PPT-In Defense of Sparse Tracking: Circulant Sparse Tracker
Author : natalia-silvester | Published Date : 2017-07-24
Tianzhu Zhang 12 Adel Bibi 1 Bernard Ghanem 1 1 2 Circulant Primal Formulation 3 Dual Formulation Fourier Domain Time Domain Here the inverse Fourier transform
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "In Defense of Sparse Tracking: Circulan..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
In Defense of Sparse Tracking: Circulant Sparse Tracker: Transcript
Tianzhu Zhang 12 Adel Bibi 1 Bernard Ghanem 1 1 2 Circulant Primal Formulation 3 Dual Formulation Fourier Domain Time Domain Here the inverse Fourier transform is for each . Such matrices has several attractive properties they support algorithms with low computational complexity and make it easy to perform in cremental updates to signals We discuss applications to several areas including compressive sensing data stream Aswin C Sankaranarayanan. Rice University. Richard G. . Baraniuk. Andrew E. Waters. Background subtraction in surveillance videos. s. tatic camera with foreground objects. r. ank 1 . background. s. parse. From Theory to Practice . Dina . Katabi. O. . Abari. , E. . Adalsteinsson. , A. Adam, F. . adib. , . A. . Agarwal. , . O. C. . Andronesi. , . Arvind. , A. . Chandrakasan. , F. Durand, E. . Hamed. , H. . Raja . Giryes. ICASSP 2011. Volkan. Cevher. Agenda. The sparse approximation problem. Algorithms and pre-run guarantees. Online performance guarantees. Performance bound. Parameter selection. 2. Sparse approximation. to Multiple Correspondence . Analysis. G. Saporta. 1. , . A. . . Bernard. 1,2. , . C. . . Guinot. 2,3. 1 . CNAM, Paris, France. 2 . CE.R.I.E.S., Neuilly sur Seine, France. 3 . Université. . François Rabelais. Full storage:. . 2-dimensional array.. (nrows*ncols) memory.. 31. 0. 53. 0. 59. 0. 41. 26. 0. 31. 41. 59. 26. 53. 1. 3. 2. 3. 1. Sparse storage:. . Compressed storage by columns . (CSC).. Three 1-dimensional arrays.. Recovery. . (. Using . Sparse. . Matrices). Piotr. . Indyk. MIT. Heavy Hitters. Also called frequent elements and elephants. Define. HH. p. φ. . (. x. ) = { . i. : |x. i. | ≥ . φ. ||. x||. p. onto convex sets. Volkan. Cevher. Laboratory. for Information . . and Inference Systems – . LIONS / EPFL. http://lions.epfl.ch . . joint work with . Stephen Becker. Anastasios. . Kyrillidis. ISMP’12. to Multiple Correspondence . Analysis. G. Saporta. 1. , . A. . . Bernard. 1,2. , . C. . . Guinot. 2,3. 1 . CNAM, Paris, France. 2 . CE.R.I.E.S., Neuilly sur Seine, France. 3 . Université. . François Rabelais. KH Wong. mean transform v.5a. 1. Introduction. What is object tracking. Track an object in a video, the user gives an initial bounding box. Find the bounding box that cover the target pattern in every frame of the video. Author: . Vikas. . Sindhwani. and . Amol. . Ghoting. Presenter: . Jinze. Li. Problem Introduction. we are given a collection of N data points or signals in a high-dimensional space R. D. : xi ∈ . Yi Ma. 1,2. . Allen Yang. 3. John . Wright. 1. CVPR Tutorial, June 20, 2009. 1. Microsoft Research Asia. 3. University of California Berkeley. 2. University of Illinois . at Urbana-Champaign. Dina . Katabi. O. . Abari. , E. . Adalsteinsson. , A. Adam, F. . adib. , . A. . Agarwal. , . O. C. . Andronesi. , . Arvind. , A. . Chandrakasan. , F. Durand, E. . Hamed. , H. . Hassanieh. , P. . Indyk. Parallelization of Sparse Coding & Dictionary Learning Univeristy of Colorado Denver Parallel Distributed System Fall 2016 Huynh Manh 11/15/2016 1 Contents Introduction to Sparse Coding Applications of Sparse Representation
Download Document
Here is the link to download the presentation.
"In Defense of Sparse Tracking: Circulant Sparse Tracker"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents