/
J.RauchMath555Fall2009ConformalMatricesAbstractWeanalysetheellipticali J.RauchMath555Fall2009ConformalMatricesAbstractWeanalysetheellipticali

J.RauchMath555Fall2009ConformalMatricesAbstractWeanalysetheellipticali - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
372 views
Uploaded On 2016-08-15

J.RauchMath555Fall2009ConformalMatricesAbstractWeanalysetheellipticali - PPT Presentation

De nition22ThematricessatisfyingtheseequivalentconditionsarecalledorthogonalProofItsucestoprove123112Recallthealgebraicidentityforrealnumbersxandyxyxy2xy24Expandingasinel ID: 447620

De nition2.2.Thematricessatisfyingtheseequivalentconditionsarecalledorthogonal.Proof.Itsucestoprove1:)2:)3:)1:(1:)2:)Recallthealgebraicidentityforrealnumbersxandy xy=(x+y)2(xy)2=4:Expandingasinel

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "J.RauchMath555Fall2009ConformalMatricesA..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

J.RauchMath555Fall2009ConformalMatricesAbstractWeanalysetheellipticalimageofspheresbylineartransfor-mations.Wecharacterizethosetransformationswhichpreservelengths(orthogonalmatrices)andthosethatmapspherestospheres(conformalmatrices).TheJacobianmatricesofanalyticfunctionsareconformalandorientationpreservingwherevertheyareinvertible.1Transposes.DenotethestandardscalarproductofvectorsinRnbyhx;yi=Xxiyi:SupposethatAijisannnrealmatrix.ThetransposeAtofAisde nedby(At)ij:=Aji:ThematrixofthetransposeisthematrixofA\rippedinthediagonal.Example1.1.1234t=1324:Proposition1.2.Forallvectorsxandy,nnmatricesAandB,andrealnumbers ,i.(A+B)t=At+Bt,ii.( A)t= At,iii.(AB)t=BtAt,iv.hAx;yi=hx;Atyi.2Lengthpreservinglineartransformations.Theorem2.1.IfAisarealnnmatrixthenthefollowingareequivalent.1.Forallx,kAxk=kxk.2.Forallx;y,hAx;Ayi=hx;yi.3.AisinvertibleandAt=A1.1 De nition2.2.Thematricessatisfyingtheseequivalentconditionsarecalledorthogonal.Proof.Itsucestoprove1:)2:)3:)1:(1:)2:)Recallthealgebraicidentityforrealnumbersxandy,xy=(x+y)2(xy)2=4:Expandingasinelementaryalgebrashowsthathx+y;x+yi=hx;x+i+hy;x+yi=hx;xi+hx;yi+hy;xi+hy;yi=hx;xi+2hx;yi+hy;yi;thelastusingthesymmetry.Similarlyhxy;xyi=hx;xihx;yihy;xi+hy;yi=hx;xi2hx;yi+hy;yi;Subtractingprovesthepolarizationidentity,hx;yi=hx+y;x+yihxy;xyi=4:Propertyi.impliesthattherighthandsideisequaltohA(x+y);A(x+y)ihA(xy);A(xy)i 4:Simplifyingthenusingthepolarizationidentityagainyields,hAx+Ay;Ax+AyihAxAy;AxAyi 4=hAx;Ayi:Thiscompletestheproofthathx;yi=hAx;Ayi.(2)3).Using2andPropoition1.2.iv.showsthathx;yi=hAx;Ayi=hAtAx;yi:Thisshowsthatforallx,y,h(AtAI)x;yi=0:Foreachxthisshowsthat(AtAI)xisorthogonaltoallysomustvanish.Theidentity(AtAI)x=0forallxisequivalenttoAt=A1.(3)1)Compute,hAx;Axi=hAtAx;xi=hx;xiwherethelastequalityuses3.Thisproves1. 2 3Positivesymmetricmatrices.De nition3.1.AsymmetricrealmatrixRisoneforwhichRij=Rjiforalli;j.ItisafundamentalfactthatforeverysuchmatrixthereisarealorthogonalOsothatO1ROisadiagonalrealmatrixO1RO=diag1;:::;n :(3.1)Ife1;e2;:::;enisthestandardorthonormalbasisforRnthenOe1;Oe2;:::;OenisaneworthonormalbasisconsistingofeigenvectorsofRwitheigenvaluesj.De nition3.2.AsymmetricrealRispositivewhenallthejarestrictlypositive.TheimagebyapositivesymmetricRoftheballofradius1centeredattheoriginisanndimensionalellipsoidwithaxesoflength2jinthedirectionsoftheeigenvectorsOej.De nition3.3.ForapositivesymmetricRasin(3.1)thesquarerootp Risde nedasp R:=Odiagp 1;:::;p n O1:Thesquarerootissymmetric,positiveandsatis es(p R)2=R.Proof.LetD:=diagp 1;:::;p n .Computep Rt=ODO1t=(O1)tDtOt=ODO1=p R;thelastusingthefactthatOt=O1andD=Dt.Forthesquarecompute(ODO1)2=ODO1ODO1=OD2O1:ThatthisisequaltoRfollowsfromthede nitionofDand(3.1). Itisnothardtoshowthatthereisonlyonesuchpositivesquarerootsothede nitionisindependentofthechoiceofO.1 1IfAisamatrixwithA2=R,thenAR=RA=A3soAcommuteswithR.Ifinaddition,Aissymmetricthenthereisapossiblydi erentorthogonalOwhichsimultane-ouslydiagonalizesAandR.ThereforebothAandRareoftheformO(diagonal)O1.Toproveuniquenessitsucestoshowthatapositivediagonalmatrixhasauniquepositivediagonalsquareroot.Thatiseasy.3 4Polardecomposition.IfMisinvertiblethenMMtissymmetricsince(MMt)t=(Mt)tMt=MMt:Forx=0,hMMtx;xi=hMtx;Mtxi=kMtxk2�0:ThefactthattheseexpressionsareallpositiveisequivalenttothepositivityofthematrixMMt.Theorem4.1.IfMisaninvertiblennmatrixthenthereareuniquelydeterminedpositivesymmetricRandorthogonalOsothatM=RO.OnehasR=p MMt;andO=(p MMt)1M:(4.1)Thisiscalledthepolardecompositionofthematrix.Proof.IfM=ROwithpositiveRandorthogonalO,thenMMt=RO(RO)t=ROOtRt=R2;thelaststepbecauseOOt=IandR=Rt.Thus(4.1)istheonlypossiblepolardecomposition.Itremainstoprovethatthisuniquelydeterminedrepresentationsatis estheconditions.ItsucestoverifythatthematrixO:=p MMt1Misorthogonal,thatisOtO=I.Compute,OtO=(p MMt1M)tR1M=Mtp MMt1p MMt1M:Nextusetheeasilyprovedfactthattheinverseofthesquarerootisthesquarerootoftheinverse,sop MMt1p MMt1=p (MMt)1p (MMt)1=(MMt)1=(Mt)1M1:Insertingthisintheprecedingidentityyields,OtO=Mt(Mt)1M1M=I;completingtheproof. Thepolarrepresentationallowsonetodescribepreciselytheimagesofspheresandballsbylineartransformations.4 Corollary4.2.i.IfMisaninvertiblematrixthentheimagebyMoftheunitsphereisanellipsewhoseprincipalaxeshavelength2jwherethejaretheeigenvaluesofRinthepolardecompositionM=RO.Thedirectionoftheaxesarethecorrespondingeigendirections.ii.TheimageisasphereifanonlyifR=cIwithc�0ifandonlyifMtM=c2I.Proof.i.SinceOisorthogonalitmapstheunitspheretoitself.ThenRmapsittotheellipsewithaxesoneigendirectionsofRwithlength2j.ii.Theimageisasphereifandonlyifthejareallequal.Callthecommonvaluec.ThenR=cI.SquaringthisidentityshowsthatitisequivalenttoMMt=c2I. De nition4.3.Matricessatisfyingtheequivalentconditionsofii.arecalledconformal.Problem.FortheJacobiancomputedinclassJ=2121;determinewhetheritmapscirclestocirclesortononcircularellipses.Solution.ComputeJJt=21212211=5335:Sincethisisnotamultipleoftheidentity,Jmapscirclestononcircularellipses.Sothenonlinearmap,mapssmallcirclesabout(1;1)tosmallnoncircularellipses.TheeigendirectionsofJJtgivetheaxesoftheellipses.Thisexampleshowsthatusingtheresultsofthishandoutisveryeasy!Problem.Determineallconformal22matrices.Solution.WritethematrixasM=abcd:ItisconformalexactlywhenMMtisamultipleoftheidentity.ComputeMMt=abcdacbd=a2+b2ac+bdac+bdc2+d2:5 Thematrixisinvertibleandconformalifandonlyifac+bd=0;a2+b2=c2+d2:The rstconditionassertsthat(c;d)?(a;b).Since(a;b)isnonzerobyinvertibility,thisholdsifandonlyif(c;d)isamultipleof(b;a).Thesecondconditionassertsthattheyhavethesamelength.Therefore(c;d)=(b;a)andthegeneralsolutionisabba;a2+b2�0:(4.2)Example4.4.Ifb=0anda�0theconformalmatricesarea00a:The rstisatimestheidentity.Thesecondatimesre\rectioninthey-axis.Theybothmapcirclestocircles.Thesecondreversesorientation.Theorem4.5.IfMislinearandinvertiblefromR2toitselfthenthefol-lowingareequivalent.1.Misconformalandorientationpreserving.2.Thereisanonzerocomplexnumber + isothatthetheimagebyMofx+iyisequalto( +i )(x+iy).TheonlylinearconformalorientationpreservingmapsofR2toitselfaregivenbymultiplicationbycomplexnumbers.Proof.Thedeterminantofthematrix(4.2)isequalto(a2+b2).Sothetransformationisorientationpreservingexactlywhenthedeterminantispositivewhichisthecase(c;d)=(b;a).Thus,themostgeneralorientationpreservinginvertibleconformaltransformationisabba;a2+b2�0:(4.3)Expanding( +i )(x+iy)=( x y)+i( x+ y)showsthatthematrixofthelineartranfsormationx+iy7!( +i )(x+iy)isequalto(4.3)when =aand =b.Thisprovestheresult. 6

Related Contents


Next Show more