)(5.23)H(x)=00(x)=i 2 \ri$i +M =i \r00 =i y0 ;(5.24)wherethelastlineisobtainedbyusingtheDiracequation.Thequantized eldsarewritten (x)=XsZd3k (2)32Ekb(k;s)u(k;s)eikx+dy(k;s)v(k;s)eikx(5.25) (x)=XsZd3k (2)32Ekby(k;s)u(k;s)eikx+d(k;s)v(k;s)eikx(5.26) Quantizationof elds22Intermsoftheoperatorsforthebanddquantathehamiltonianandchargeoperatorsare(omittingmostlythespinsummationintherestofthissection)H=Zd3x y(x)i@0 (x):(5.27)=Zd3k (2)32EkEkby(k)b(k)d(k)dy(k):(5.28)Q=Zd3x y (5.29)=Zd3k (2)32Ekby(k)b(k)+d(k)dy(k)(5.30)whichseemstocauseproblemsastheantiparticles(d-quanta)contributenegativelytotheenergyandthechargesofparticles(b-quanta)andantiparticles(d-quanta)arethesame.Thesolutionistheintroductionofanticommutationrelations,fb(k;s);by(k0;s0)g=fd(k;s);dy(k0;s0)g=(2)32Ek3(kk0)ss0(5.31)Notethatachievingnormalordering,i.e.interchangingcreationandannihilationoperators,thenleadstoadditionalminussignsandH=Zd3k (2)32EkEkby(k)b(k)+dy(k)d(k)(5.32)Q=Zd3k (2)32Ekby(k)b(k)dy(k)d(k)(5.33) Chapter6DiscretesymmetriesInthischapterwediscussthediscretesymmetries,parity(P),timereversal(T)andchargeconjugation(C).TheconsequencesofP,TandCforclassicalquantitiesisshowninthetable1.6.1ParityTheparityoperatortransformsx=(t;r)!~xx=(t;r)(6.1)Wewillconsiderthetransformationpropertiesforafermion eld (x),writing (x)!Pop (x)P1op=PA (~x) p(x)(6.2)wherePistheintrinsicparityofthe eldandAisa44matrixactinginthespinorspace.Both pand satisfytheDiracequation.WecandetermineA,startingwiththeDiracequationfor (x),(i\rM) (x)=0Table6.1:ThebehaviorofclassicalquantitiesunderP,T,andC quantityPTC tt-ttr-rrrx~xx~xxEEEEp-p-ppp~p~ppLL-LLss-ss=s^p 23 Discretesymmetries24Afterparitytransformingxto~xtheDiracequationbecomesaftersomemanipulationsi\r~M (~x)=0(i~\rM) (~x)=0i\ryM (~x)=0(i\rM)\r0 (~x)=0(6.3)Therefore\r0 (~x)isagainasolutionoftheDiracequationandwehave p(x)=\r0 (~x)(6.4)Itisstraightforwardtoapplythistotheexplicit eldoperator (x)using\r0u(k;m)=u(~k;m);\r0u(k;)=u(~k;)(6.5)\r0v(k;m)=v(~k;m);\r0v(k;)=v(~k;)(6.6)Checkthisforthestandardrepresentation;notethatifhelicityisusedinsteadofthez-componentofthespinm,theaboveoperationreversesthesignof(whichdoesdependonthesignofp3,however!).Theresultis p(x)=Pop (x)P1op=P\r0 (~x)(6.7)=XZd3k (2)32EkPb(k;)\r0u(k;)eik~x+dy(k;)\r0v(k;)eik~x=XZd3k (2)32EkPhb(k;)u(~k;)ei~kxdy(k;)v(~k;)ei~kxi=XZd3~k (2)32E~kPhb(k;)u(~k;)ei~kxdy(k;)v(~k;)ei~kxi=XZd3k (2)32EkPhb(~k;)u(k;)eikxdy(~k;)v(k;)eikxi(6.8)FromthisoneseesimmediatelythatPopb(k;)P1op=Pb(~k;)(6.9)Popd(k;)P1op=Pd(~k;)(6.10)i.e.choosingPisreal(P=1)particleandantiparticlehaveoppositeparity.InthesamewayastheFermion eld,onecanalsoconsiderthescalar eldandvector elds.Forthescalar eldwehaveseen(x)!Pop(x)P1op=P(~x)(6.11)andforthevector eldA(x)!PopA(x)P1op=A(~x)(6.12)Thelatterbehaviorofthevector eldwillbediscussedfurtherbelow.6.2ChargeconjugationWehavealreadyseentheparticle-antiparticlesymmetrywithunderwhatwewillcallchargeconju-gationthebehavior (x)! c(x)=CC T(x)(6.13) Discretesymmetries25thelatterbeingalsoasolutionoftheDiracequation.TheactiononthespinorsgivesCuT(k;)=v(k;)(6.14)CvT(k;)=u(k;)(6.15)(whereonemustbeawareofthechoiceofspinorsmadeintheexpansion,asdiscussedinsection4).Therefore c(x)=Cop (x)C1op=CC T(x)(6.16)=XZd3k (2)32EkCd(k;)CvT(k;)eikx+by(k;)CuT(k;)eikx=XZd3k (2)32EkCd(k;)u(k;)eikxby(k;)v(k;)eikx(6.17)ThisshowsthatCopb(k;)C1op=Cd(k;)(6.18)Copd(k;)C1op=Cb(k;)(6.19)6.3TimereversalThetimereversaloperatortransformsx=(t;r)!~xx=(t;r)(6.20)Wewillagainconsiderthetransformationpropertiesforafermion eld (x),writing (x)!Top (x)T1op=TA (~x) t(~x)(6.21)whereAisa44matrixactinginthespinorspace.Astimereversalwilltransform'bra'into'ket',Topi=ht=(ti),itisantilinear1.NormconservationrequiresToptobeanti-unitary2.Foraquantized eldonehasTopfk(x)bkT1op=fk(x)TopbkT1opi.e.to nd t(~x)thatisasolutionoftheDiracequation,westartwiththecomplexconjugatedDiracequationfor ((i\r)M) (x)=0The(time-reversed)Diracequationbecomes,(i\r)~M (~x)=0(i~\rM) (~x)=0i\rTM (~x)=0iC1\rC@M (~x)=0i(\r5C)1\r\r5C@M (~x)=0(i\rM)\r5C (~x)=0(6.22)Therefore\r5C (~x)isagainasolutionofthe(ordinary)Diracequationandwecanchoose(phaseisconvention) t(x)=\r5C (~x)(6.23) 1AisantilinearifA(ji+j i)=Aji+Aj i.2Anantilinearoperatorisanti-unitaryifAy=A1.OnehashAjA i=hj i=hA jAi=h jAyAi=h ji. Discretesymmetries26Table6.2:Thetransformationpropertiesofphysicalstatesforparticles(a)andantiparticles(a). statePTC ap;ijapihap;jjap;iap;ijapihap;jjap;i Inthestandardrepresentationi\r5C=i2anditisstraightforwardtoapplythistotheexplicit eldoperator (x)using\r5Cu(k;)=u(~k;)(6.24)\r5Cv(k;)=v(~k;)(6.25)(checkthisforthestandardrepresentationandmakeproperuseofhelicitystatesforp).Theresultis t(x)=Top (x)T1op=iT\r5C (~x)(6.26)=XZd3k (2)32EkTb(k;)i\r5Cu(k;)eik~x+dy(k;)i\r5Cv(k;)eik~x=XZd3k (2)32EkThb(k;)u(~k;)ei~kx+dy(k;)v(~k;)ei~kxi=XZd3~k (2)32EkThb(k;)u(~k;)ei~kx+dy(k;)v(~k;)ei~kxi=XZd3k (2)32EkThb(~k;)u(k;)eikx+dy(~k;)v(k;)eikxi(6.27)FromthisoneobtainsTopb(k;)T1op=Tb(~k;)(6.28)Topd(k;)T1op=Td(~k;)(6.29)Intable2thebehaviorofparticlestatesunderthevarioustransformationshasbeensummarized.Notethatapplyingananti-unitarytransformationsuchasToponemusttakeforthematrixelementthecomplexconjugate.ThereforeonehashAki=hAby(k)0i=hATyTby(k)TyT0i=hAtby(~k)0i=h0b(~k)Ati=h~kAtiExercise8.4Startwiththeexpressionforthefermionquantum eld (x).OnecanrewritethewavefunctionsintermsoftherealWeylhelicityspinorsUR=L(k;).Showthatonecanexpress intermsofrealspinors (x)=1(x)+i2(x)oftheformi(x)=XZd3k (2)32Ekui(k;)hbi(k;)eikx+byi(k;)eikxiGivetheexpressionsforthecreationoperatorsb(k;)anddy(k;)intermsofb1(k;)andb2(k;)andthetwospinorsu(k;)intermsofthe(real)Weylhelicityspinors(seeChapter4). Discretesymmetries27(solution)Wecanexpressthe eldintermsoftheWeylspinorsas (x)=Zd3k (2)32Ekp 12(UR(k;+)b(k;+)eikx+UL(k;)b(k;)eikxUL(k;)dy(k;+)eikx+UR(k;+)dy(k;)eikx)+(UL(k;+)b(k;+)eikx+UR(k;)b(k;)eikx+UR(k;)dy(k;+)eikx+UL(k;+)dy(k;)eikx)re-orderedas (x)=Zd3k (2)32Ekp 12(UR(k;+)b(k;+)eikx+dy(k;)eikx+UL(k;)b(k;)eikxdy(k;+)eikx)+(UL(k;+)b(k;+)eikx+dy(k;)eikx+UR(k;)b(k;)eikxdy(k;+)eikx)=Zd3k (2)32Ek(u(k;+)b(k;+)eikx+dy(k;)eikx+u(k;)b(k;)eikxdy(k;+)eikx)withu(k;+)=p 12UR(k;+)+UL(k;+)u(k;)=p 12UL(k;)+UR(k;)Introducingthecreationandannihilationoperatorsb(k;+)=b1(k;+)+ib2(k;+)b(k;)=b1(k;)+ib2(k;)d(k;)=b1(k;+)ib2(k;+)d(k;+)=b1(k;)+ib2(k;)one ndstherequestedform. Chapter7Thestandardmodel7.1Thestartingpoint:SU(2)W\nU(1)YSymmetryplaysanessentialroleinthestandardmodelthatdescribestheelementaryparticles,thequarks(up,down,etc.),theleptons(elektrons,muons,neutrinos,etc.)andthegaugebosonsresponsibleforthestrong,electromagneticandweakforces.Inthestandardmodelonestartswithaverysimplebasiclagrangianfor(massless)fermionswhichexhibitsmoresymmetrythanobservedinnature.Byintroducinggauge eldsandbreakingthesymmetryamorecomplexlagrangianisobtained,thatgivesagooddescriptionofthephysicalworld.Theprocedure,however,impliescertainnontrivialrelationsbetweenmassesandmixinganglesthatcanbetestedexperimentallyandsofarareinexcellentagreementwithexperiment.Thelagrangianfortheleptonsconsistsofthreefamilieseachcontaininganelementaryfermion(electrone,muonortau),itscorrespondingneutrino(eand)andtheirantiparticles.Astheyaremassless,left-andrighthandedparticles, R=L=1 2(1\r5) decouple.Fortheneutrinoonlyalefthandedparticle(andrighthandedantiparticle)exist.ThusL(f)=i eR/@eR+i eL/@eL+i eL/@eL+(;)(7.1)Oneintroducesa(weak)SU(2)WsymmetryunderwhicheRformsasinglet,whilethelefthandedparticlesformadoublet,i.e.L=8��:L0L9��;=8��:eeL9��;withTW=1 2andT3W=+1=21=2andR=R=eRwithTW=0andT3W=0ThusthebasiclagrangiandensityisaDiraclagrangianwithmassless(independentleft-andright-handedspecies)L(f)=i L/@L+i R/@R;(7.2)whichhasanSU(2)Wsymmetryundertransformationsei~ TW,explicitlyLSU(2)W!ei~ ~=2L;(7.3)RSU(2)W!R:(7.4)OnenotesthatthechargesoftheleptonscanbeobtainedasQ=T3W1=2forlefthandedparticlesandQ=T3W1forrighthandedparticles.Thedi erencebetweenchargeand3-componentofisospiniscalledweakhyperchargeandonewritesQ=T3W+YW 2(7.5)28 Thestandardmodel29TheweakhyperchargeYWisanoperatorthatgeneratesaU(1)Ysymmetrywithforthelefthandedandrighthandedparticlesdi erenthypercharges,YW(L)=1andYW(R)=2.Theparticlestransformaccordingtoei YW2,explicitlyLU(1)Y!ei =2L;(7.6)RU(1)Y!ei R:(7.7)NexttheSU(2)W\nU(1)Ysymmetryismadeintoalocalsymmetryintroducinggauge elds~WandBinthecovariantderivativeD=ig~W~TWig0BYW=2,explicitlyDL=Li 2g~W~L+i 2g0BL;(7.8)DR=R+ig0BR;(7.9)where~WisatripletofgaugebosonswithTW=1,T3W=1or0andYW=0(thusQ=T3W)andBisasingletunderSU(2)W(TW=T3W=0)andalsohasYW=0.PuttingthisinleadstoL(f)=L(f1)+L(f2)(7.10)L(f1)=i R\r(+ig0B)R+i L\r(+i 2g0Bi 2g~W~)LL(f2)=1 4(~W~W+g~W~W)21 4(BB)2Inordertobreakthesymmetrytothesymmetryofthephysicalworld,theU(1)Qsymmetry(generatedbythechargeoperator),acomplexHiggs eld=8��:+09��;=8���:1 p 2(2+i1)1 p 2(4i3)9���;(7.11)withTW=1=2andYW=1isintroduced,withthefollowinglagrangiandensityconsistingofasymmetrybreakingpieceandacouplingtothefermions,L(h)=L(h1)+L(h2)(7.12)whereL(h1)=(D)y(D)m2y(y)2| {z }V()L(h2)=Ge( LR+ RyL)andD=(i 2g~W~i 2g0B):(7.13)TheHiggspotentialV()ischoosensuchthatitgivesrisetospontaneoussymmetrybreakingwith'y'=m2=2v2=2.Fortheclassical eldthechoice4=vismade,whichassureswiththechoiceofYWfortheHiggs eldthatQgeneratestheremainingU(1)symmetry.Usinglocalgaugeinvarianceifori=1,2and3maybeeliminated(thenecessarySU(2)Wrotationispreciselyei(x)),leadingtotheparametrization(x)=1 p 28��:0v+h(x)9��;(7.14) Thestandardmodel30andD=8������:ig 2W1iW2 p 2(v+h)1 p 2h+i 2gW3g0B p 2(v+h)9������;(7.15)Uptocubicterms,thisleadstothelagrangianL(h1)=1 2(h)2+m2h2+g2v2 8(W1)2+(W2)2+v2 8gW3g0B2+:::(7.16)=1 2(h)2+m2h2+g2v2 8(W+)2+(W)2+(g2+g02)v2 8(Z)2+:::;(7.17)wherethequadraticallyappearinggauge eldsthatarefurthermoreeigenstatesofthechargeoperatorareW=1 p 2W1iW2(7.18)Z=gW3g0B p g2+g02cosWW3sinWB(7.19)A=g0W3+gB p g2+g02sinWW3+cosWB(7.20)andcorrespondtothreemassiveparticle elds(WandZ0)andonemassless eld(photon\r)withM2W=g2v2 4(7.21)M2Z=g2v2 4cos2W=M2W cos2W(7.22)M2\r=0(7.23)Theweakmixingangleisrelatedtotheratioofcouplingconstants,g0=g=tanWThecouplingofthefermionstothephysicalgaugebosonsarecontainedinL(f1)givingL(f1)=i e\re+i e\regsinW e\reA+g cosWsin2W eR\reR1 2cos2W eL\reL+1 2 e\reZ+g p 2 e\reLW+ eL\reW+(7.24)Fromthecouplingtothephoton,wecanreado e=gsinW=g0cosW(7.25)Thecouplingofelectronsormuonstotheirrespectiveneutrinos,forinstanceintheamplitudeforthedecayofthemuon mnmn m-m-e-e- ne ne-W = Thestandardmodel31isgivenbyiM=g2 2( \rL)ig+::: k2+M2W( eL\re)ig2 8M2W( \r(1\r5))| {z }(j()yL)( e\r(1\r5)e)| {z }(j(e)L)(7.26)iGF p 2(j()yL)(j(e)L)(7.27)thegoodoldfour-pointinteractionintroducedbyFermitoexplaintheweakinteractions,i.e.onehastherelationGF p 2=g2 8M2W=e2 8M2Wsin2W=1 2v2(7.28)Inthiswaytheparametersgg0andvdetermineanumberofexperimentallymeasurablequantities,suchas1 =e2=41=127(7.29)GF=11664105GeV2(7.30)sin2W=02312(7.31)MW=8040GeV(7.32)MZ=9119GeV(7.33)ThecouplingoftheZ0tofermionsisgivenby(g=cosW)\rmultipliedwithT3W1 2(1\r5)sin2WQ1 2CV1 2CA\r5(7.34)withCV=T3W2sin2WQ;(7.35)CA=T3W(7.36)FromthiscouplingitisstraightforwardtocalculatethepartialwidthforZ0intoafermion-antifermionpair,(Z0!f f)=MZ 48g2 cos2W(C2V+C2A)(7.37)Fortheelectron,muonortau,leptonswithCV=1=2+2sin2W005andCA=1=2wecalculate(e+e)785MeV(exp.e83MeV).Foreachneutrinospecies(withCV=1/2andCA=1/2oneexpects( )155MeV.Comparingthiswiththetotalwidthinto(invisible!)channels,invisible=480MeVoneseesthatthreefamiliesof(light)neutrinosareallowed.Actuallyincludingcorrectionscorrespondingtohigherorderdiagramstheagreementforthedecaywidthintoelectronscanbecalculatedmuchmoreaccuratelyandthenumberofallowed(light)neutrinosturnstobeevenclosertothree.ThemassesofthefermionsandthecouplingtotheHiggsparticlearecontainedinL(h2).WiththechoosenvacuumexpectationvaluefortheHiggs eld,oneobtainsL(h2)=Gev p 2( eLeR+ eReL)Ge p 2( eLeR+ eReL)h=me eeme v eeh:(7.38) 1Thevalueof deviatesfromtheknownvalue 1=137becauseofhigherordercontributions,givingrisetoarunningcouplingconstantafterrenormalizationofthe eldtheory. Thestandardmodel32 LdRnRneLeRLdLuRdnLuReRuReLRdLu Y+1/2-1/2+1-1Q = 0Q = +1Q = -1_WW0B0+WI3W Figure7.1:AppropriateYWandT3Wassign-mentsofquarks,leptons,theirantiparticlesandtheelectroweakgaugebosonsasappearingineachfamily.TheelectricchargeQisthen xed,Q=T3W+YW=2andconstantalongspeci cdiagonalsasindicatedinthe gure.Thepatternisactuallyintriguing,suggestinganunderlyinglargerunifyingsymmetrygroup,forwhichSU(5)orSO(10)areactuallynicecandidates.Wewillnotdiscussthisanyfur-therinthischapter.First,themassoftheelectroncomesfromthespontaneoussymmetrybreakingbutisnotpredicted(itisinthecouplingGe).ThecouplingtotheHiggsparticleisweakasthevalueforvcalculatede.g.fromtheMWmassisabout250GeV,i.e.me=visextremelysmall.Finallywewanttosaysomethingabouttheweakpropertiesofthequarks,asappearforinstanceinthedecayoftheneutronorthedecayofthe(quarkcontentuds), e- ne -Wdu n!pe e()d!ue e e- ne -Wus !pee()s!ueeThequarksalsoturnoutto tintodoubletsofSU(2)Wforthelefthandedspeciesandintosingletsfortherighthandedquarks.AsshowninFig.7.1,thisrequiresparticularYW-T3Wassignmentstogetthechargesright.Acomplicationarisesforquarks(andaswewilldiscussinthenextsectioninmoredetailalsoforleptons)asitarenotthe'mass'eigenstatesthatappearintheweakisospindoubletsbutlinearcombinationsofthem,8��:ud09��;L8��:cs09��;L8��:tb09��;Lwhere8�����:d0s0b09�����;L=8�����:VudVusVubVcdVcsVcbVtdVtsVtb9�����;8�����:dsb9�����;L(7.39)ThismixingallowsallquarkswithT3W=1=2todecayintoanupquark,butwithdi erentstrength.ComparingneutrondecayanddecayonecangetanestimateofthemixingparameterVusinthe Thestandardmodel33socalledCabibbo-Kobayashi-Maskawamixingmatrix.DecayofB-mesonscontainingb-quarksallowestimateofVub,etc.InprincipleonecomplexphaseisallowedinthemostgeneralformoftheCKMmatrix,whichcanaccountforthe(observed)CPviolationoftheweakinteractions.Thisisonlytrueifthemixingmatrixisatleastthree-dimensional,i.e.CPviolationrequiresthreegenerations.ThemagnitudesoftheentriesintheCKMmatrixarenicelyrepresentedusingthesocalledWolfensteinparametrizationV=8�����:11 223A(i)11 222A3A(1i)2A19�����;+O(4)with0227,A082and022and034.TheimaginarypartigivesrisetoCPviolationindecaysof KandB-mesons(containingsandbquarks,respectively).7.2FamilymixingintheHiggssectorandneutrinomassesThequarksectorAllowingforthemostgeneral(Dirac)massgeneratingterminthelagrangianonestartswithL(h2;q)= QLdDR DRydyQL QLcuUR URyucyQL(7.40)whereweincludenowthethreelefthandedquarkdoubletsinQL,thethreerighthandedquarkswithcharge+2/3inURandthethreerighthandedquarkswithcharges1=3inDR,eachofthesecontainingthethreefamilies,e.g. UR=8: uR cR tR9;.Theuanddarecomplexmatricesinthe33familyspace.TheHiggs eldisstilllimitedtoonecomplexdoublet.NotethatweneedtheconjugateHiggs eldtogetaU(1)Ysingletinthecaseofthecharge+2/3quarks,forwhichweneedtheappropriateweakisospindoubletc=8��:09��;=1 p 28��:v+h09��;Forthe(squared)complexmatriceswecan ndpositiveeigenvaluesuyu=VuG2uVyuanddyd=VdG2dVyd(7.41)whereVuandVdareunitarymatrices,allowingustowriteu=VuGuWyuandd=VdGdWyd(7.42)withGuandGdbeingrealandpositiveandWuandWdbeingdi erentunitarymatrices.ThusonehasL(h2;q)=) DLVdMdWydDR DRWdMdVydDL ULVuMuWyuUR URWuMuVyuUL(7.43)withMu=Guv=p 2(diagonalmatrixcontainingmumcandmt)andMd=Gdv=p 2(diagonalmatrixcontainingmdmsandmb).Onethenreadso thatstartingwiththefamilybasisasde nedviatheleftdoubletsthatthemasseigenstates(andstatescouplingtotheHiggs eld)involvetherighthandedstatesUmassR=WyuURandDmassR=WydDRandthelefthandedstatesUmassL=VyuULandDmassL=VydDL.WorkingwiththemasseigenstatesonesimplyseesthattheweakcurrentcouplingtotheWbecomes UL\rDL= UmassL\rVyuVdDmassL,i.e.theweakmasseigenstatesareD0L=DweakL=VyuVdDmassL=VCKMDmassL(7.44)theunitaryCKM-matrixintroducedaboveinanadhocway. Thestandardmodel34Theleptonsector(masslessneutrinos)ForaleptonsectorwithalagrangiandensityoftheformL(h2;`)= LeER ERyeyL;(7.45)inwhichL=8��:NLEL9��;isaweakdoubletcontainingthethreefamiliesofneutrinos(NL)andchargedleptons(EL)andERisathree-familyweaksinglet,we ndmasslessneutrinos.Asbefore,onecanwritee=VeGeWyeandwe ndL(h2;`)=)Me ELVeWyeER ERWeVyeEL(7.46)withMe=Gev=p 2thediagonalmassmatrixwithmassesmemandm.Themass eldsEmassR=WyeEREmassL=VyeEL.Forthe(massless)neutrino eldswejustcanrede ne eldsintoNmassL=VyeNL,sincetheweakcurrentistheonlyplacewheretheyshowup.TheW-currentthenbecomes EL\rNL= EmassL\rNmassL,i.e.thereisnofamilymixingformasslessneutrinos.Theleptonsector(massiveDiracneutrinos)InprincipleamassiveDiracneutrinocouldbeaccountedforbyalagrangianofthetypeL(h2;`)= LeER ERyeyL LcnNR NRyncyL(7.47)withthreerighthandedneutrinosaddedtothepreviouscase,decouplingfromallknowninteractions.Againwecontinueasbeforenowwithmatricese=VeGeWyeandn=VnGnWyn,andobtainL(h2;`)=) ELVeMeWyeER ERWeMeVyeEL NLVnMnWynNR NRWnMnVynNL(7.48)Wenotethattherearemass eldsEmassR=WyeEREmassL=VyeELNmassL=VynNLandNmassR=WynNRandtheweakcurrentbecomes EL\rNL= EmassL\rVyeVnNmassL.WorkingwiththemasseigenstatesforthechargedleptonsweseethattheweakeigenstatesfortheneutrinosareNweakL=VyeNLwiththerelationtothemasseigenstatesforthelefthandedneutrinosgivenbyN0L=NweakL=VyeVnNmassL=UyPMNSNmassL(7.49)withUPMNS=VynVeknownasthePontecorvo-Maki-Nakagawa-Sakatamixingmatrix.Forneutrino'sthismatrixisparametrizedintermsofthreeanglesijwithcij=cosijandsij=sinijandoneangleUPMNS=8�����:1000c23s230s23c239�����;8�����:c130s13ei010s13ei0c139�����;8�����:c12s120s12c1200019�����;(7.50)aparametrizationthatinprinciplealsocouldhavebeenusedforquarks.Inthiscase,itisparticularlyusefulbecause12isessentiallydeterminedbysolarneutrinooscillationsrequiringm2128105eV2(conventionm2�m1),while23thenisdeterminedbyatmosphericneutrinooscillationsrequiringm223j25103eV2.ThemixingisintriguinglyclosetotheHarrison-Perkins-Scotttri-bimaximalmixingmatrixUHPS=8������:1000p 1=2p 1=20p 1=2p 1=29������;8������:p 2=3p 1=30p 1=3p 2=300019������;=8������:p 2=3p 1=30p 1=6p 1=3p 1=2p 1=6p 1=3p 1=29������;(7.51) Thestandardmodel35Theleptonsector(massiveMajorana elds)AnevensimpleroptionthansterilerighthandedDiracneutrinos,istoaddinEq.7.46aMajoranamasstermforthe(lefthanded)neutrinomasseigenstates,Lmass;=1 2ML NcLNL+ML NLNcL(7.52)althoughthisoptionisnotattractiveasitviolatestheelectroweaksymmetry.Thewaytocircumventthisistointroduceasintheprevioussectionrighthandedneutrinos,withfortherighthandedsectoramasstermMRLmass;=1 2MR NRNcR+MR NcRNR(7.53)Inordertohavemorethanacompletelydecoupledsector,onemustfortheneutrinosaswellaschargedleptons,coupletheright-andlefthandedspeciesthroughDiracmasstermscomingfromthecouplingtotheHiggssectorasintheprevioussection.Thus(disregardingfamilystructure)onehastwoMajorananeutrinos,onebeingmassive.ForthechargedleptonstherecannotexistaMajoranamasstermasthiswouldbreaktheU(1)electromagneticsymmetry.Fortheleptons,theleft-andrighthandedspeciesthenjustformaDiracfermion.Fortheneutrinosector,themasslessandmassiveMajorananeutrinos,coupledbyaDiracmassterm,areequivalenttotwodecoupledMajorananeutrinos(seebelow).IftheMajoranamassMRMDoneactuallyobtainsinanaturalwayoneMajorananeutrinowithaverysmallmass.Thisiscalledthesee-sawmechanism(outlinedbelow).FortheselightMajorananeutrinosonehas,asabove,aunitarymatrixrelatingthemtotheweakeigenstates.AbsorptionofphasesinthestatesisnotpossibleforMajorananeutrinos,however,hencethemixingmatrixbecomesVPMNS=UPMNSKwithK=8������:ei 12000ei 2200019������;(7.54)containingthree(CP-violating)phases( 1 2and).Thesee-sawmechanismConsider(foronefamilyN=n)themostgeneralLorentzinvariantmasstermfortwoindependentMajoranaspinors,01and02(satisfyingc=andasdiscussedinchapter6,cL(L)c=RandcR=L).Weuseheretheprimesstartingwiththeweakeigenstates.Actually,itiseasytoseethatthisincorporatestheDiraccasebyconsideringthelefthandedpartof01andtherighthandedpartof02asaDiracspinor .Thus01=ncL+nL02=nR+ncR; =nR+nL(7.55)AsthemostgeneralmassterminthelagrangiandensitywehaveLmass=1 2ML ncLnL+ML nLncL1 2MR nRncR+MR ncRnR1 2MD ncLncR+MD nLnR1 2MD nRnL+MD ncRncL(7.56)=1 28: ncL nR9;8��:MLMDMDMR9��;8��:nLncR9��;+h.c.(7.57)whichforMD=0isapureMajoranalagrangianandforML=MR=0andrealMDrepresentstheDiraccase.ThemassmatrixcanbewrittenasM=8��:MLMDeiMDeiMR9��;(7.58) Thestandardmodel36takingMLandMRrealandnon-negative.Thischoiceispossiblewithoutlossofgeneralitybecausethephasescanbeabsorbedinto01and02(realmustbereplacedbyhermiteanifoneincludesfamilies).Thisisamixingproblemwithasymmetric(complex)massmatrixleadingtotwo(real)masseigenstates.Thediagonalizationisanalogoustowhatwasdoneforthe-matricesandone ndsUMUT=M0witha(unitary)matrixU,whichimpliesUMyUy=UMUy=M0anda'normal'diagonalizationofthe(hermitean)matrixMMyU(MMy)Uy=M20(7.59)ThusoneobtainsfromMMy=8��:M2L+MD2MDMLei+MRe+iMDMLe+i+MReiM2R+MD29��;(7.60)theeigenvaluesM212=1 2"M2L+M2R+2MD2q (M2LM2R)2+4MD2(M2L+M2R+2MLMRcos(2))#(7.61)andweareleftwithtwodecoupledMajorana elds1and2,relatedvia8��:1L2L9��;=U8��:nLncR9��;8��:1R2R9��;=U8��:ncLnR9��;(7.62)foreachofwhichone ndsthelagrangiansL=1 4 ii$/i1 2Mi ii(7.63)fori=1,2withrealmassesMi.ForthesituationML=0andMRMD(takingMDreal)one ndsM1M2D=MRandM2MRExerciseInthisexercisetwolimitsareinvestigatedforthetwo-Majoranacase.(a)CalculateforthespecialchoiceML=MR=0andMDreal,themasseigenvaluesandshowthatthemixingmatrixisU=1 p 211iiwhichenablesonetorewritetheDirac eldintermsofMajoranaspinors.Givetheexplicitexpressionsthatrelate and cwith1and2(solution)One ndsM1=M2=MD.Forbothleft-andrighthanded eldstherelationsbetween cand1and2arethesame, =1 p 2(1+i2); c=1 p 2(1i2)(b)Amoreinterestingsituationis0=MLMDjMR,whichleadstothesocalledseesawmechanism.CalculatetheeigenvaluesML=0andMR=MX.Giventhatneutrinomassesareoftheorderof1/20eV,whatisthemassMXifwetakeforMDtheelectroweaksymmetry Thestandardmodel37breakingscalev(about250GeV).(solution)TheeigenvaluesareM1M2D=MXp 2andM2M.Foraneutrinomassoftheorderof1/20eV,andafermionmassoftheorderoftheelectroweakbreakingscaling250GeV,thisleadstoMX1015GeV.TherecouplingmatrixinthiscaseisU=icosSisinSsinScosSwithsinSMD=MX.TheweakcurrentcouplestonL=sinS2icosS1,where1isthelightneutrino(mass)eigenstate.

Related Contents


Next Show more