FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers - PDF document

FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers
FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers

Embed / Share - FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers


Presentation on theme: "FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers"— Presentation transcript


Figure1.ExampleimagesfromBergetal.'sdataset. photographs,however,maynotbedigitallyidenticaltoeachotherbecausetheyareoftenmodied(e.g.,croppedorcontrast-corrected)beforepublication.Thisprocesshasledtothepresenceofmultiplecopiesofnear-duplicateim-agesinBergetal.'sdataset.Notethatthepresenceofsuchnear-duplicateimagesislimitedtoafewdatacollectiondo-mainssuchasnewsphotosandthoseontheinternet,andisnotacharacteristicofmostpracticalfacedetectionap-plicationscenarios.Forexample,itisuncommontondnear-duplicateimagesinapersonalphotocollection.Thus,anevaluationoffacedetectionalgorithmsonadatasetwithmultiplecopiesofnear-duplicateimagesmaynotgeneralizewellacrossdomains.Forthisreason,wedecidedtoidentifyandremoveasmanynearduplicatesfromourcollectionaspossible.Wenowpresentthedetailsoftheduplicatedetec-tion.4.Near-duplicatedetectionWeselectedatotalof3527images(basedonthechrono-logicalordering)fromtheimage-captionpairsofBergetal.[ 2 ].Examiningpairsforpossibleduplicatesinthiscol-lectioninthena¨vefashionwouldrequireapproximately12.5millionannotations.Analternativearrangementwouldbetodisplayasetofimagesandmanuallyidentifygroupsofimagesinthisset,whereimagesinasinglegrouparenear-duplicatesofeachother.Duetothelargenumberofimagesinourcollection,itisunclearhowtodisplayalltheimagessimultaneouslytoenablethismanualidenticationofnear-duplicatesinthisfashion.Identicationofnear-duplicateimageshasbeenstud-iedforwebsearch[ 3 , 4 , 5 ].However,inthewebsearchdomain,scalabilityissuesareoftenmoreimportantthanthedetectionofallnear-duplicateimagesinthecollec-tion.Sinceweareinterestedindiscoveringallofthenear-duplicatesinourdataset,theseapproachesarenotdirectlyapplicabletoourtask.Zhangetal.[ 29 ]presentedamorecomputationallyintensiveapproachbasedonstochasticat-tributerelationalgraph(ARG)matching.Theirapproach Figure3.Near-duplicateimages.(Positive)Thersttwoimagesdifferfromeachotherslightlyintheresolutionandthecolorandintensitydistributions,buttheposeandexpressionofthefacesareidentical,suggestingthattheywerederivedfromasinglephoto-graph.(Negative)Inthelasttwoimages,sincetheposeisdiffer-ent,wedonotconsiderthemasnear-identicalimages. wasshowntoperformwellonarelatedproblemofdetect-ingnear-identicalframesinnewsvideodatabases.TheseARGsrepresentthecompositionalpartsandpart-relationsofimagescenesoverseveralinterestpointsdetectedinanimage.TocomputeamatchingscorebetweentheARGsconstructedfortwodifferentimages,agenerativemodelforthegraphtransformationprocessisemployed.Thisap-proachhasbeenobservedtoachievehighrecallofnear- 3 6.EvaluationToestablishanevaluationcriterionfordetectionalgo-rithms,werstspecifysomeassumptionswemakeabouttheiroutputs.Weassumethat  Adetectioncorrespondstoacontiguousimageregion.  Anypost-processingrequiredtomergeoverlappingorsimilardetectionshasalreadybeendone.  Eachdetectioncorrespondstoexactlyoneentireface,nomore,noless.Inotherwords,adetectioncannotbeconsideredtodetecttwofacesatonce,andtwode-tectionscannotbeusedtogethertodetectasingleface.Wefurtherarguethatifanalgorithmdetectsmultipledisjointpartsofafaceasseparatedetections,onlyoneofthemshouldcontributetowardsapositivedetectionandtheremainingdetectionsshouldbeconsideredasfalsepositives.Torepresentthedegreeofmatchbetweenadetectiondiandanannotatedregionlj,weemploythecommonlyusedratioofintersectedareastojoinedareas:S(di;lj)=area(di)\area(lj) area(di)[area(lj): (2) Tospecifyamoreaccurateannotationfortheimagere-gionscorrespondingtohumanfacesthanisobtainedwiththecommonlyusedrectangularregions,wedeneanellip-ticalregionaroundthepixelscorrespondingtothesefaces.Whilethisrepresentationisnotasaccurateasapixel-levelannotation,itisaclearimprovementovertherectangularannotationsinexistingdatasets.Tofacilitatemanuallabeling,westartwithanautomatedguessaboutfacelocations.Toestimatetheellipticalbound-aryforafaceregion,werstapplyaskinclassierontheimagepixelsthatusestheirhueandsaturationvalues.Next,theholesintheresultingfaceregionarelledusingaood-llimplementationinMATLAB.Finally,amoments-basedtisperformedonthisregiontoobtaintheparametersofthedesiredellipse.Theparametersofalloftheseellipsesaremanuallyveriedandadjustedinthenalstage.6.1.MatchingdetectionsandannotationsAmajorremainingquestionishowtoestablishacor-respondencebetweenasetofdetectionsandasetofan-notations.Whileforverygoodresultsonagivenimage,thisproblemiseasy,itcanbesubtleandtrickyforlargenumbersoffalsepositivesormultipleoverlappingdetec-tions(seeFigure 8 foranexample).Below,weformulatethisproblemofmatchingannotationsanddetectionsasnd-ingamaximumweightedmatchinginabipartitegraph(asshowninFigure 9 ). Figure8.Matchingdetectionsandannotations.Inthisimage,theellipsesspecifythefaceannotationsandtheverectanglesdenoteafacedetector'soutput.Notethatthesecondfacefromlefthastwodetectionsoverlappingwithit.Werequireavalidmatchingtoacceptonlyoneofthesedetectionsasthetruematch,andtoconsidertheotherdetectionasafalsepositive.Also,notethatthethirdfacefromthelefthasnodetectionoverlappingwithit,sonodetectionshouldbematchedwiththisface.Thebluerectanglesdenotethetruepositivesandyellowrectanglesdenotethefalsepositivesinthedesiredmatching. Figure9.Maximumweightmatchinginabipartitegraph.Wemakeaninjective(one-to-one)mappingfromthesetofdetectedimageregionsditothesetofimageregionsliannotatedasfaceregions.Thepropertyoftheresultingmappingisthatitmaximizesthecumulativesimilarityscoreforallthedetectedimageregions. LetLbethesetofannotatedfaceregions(orlabels)andDbethesetofdetections.WeconstructagraphGwiththesetofnodesV=L[D.Eachnodediisconnectedtoeachlabellj2LwithanedgeweightwijasthescorecomputedinEquation 2 .Foreachdetectiondi2D,wefurtherintroduceanodenitocorrespondtothecasewhenthisdetectiondihasnomatchingfaceregioninL.AmatchingofdetectionstofaceregionsinthisgraphcorrespondstotheselectionofasetofedgesME.Inthedesiredmatchingofnodes,wewanteverydetectiontobematchedtoatmostonelabeledfaceregion,andeverylabeledfaceregiontobematchedtoatmostonedetection. 6 [10] W.Kienzle,G.H.Bakr,M.O.Franz,andB.Sch¨olkopf.Facedetection—efcientandrankdecient.InL.K.Saul,Y.Weiss,andL.Bottou,editors,AdvancesinNeuralIn-formationProcessingSystems,pages673–680,Cambridge,MA,2005.MITPress. 7 [11] H.W.Kuhn.TheHungarianmethodfortheassignmentprob-lem.NavalResearchLogisticsQuarterly,2:83–97,1955. 7 [12] S.Z.Li,L.Zhu,Z.Zhang,A.Blake,H.Zhang,andH.Shum.Statisticallearningofmulti-viewfacedetection.InEuropeanConferenceonComputerVision,pages67–81,London,UK,2002.Springer-Verlag. 2 [13] A.Loui,C.Judice,andS.Liu.Animagedatabaseforbench-markingofautomaticfacedetectionandrecognitionalgo-rithms.InIEEEInternationalConferenceonImagePro-cessing,volume1,pages146–150vol.1,Oct1998. 1 [14] K.Mikolajczyk,C.Schmid,andA.Zisserman.Humande-tectionbasedonaprobabilisticassemblyofrobustpartde-tectors.InEuropeanConferenceonComputerVision,pages69–82,2004. 7 [15] A.Y.Ng,M.I.Jordan,andY.Weiss.Onspectralclustering:Analysisandanalgorithm.InAdvancesinNeuralInforma-tionProcessingSystems,pages849–856.MITPress,2001. 4 [16] M.Osadchy,Y.LeCun,andM.L.Miller.Synergisticfacedetectionandposeestimationwithenergy-basedmodels.JournalofMachineLearningResearch,8:1197–1215,2007. 2 [17] J.Rihan,P.Kohli,andP.Torr.OBJCUTforfacedetection.InIndianConferenceonComputerVision,GraphicsandImageProcessing,pages576–584,2006. 2 [18] H.A.Rowley,S.Baluja,andT.Kanade.Neuralnetwork-basedfacedetection.IEEETransactionsonPatternAnalysisandMachineIntelligence,20(1):23–38,January1998. 1 , 2 [19] H.A.Rowley,S.Baluja,andT.Kanade.Rotationinvariantneuralnetwork-basedfacedetection.InIEEEConferenceonComputerVisionandPatternRecognition,page38,Wash-ington,DC,USA,1998.IEEEComputerSociety. 2 [20] H.SchneidermanandT.Kanade.Probabilisticmodelingoflocalappearanceandspatialrelationshipsforobjectrecogni-tion.InIEEEConferenceonComputerVisionandPatternRecognition,page45,Washington,DC,USA,1998.IEEEComputerSociety. 1 [21] H.SchneidermanandT.Kanade.Astatisticalmethodfor3dobjectdetectionappliedtofacesandcars.InIEEEConfer-enceonComputerVisionandPatternRecognition,volume1,pages746–751vol.1,2000. 1 , 2 [22] M.SeshadrinathanandJ.Ben-Arie.Poseinvariantfacede-tection.InVideo/ImageProcessingandMultimediaCommu-nications,2003.4thEURASIPConferencefocusedon,vol-ume1,pages405–410vol.1,July2003. 2 [23] P.SharmaandR.Reilly.Acolourfaceimagedatabaseforbenchmarkingofautomaticfacedetectionalgorithms.InEURASIPConferencefocusedonVideo/ImageProcessingandMultimediaCommunications,volume1,pages423–428vol.1,July2003. 1 [24] K.-K.SungandT.Poggio.Example-basedlearningforview-basedhumanfacedetection.IEEETransactionsonPatternAnalysisandMachineIntelligence,20(1):39–51,1998. 1 , 2 [25] http://mplab.ucsd.edu .TheMPLabGENKIDatabase,GENKI-4KSubset. 1 [26] P.A.ViolaandM.J.Jones.Robustreal-timefacedetec-tion.InternationalJournalofComputerVision,57(2):137–154,May2004. 2 , 7 [27] P.WangandQ.Ji.Multi-viewfaceandeyedetectionusingdiscriminantfeatures.ComputerVisionandImageUnder-standing,105(2):99–111,2007. 2 [28] M.-H.Yang,D.J.Kriegman,andN.Ahuja.Detectingfacesinimages:Asurvey.IEEETransactionsonPatternAnalysisandMachineIntelligence,24(1):34–58,2002. 1 , 2 [29] D.-Q.ZhangandS.-F.Chang.Detectingimagenear-duplicatebystochasticattributedrelationalgraphmatchingwithlearning.InACMInternationalConferenceonMulti-media,pages877–884,2004. 3 A.Guidelinesforannotatingfacesusingel-lipsesToensureconsistencyacrossmultiplehumanannotators,wedevelopedasetofinstructions(showninFigure 11 ).Theseinstructionsspecifyhowtousefaciallandmarkstotanellipsedependingontheposeofthehead.Figure 12 presentsanillustrationoftheresultingellipsesonlinedraw-ingsofahumanhead.Theannotatorswerefutherinstructedtofollowacombinationoftheseguidelinestotellipsestofaceswithcomplexheadposes.TheillustrationsshowninFigure 12 usefaceswithneu-tralexpressions.Apresenceofsomeexpressionssuchaslaughter,oftenchangestheshapeofthefacesignicantly.Moreover,evenbearinganeutralexpression,somefaceshaveshapesmarkedlydifferentfromtheaveragefaceshapeusedintheseillustrations.Suchfaces(e.g.,faceswithsquare-jawordouble-chin)aredifculttoapproximateus-ingellipses.Toannotatefaceswithsuchcomplexities,theannotatorswereinstructedtorefertothefollowingguide-lines:  Facialexpression.Sincethedistancefromtheeyestothechininafacewithfacialexpressionisnotnecessar-ilyequaltothedistancebetweentheeyesandthetopofthehead(anassumptionmadefortheidealhead),theeyesdonotneedtobealignedtotheminoraxisforthisface.  Double-chin.Forfaceswithadoublechin,theaver-ageofthetwochinsisconsideredasthelowestpointoftheface,andismatchedtothebottomextremeofthemajoraxisoftheellipse.  Squarejaw.Forafacewithasquarejaw,theel-lipsetracestheboundarybetweenthefaceandtheears,whilesomepartofthejawsmaybeexcludedfromtheellipse. 9 Figure11.Procedurefordrawingellipsesaroundanaveragefaceregion.Theannotatorswereinstructedtofollowthisowcharttodrawellipsesaroundthefaceregions.Theannotationstepsarealittledifferentfordifferentposes.Here,wepresentthestepsforthreecanonicalposes:frontal,proleandtiltedback/front.Theannotatorswereinstructedtouseacombinationofthesestepsforlabelingfaceswithderived,intermediateheadposes.Forinstance,tolabelaheadfacingslightlytowardsitsrightandtitledback,acombinationofthestepscorrespondingtotheproleandtilted-backposesareused. Figure12.Illustrationsofellipselabelingonlinedrawingsofhumanhead.Theblackcurvesshowtheboundariesofahumanheadinfrontal(left),prole(center),andtilted-back(right)poses.TheredellipsesillustratethedesiredannotationsaspertheprocedureshowninFigure 11 .Notethattheseheadshapesareapproximationstoanaveragehumanhead,andtheshapeofanactualhumanheadmaydeviatefromthismeanshape.Theshapeofahumanheadmayalsobeaffectedbythepresenceoffactorssuchasemotions.TheguidelinesonannotatingfaceregionsinuencedbythesefactorsarespeciedinAppendix A .  Hair.Ignorethehairandttheellipsearoundthehy-potheticalbaldhead.  Occlusion.Hypothesizethefullfacebehindtheoc-cludingobject,andmatchallofthevisiblefeatures. 10

By: natalia-silvester
Views: 112
Type: Public

Download Section


Download Pdf - The PPT/PDF document "FDDB A Benchmark for Face Detection in U..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

View more...

If you wait a while, download link will show on top.Please download the presentation after loading the download link.

FDDB A Benchmark for Face Detection in Unconstrained Settings Vidit Jain Univers - Description


umassedu Erik LearnedMiller University of Massachusetts Amherst Amherst MA 01003 elmcsumassedu Abstract Despite the maturity of face detection research it re mains dif64257cult to compare different algorithms for face de tection This is partly due to ID: 2508 Download Pdf

Related Documents