/
MODULI OF  DIVISIBLE GROUPS MODULI OF  DIVISIBLE GROUPS

MODULI OF DIVISIBLE GROUPS - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
378 views
Uploaded On 2017-04-27

MODULI OF DIVISIBLE GROUPS - PPT Presentation

MODULIOFpDIVISIBLEGROUPS3withrespecttomultiplicationbypThenGisafunctorfromRalgebrastoQpvectorspaceswhichwecalltheuniversalcoverofGAnimportantobservationisthatifSRisasurjectionwithnilpotentkern ID: 340093

MODULIOFp-DIVISIBLEGROUPS3withrespecttomultiplicationbyp).Then~GisafunctorfromR-algebrastoQp-vectorspaceswhichwecalltheuniversalcoverofG.AnimportantobservationisthatifS!Risasurjectionwithnilpotentkern

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "MODULI OF DIVISIBLE GROUPS" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2MODULIOFP-DIVISIBLEGROUPSReferences601.IntroductionInthisarticleweproveseveralresultsaboutp-divisiblegroupsandtheirmoduli.Ourworktouchesuponvariousthemesknowntoariseinthecontextofp-divisiblegroups,includingthecrystallineDieudonnemodule([Mes72],[BBM82]),therigid-analyticmodulispacesofRapoport-Zinkandtheirassociatedperiodmaps([RZ96]),andthemorerecentworkofFarguesandFontaineonthefundamentalcurveofp-adicHodgetheory([FF11]).Thetheoryofperfectoidspaces([Sch12])arisesrepeatedlyinourconstructionsandarguments,andinparticularitprovidestheappropriatecontextforstudyingRapoport-Zinkspacesatin nitelevel.Our rstresultconcernsthefullfaithfulnessofthecrystallineDieudonnemodulefunctor.GivenaringRinwhichpisnilpotent,andap-divisiblegroupGoverR,letM(G)denoteits(covariant)Dieudonnecrystal,asde nedin[Mes72].ThequestionofthefullfaithfulnessofMhasalonghistory(see[dJM99]forasurvey),andisknowntohaveanarmativeanswerinanumberofsituations,forinstancewhenRisanexcellentringincharacteristicpwhichisalocallycompleteintersectionring(loc.cit.).Incontrast,ourresultappliestoringsincharacteristicpwhicharetypicallynon-noetherian.WesayaringRincharacteristicpissemiperfectiftheFrobeniusmap:R!Rissurjective.Sucharingiscalledf-semiperfectifthetopologicalringlim �Rhasa nitelygeneratedidealofde nition.Forinstance,thequotientofaperfectringbya nitelygeneratedidealisf-semiperfect.AnimportantexampleisOC=p,whereCisanyalgebraicallyclosedextensionofQp.TheoremA.LetRbeanf-semiperfectring.ThentheDieudonnemodulefunctoronp-divisiblegroupsuptoisogenyisfullyfaithful.IfmoreoverRisthequotientR=S=JofaperfectringSbyaregularidealJS,thentheDieudonnemodulefunctoronp-divisiblegroupsisfullyfaithful.Remark1.0.1.Inthiscase,aDieudonnemodulecanbemadeveryexplicit:Ingeneral,ifRisasemiperfectring,wehavetheFontaineringsAcris(R)andB+cris(R),andthefunctorM7!M=M(Acris(R))(resp.M7!M=M(Acris(R))[p�1])inducesanequivalenceofcategoriesbetweenthecategoryofDieudonnecrystalsoverR(resp.,uptoisogeny)andthecategoryof niteprojectiveAcris(R)(resp.B+cris(R))-modulesequippedwithFrobeniusandVerschiebungmaps.Weremarkthatthecaseofperfect eldsisclassical,andthatthecaseofperfectringsisanunpublishedresultduetoGabber,relyingonaresultofBerthelotforthecaseofperfectvaluationrings,[Ber80].Recently,thiswasreprovedbyLau,[Lau13].Inalloftheseresults,oneknowseventhattheDieudonnemodulefunctorisessentiallysurjective,andonealsohasadescriptionof nitelocallyfreegroupschemes.Ourmethodofproofisentirelydi erent.Ithandles rstthecaseofmorphismsQp=Zp!p1byanexplicitcomputationinvolvingintegralityoftheArtin-Hasseexponential,andreducestothiscasebyatrickwelearnedfromapaperofdeJongandMessing,[dJM99].Wenotethatthisreductionsteponlyworksformorphismsofp-divisiblegroups(andnotfor nitelocallyfreegroupschemes),andevenifoneisonlyinterestedintheresultforperfectrings,thisreductionstepwillintroduceratherarbitraryf-semiperfectrings.Inthisreductionstep,acertaintechnicalresultisnecessary,forwhichwegiveaproofthatreliesonFaltings'salmostpuritytheoremintheformgivenin[Sch12].Asexplainedbelow,TheoremAhasdirectconsequencesinp-adicHodgetheory,sothatthisstateofa airsmaybereasonable.OfparticularinterestarethemorphismsQp=Zp!G.ObservethatifSisanyR-algebra,thentheQp-vectorspaceHomS(Qp=Zp;G)[1=p]isidenti edwiththeinverselimit~G(S)=lim �G(S)(taken MODULIOFp-DIVISIBLEGROUPS3withrespecttomultiplicationbyp).Then~GisafunctorfromR-algebrastoQp-vectorspaceswhichwecalltheuniversalcoverofG.AnimportantobservationisthatifS!Risasurjectionwithnilpotentkernel,andifGSisaliftofGtoS,then~GS(S)iscanonicallyisomorphicto~G(R)(andsodoesnotdependonthechoiceofGS).Inotherwords,~Gisacrystalonthein nitesimalsiteofR.Usingthisconstruction,wecanexplainhowTheoremAiscloselyrelatedtop-adicHodgetheory.Infact,takeR=OC=p,whereCisanalgebraicallyclosedcompleteextensionofQp,andletGbeanyp-divisiblegroupoverOC,withreductionG0toOC=p.LetM(G)bethe niteprojectiveB+cris-modulegivenbyevaluatingtheDieudonnecrystalofGonAcris=Acris(OC=p),andinvertingp.Then,usingTheoremAformorphismsQp=Zp!G0uptoisogeny,one ndsthatM(G)'=p=Hom(Qp=Zp;G0)[p�1]=~G(OC=p)=~G(OC):Ontheotherhand,thereisanexactsequence(1.0.1)0!T(G)[p�1]!~G(OC)!LieG C!0;wherethelattermapisthelogarithmmap,andT(G)denotestheTatemoduleofG.Thistranslatesintotheexactsequence0!T(G)[p�1]!M(G)'=p!LieG C!0relatingtheetaleandcrystallinehomologyofG.WeremarkthatTheoremAalsohandlestherelativecaseofthisresult,andalsotheintegralversion.Oursecondmainresultisaclassi cationofp-divisiblegroupsoverOC,whereCisstillanalgebraicallyclosedcompleteextensionofQp.WerecallthatonehasaHodge-Tatesequence0!LieG C(1)!T(G) C!(LieG_)_ C!0;where(1)denotesaTatetwist.TheoremB.Thereisanequivalenceofcategoriesbetweenthecategoryofp-divisiblegroupsoverOCandthecategoryoffreeZp-modulesTof niteranktogetherwithaC-subvectorspaceWofT C(�1).TheequivalencecarriesGtothepair(T;W),whereTistheTatemoduleofGandW=LieG C.Inparticular,theresultisaclassi cationintermsoflinearalgebra,insteadof-linearalgebraasusually,and(relatedtothat)isintermsofitsetalecohomology,insteadintermsofitscrystallinecohomology.WenotethatTheoremBcanberegardedasap-adicanalogueofRiemann'sclassi cationofcomplexabelianvarieties,whichareclassi edbytheirsingularhomologytogetherwiththeHodge ltration.ResultsinthedirectionofTheoremBhavepreviouslybeenobtainedbyFarguesin[Far12].Inparticular,thefullyfaithfulnesspartisprovedalreadythere.Weproveessentialsurjectivity rstinthecasethatCissphericallycomplete,withsurjectivenormmapC!R0.Inthatcase,theargumentisverydirect;thekeyideaistolook rstattherigid-analyticgeneric breofthe(connected,say)p-divisiblegroup(consideredasaformalscheme),whichisanopenballandcanbeconstructeddirectlyfrom(T;W).Fortheconverse,onehastoseethatacertainrigid-analyticvarietyisanopenball.Ingeneral,onecanshowthatitisanincreasingunionofclosedballs;undertheassumptionsonC,onecanconcludethatitisanopenball.Afterwards,wemakea(somewhatindirect)descentargumentinvolvingRapoport-Zinkspaces(andTheoremC)todeducethegeneralcase.ItwillbecrucialtorelatetheexactsequenceinEq.(1.0.1)tovectorbundlesontheFargues-FontainecurveX,whichistheobjectinvestigatedin[FF11].Thisisde nedasX=ProjP,wherePisthegradedQp-algebraP=Md0(B+cris)'=pd; 4MODULIOFP-DIVISIBLEGROUPSandB+cris=B+cris(OC=p).Thereisaspecialpoint12Xcorrespondingtothehomomorphism:B+cris!C;wewritei1:f1g!Xfortheinclusion.ForeveryisocrystalMoverFp,thereisacorrespondingvectorbundleonOC,givenbythevectorbundleassociatedtoLd0(M B+cris)'=pd,andFarguesandFontaineshowthatallthevectorbundlesonXariseinthisway.InparticularthereisabijectionH7!E(H)betweenisogenyclassesofp-divisiblegroupsoverFpandvectorbundlesonXwhoseslopesarebetween0and1.Notethati1E(H)=M(H) C.Usingthisclassi cationofvectorbundles,weshowinTheorem5.1.4thateveryp-divisiblegroupGoverOCisisotrivialinthesensethatthereexistsap-divisiblegroupHoverFpandaquasi-isogeny:H FpOC=p!G OCOC=p:Thus(G;)isadeformationofHinthesenseofRapoport-Zink.AppealingtoTheoremA,wecanidentify~G(OC)=~H(OC=p)=(M(H) B+cris)'=pwiththespaceofglobalsectionsofE=E(H).TheexactsequenceinEq.(1.0.1)appearswhenonetakesglobalsectionsintheexactsequenceofcoherentsheavesonX,(1.0.2)0!F!E!i1(LieG C)!0;whereF=T ZpOX,seeProposition5.1.6.Tosummarizethesituation,ap-divisiblegroupHgivesavectorbundleEonX,whileadeformationofHtoOCgivesamodi cationofE(inthesensethatFandEareisomorphicawayfrom1).WeshouldnotethatvectorbundlesoverXareequivalentto'-modulesovertheRobbaring,andthatouruseofXcouldbereplacedbyKedlaya'stheoryof'-modulesovertheRobbaring,[Ked04].WenowturntoRapoport-Zinkspacesandtheirassociatedperiodmaps,asin[RZ96].LetHbeap-divisiblegroupofdimensiondandheighthoveraperfect eldkofcharacteristicp.LetMbetheassociatedRapoport-Zinkspace.Thisisaformalschemeparametrizingdeformations(G;)ofH,seeDe nition6.1.1.Passingtothegeneric bre,wegetanadicspaceMad.Notethat[RZ96]usesrigidspaces,butweworkwithadicspaces,asitisimportantforustoconsidernon-classicalpoints(inparticulartotalkabouttheimageoftheperiodmorphismlater).1Weremarkthatif(R;R+)isacompleteanoid(W(k)[1=p];W(k))-algebra,thenamorphismSpa(R;R+)!MadcorrespondstoacoveringofSpa(R;R+)byopenanoidsSpa(Ri;R+i),togetherwithadeformation(Gi;i)ofHtoanopenboundedsubringofeachR+i.Wewillsimplyrefertosuchadatumasapair(G;).If(K;K+)isananoid eld,thenMad(K;K+)isthesetofdeformationsofHtoK+.Thereisa(Grothendieck-Messing)periodmorphism:Mad!F`,whereMadistheadicgeneric breofMandF`istheGrassmannianvarietyofd-dimensionalquotientsofM(H) Qp(consideredasanadicspace).Ifxisa(C;OC)-pointofMadcorrespondingtoadeformation(G;)ofHtoOC,then(x)2F`(C;OC)correspondstothequotientM(H) C!WgivenbyGrothendieck-Messingtheory.Ourthirdmaintheoremprovidesadescriptionoftheimageof.A(C;OC)-valuedpointxofF`correspondstoad-dimensionalquotientM(H) C!W.LetE=E(H)bethevectorbundleoverXassociatedtoH,sothati1E=M(H) C.Themapi1E!WinducesamapE!i1i1E!i1W.LetFbethekernel,sothatwehaveamodi cationofEasinEq.(1.0.2).TheoremC.ThepointxisintheimageofifandonlyifF=OhX.Inordertoprovethistheorem,itisenoughtoconsiderthecasewhereCissphericallycompleteandthenormmapC!R0issurjective.Inthatcase,TheoremBisavailabletoconstructthedesiredp-divisiblegroupG.TheconstructionoftheisogenyoverOC=preliesonTheoremA.On 1Asinourpreviouswork,wepreferadicspacesoverBerkovichspaces. 6MODULIOFP-DIVISIBLEGROUPSNotethatanypoint(G;; )ofM1givesamapZhp!T(G)ad~Gad=~Had;wherethe rstmapis ,andtheisomorphismisinducedfrom.Inotherwords,allp-divisiblegroupsGparametrizedbyMhavethesameuniversalcover~H,andareoftheform~H=,where~HisaZp-lattice.Thefollowingtheoremanswersthequestionforwhich~Honecanformthequotient~H=.Thedescriptionusesthequasi-logarithmmapqlog:~Had!M(H) Ga.Weremarkthatforanydeformation(G;)ofH,wehaveacommutativediagram~Hadqlog//  M(H) Ga Gadlog// LieG GaInparticular,=ker(~Had!Gad)mapstothekernelofM(H)!LieG,whichexplainstheconditionontherankinthefollowingtheorem.TheoremD.ThemoduliproblemM1isrepresentablebyanadicspace,anditisisomorphictothefunctorwhichassignstoacompleteanoid(W(k)[1=p];W(k))-algebra(R;R+)thesetofh-tupless1;:::;sh2~Had(R;R+)forwhichthefollowingconditionsaresatis ed.(i)ThecokernelWofthemapRh(qlog(s1);:::;qlog(sh))�������������!M(H) RisaprojectiveR-moduleofrankd.(ii)Forallgeometricpointsx=Spa(C;OC)!Spa(R;R+),thesequence0!Qhp(s1;:::;sh)������!~Had(C;OC)!W RC!0isexact.Moreover,M1(~Had)hisalocallyclosedsubspace,thespaceM1ispreperfectoid,andM1lim �nMn.ThefactthatwecandescribeM1explicitlyindependentlyofp-divisiblegroupsreliesonTheoremC.3Thelastpartofthetheoremsaysmoreexplicitlythatforanyperfectoid eldextensionKofW(k)[p�1],thebase-changeM1;KofM1toSpa(K;OK)hasanaturalcompletion^M1;K,whichisaperfectoidspaceoverK,andonehasanequivalenceofetaletopoi^M1;K;etlim �nMn;K;et(atleastafterbase-changetoaquasicompactopensubsetofsomeMn;K,soastoworkwithqcqstopoi,whereprojectivelimitsarewell-de ned).Weremarkthattakinginverselimitsinthecategoryofadicspacesisnotcanonical,correspondingtothephenomenonthatonadirectlimitlim�!AiofBanachalgebrasAi,onecanputinequivalentnorms(whichareequivalentwhenrestrictedtoanindividualAi,butinequivalentinthedirectlimit).ThespaceM1hasanicemodulidescription,butitisnotcleartowhichnormonlim�!Aiitcorresponds.Ontheotherhand,^M1;Kischaracterizedasgivinglim�!Aithenormmakinglim�!Aithenorm-1-subalgebra,whereAiAiisthesetofpower-boundedelements.(Thiscorrespondstotheweakestpossibletopologyonlim�!Ai.)In[Fal10], 3WenotethatusingTheoremA,onecanmakeexplicitwhat~Had(R;R+)isintermsofDieudonnetheory,atleastwhen(R;R+)isaperfectoidanoid(K;OK)-algebraforsomeperfectoid eldK.ThisgivesadescriptionofM1purelyintermsofp-adicHodgetheory. MODULIOFp-DIVISIBLEGROUPS9isbounded.WriteAforthesubringofpower-boundedelementsinA.Also,wedenotebyAAtheidealoftopologicallynilpotentelements.Finally,ananoidringisapair(A;A+),withAanf-adicringandA+AanopensubringwhichisintegrallyclosedandcontainedinA.Morphismsbetweenanoidrings(A;A+)and(B;B+)arecontinuousringhomomorphismsA!BsendingA+intoB+.Forinstance,ifaringAisgiventhediscretetopologythenAisbothadic(0servesasanidealofde nition)andf-adic,and(A;A)isananoidring.Foralesstrivialexample,letKbeacompletenonarchimedean eldwithringofintegersOKandmaximalidealmK.ThenOKisanadicringand(K;OK)isananoidring.TheintegralTatealgebraA+=OKhXiii2Iinanynumberofvariablesisanadicring.If$2mK,then$A+servesasanidealofde nitionforA+,sothatA+isf-adic.TheTatealgebraA=KhXiii2I=A+[$�1]isanf-adicringbecauseitcontainsA+asanopensubring.InthiscasewehaveA=A+,sothat(A;A+)isananoidring.Itshouldbenotedthat(A+;A+)isananoidringaswell.WenotethatitisnotalwaysthecasethatA+Aisbounded.Examplesarisebytakingnonreducedringsappearinginrigid-analyticgeometry,suchasA=K[X]=X2,inwhichcaseonecanchooseA+=A=OK+KX.De nition2.1.2.LetAbeatopologicalring.AcontinuousvaluationofAisamultiplicativemapjjfromAto�[f0g,where�isalinearlyorderedabeliangroup(writtenmultiplicatively)suchthatj0j=0,j1j=1,jx+yjmax(jxj;jyj),andforall 2�,thesetfx2A:jxj gisopen.Twovaluationsjji:A!�i[f0g(i=1;2)areequivalentiftherearesubgroups�0i�icontainingtheimageofjjifori=1;2andanisomorphismoforderedgroups:�01!�02forwhich(jfj1)=jfj2,allf2A.De nition2.1.3.Let(A;A+)beananoidring.TheadicspectrumX=Spatop(A;A+)isthesetofequivalenceclassesofcontinuousvaluationsonAwhichsatisfyjA+j1.Forx2Xandf2A,wewritejf(x)jfortheimageoffunderthecontinuousvaluationjjcorrespondingtox.Letf1;:::;fn2Abeelementssuchthat(f1;:::;fn)AisopeninA,andletg2A.De nethesubsetXf1;:::;fn;gbyXf1;:::;fn;g=x2X jfi(x)jjg(x)j6=0;i=1;:::;nFiniteintersectionsofsuchsubsetsarecalledrational.WegiveXthetopologygeneratedbyitsrationalsubsets.Asanexample,ifKisanonarchimedean eld,thenSpatop(K;OK)consistsofasingleequivalenceclassofcontinuousvaluations,namelythevaluationwhichde nesthetopologyonK.ThespaceSpatop(OK;OK)isatraitcontainingandaspecialpointsde nedbyjf(s)j=(1;f62mK0;f2mK:Foranyanoidring(A;A+),Huberde nesapresheafofcompletetopologicalringsOXonX=Spatop(A;A+),togetherwithasubpresheafO+X.Theyhavethefollowinguniversalproperty.De nition2.1.4.Let(A;A+)beananoidring,X=Spatop(A;A+),andUXbearationalsub-set.Thenthereisacompleteanoidring(OX(U);O+X(U))withamap(A;A+)!(OX(U);O+X(U))suchthatSpatop(OX(U);O+X(U))!Spatop(A;A+) MODULIOFp-DIVISIBLEGROUPS11ThecategoryofadicspacesisdenotedAdic.Welistsome rstproperties.Proposition2.1.6.(i)Let(A;A+),(B;B+)beanoidrings,andassumethat(A;A+)issheafyandcomplete.ThenHom(Spa(A;A+);Spa(B;B+))=Hom((B;B+);(A;A+)):Inparticular,thefunctor(A;A+)7!Spa(A;A+)isfullyfaithfulonthefullsubcategoryofsheafycompleteanoidrings.(ii)Thefunctor(A;A+)7!Spanaive(A;A+)factorsover(A;A+)7!Spa(A;A+).(iii)ThefunctorSpa(A;A+)7!Spanaive(A;A+)comingfrompart(ii)extendstoafunctorX7!Xnaive:Adic!(V).Inparticular,anyadicspaceXhasanassociatedtopologicalspacejXj,givenbythe rstcomponentofXnaive.(iv)ThefullsubcategoryofadicspacesthatarecoveredbySpa(A;A+)with(A;A+)sheafyisequiva-lenttoAdichunderX7!Xnaive.Underthisidenti cation,weconsiderAdichasafullsubcategoryofAdic.(v)LetXbeanhonestadicspaceandlet(B;B+)beananoidring.ThenHom(X;Spa(B;B+))=Hom((B;B+);(OX(X);O+X(X))):Here,thelatteristhesetofcontinuousringhomomorphismsB!OX(X)whichmapB+intoO+X(X).Proof.Easyandlefttothereader.AbasicexampleofananoidadicspaceistheclosedadicdiscSpa(A;A+),whereA=KhXiandA+=OKhXi.See[Sch12],Example2.20foradiscussionofthe vespeciesofpointsofSpatop(A;A+).Anexampleofanonanoidadicspaceistheopenadicdisc,equaltotheopensubsetofSpa(OKJXK;OKJXK)de nedbytheconditionj$j6=0,where$2mK.AcoveringoftheopendiscbyanoidadicspacesoverKisgivenbythecollectionSpa(KhX;Xn=$i;OKhX;Xn=$i)forn1.Inthefollowing,wewilloftenwriteSpa(A;A+)foreitherofSpa(A;A+)orSpatop(A;A+).Asbyde nition,theiropensubsetsagree,wehopethatthiswillnotresultinanyconfusion.However,wewillnevertalkaboutSpanaive(A;A+)inthefollowing.2.2.Formalschemesandtheirgeneric bres.Inthissubsection,werecallthede nitionofformalschemesthatwewilluse,andrelatethemtothecategoryofadicspaces.Fixacompletenonarchimedean eldKwithringofintegersO=OKand xsome$2O,j$j1.ConsiderthecategoryNilpOofO-algebrasRonwhich$isnilpotent.ItsoppositeNilpopOhasthestructureofasite,usingZariskicovers.Wegettheassociatedtopos(NilpopO).AnyadicO-algebraAwithidealofde nitionIcontaining$givesrisetothesheaf(SpfA)(R)=lim�!nHom(A=In;R)onNilpopO.Asbefore,onede nesopenembeddingsin(NilpopO),andhenceformalschemesoverOasthosesheavesonNilpopOwhichadmitanopencoverbySpfAforAasabove,cf.[RZ96], rstpageofChapter2.Proposition2.2.1.ThefunctorSpfA7!Spa(A;A)extendstoafullyfaithfulfunctorM7!MadfromformalschemesoverOwhichlocallyadmita nitelygeneratedidealofde nitiontoadicspacesoverSpa(O;O). 12MODULIOFP-DIVISIBLEGROUPSProof.LetusexplainhowonecanreconstructSpfAfromSpa(A;A).First,notethatSpfASpa(A;A)isthesubsetofvaluationswithvaluegroupf0;1g,recoveringthetopologicalspace.Torecoverthestructuresheaf,itisenoughtoshowthattheglobalsectionsoftheshea cationO]Spa(A;A)ofOSpa(A;A)aregivenbyAitself.NotethatthereisacontinuousmapSpa(A;A)!SpfA:x7!x,givenbysendinganycontinuousvaluationxonAtothevaluationf7!jf(x)j=0jf(x)j11jf(x)j=1:Moreover,everyx2Spa(A;A)specializestox2Spf(A)Spa(A;A).ItfollowsthatanycoveringofSpa(A;A)isre nedbyacoveringcomingaspullbackviathespecializationfromacoverofSpfA,soweonlyhavetocheckthesheafpropertyforsuchcoverings.ButthisreducestothesheafpropertyofthestructuresheafofSpfA.NotethatifAisanadicO-algebrawithidealofde nitionIcontaining$,andF2(NilpopO),thenHom(SpfA;F)=lim �nF(A=In):Weabbreviatetheleft-handsidetoF(A),therebyextendingthefunctorFtothelargercategoryofadicO-algebraswithidealofde nitioncontaining$.Thefollowingpropositiongivesamodulidescriptionofthegeneric breMad=MadSpa(O;O)Spa(K;O):Proposition2.2.2.Let(R;R+)beacompleteanoid(K;O)-algebra.(i)TheringR+isthe lteredunionofitsopenandboundedO-subalgebrasR0R+.(ii)ThefunctorMad:CA (K;O)!Setsistheshea cationof(R;R+)7!lim�!R0R+M(R0)=lim�!R0R+lim �nM(R0=$n):Proof.(i)First,thereissomeopenandboundedsubringR0R+.Next,wecheckthatifR1;R2R+areboundedsubrings,thensoistheimageofR1 R2!R+.Indeed,Ri$�niR0forcertainni2Z,andthentheimageofR1 R2iscontainedin$�n1�n2R0.Inparticular,thereareopenandboundedO-subalgebras,andthesetofsuchis ltered.Finally,ifR0R+isanopenandboundedO-subalgebraandx2R+,thenxispower-bounded,sothatallpowersofxarecontainedin$�nR0forsomen,andhenceR0[x]$�nR0isstillopenandbounded.(ii)ItsucestocheckinthecaseM=Spf(A;A),whereAissomeadicO-algebrawith nitelygeneratedidealIcontaining$.ThenitfollowsfromHom((A;A);(R;R+))=Hom(A;R+)=lim�!R0R+Hom(A;R0)=lim�!R0R+lim �nHom(A;R0=$n):Indeed,anycontinuousmapA!R+isalsocontinuousforthe$-adictopologyonA;thenA[1 $]!RisacontinuousmapofK-Banachspaces.Inparticular,theimageofAinR+isbounded,andhencecontainedinsomeopenandboundedO-subalgebraR0.AsR0is$-adicallycomplete,onegetstheidenti cationHom(A;R0)=lim �nHom(A;R0=$n): 14MODULIOFP-DIVISIBLEGROUPSWecall(^Ai;^A+i)thestrongcompletionof(Ai;A+i).Remark2.3.5.Asanexample,thenonreducedrigid-analyticpointX=Spa(K[X]=X2;OK+KX)ispreperfectoid.Notethatinthisexample,theanoidalgebra(K[X]=X2;OK+KX)isalreadycompleteforitsnaturaltopology.However,arti ciallyenforcingthep-adictopologyonOK+KXmakesthecompletionsimply(K;OK),whichiscertainlyaperfectoidanoid(K;OK)-algebra.Proposition2.3.6.LetXbeapreperfectoidadicspaceoverSpa(K;OK).Thenthereexistsaperfectoidspace^XoverSpa(K;OK)withthesameunderlyingtopologicalspace,andsuchthatforanyopensubsetU=Spa(A;A+)Xforwhich(^A;^A+)isperfectoid,thecorrespondingopensubsetof^Xisgivenby^U=Spa(^A;^A+).Thespace^XisuniversalformorphismsfromperfectoidspacesoverSpa(K;OK)toX.Proof.Easyandlefttothereader.Wecall^XthestrongcompletionofX.Wehavethefollowingbehaviourwithrespecttopassagetolocallyclosedsubspaces.Proposition2.3.7.LetXbeapreperfectoidadicspaceoverSpa(K;OK),andletYXbealocallyclosedsubspace.ThenYispreperfectoid.Remark2.3.8.Again,thisisallonecanexpectasYmaybenonreduced.Proof.Thestatementisclearforopenembeddings,soletusassumethatYXisaclosedsubspace.WemayassumethatX=Spa(A;A+)isanoidwith(^A;^A+)perfectoid.ThenY=Spa(B;B+)isgivenbyaclosedidealI,sothatB=A=IandB+theintegralclosureoftheimageofA+inB.Weclaimthat^BisaperfectoidK-algebra,whichimpliestheresult.NotethatYisthe lteredintersectionofitsrationalneighborhoodsUiX;indeed,foranyf1;:::;fk2I,onecanconsiderthesubsetswherejf1j;:::;jfkjp�n,andthenYistheirintersection.Then^B+=\lim�!YUiO+X(Ui):Indeed,anyf2Ibecomesin nitelyp-divisibleinthedirectlimit,andthusgetskilledinthecompletion.ButeachOX(Ui)isperfectoid,hencesois^B.Finally,wewillneedonemorenotion.De nition2.3.9.LetXbeanadicspaceoverSpa(Qp;Zp).ThenXispreperfectoidifforanyperfectoid eldKofcharacteristic0,thebase-changeXK=XSpa(Qp;Zp)Spa(K;OK)ispreperfec-toid.Proposition2.3.10.LetKbeaperfectoid eld,andletXbeanadicspaceoverSpa(K;OK).ThenXispreperfectoidasanadicspaceoverSpa(K;OK)ifXispreperfectoidasanadicspaceoverSpa(Qp;Zp).Proof.Byassumption,XKispreperfectoidoverSpa(K;OK).ButthereisaclosedembeddingX!XK,whichshowsthatXispreperfectoidoverSpa(K;OK)byProposition2.3.7.Proposition2.3.11.LetXbeapreperfectoidadicspaceoverSpa(Qp;Zp),andletYXbealocallyclosedsubspace.ThenYispreperfectoid.Proof.ThisfollowsdirectlyfromProposition2.3.11.Example2.3.12.LetA=ZpJX1=p11;:::;X1=p1nKbethecompletionoftheZp-algebralim�!Zp[X1=pm1;:::;X1=pmn]withrespecttotheI=(p;X1;:::;Xn)-adictopology. MODULIOFp-DIVISIBLEGROUPS15Proposition2.3.13.LetRbeanadicZp-algebrawithidealofde nitioncontainingp.Then(SpfA)(R)=(lim �x7!xpR)n=(lim �x7!xpR=p)n=(R[)n;whereR[=lim �x7!xpR=p,equippedwiththeinverselimittopology.Proof.Easyandlefttothereader.LetX=(SpfA)adbethegeneric breofSpa(A;A)!Spa(Zp;Zp).ThenXisanadicspaceoverSpa(Qp;Zp),equaltotheunionofanoidsSpa(Am;A+m)de nedbyjX1jm;:::;jXnjmjpj;m1:ItiseasytoseethatXisapreperfectoidspaceoverSpa(Qp;Zp).Lemma2.3.14.TheadicspaceXoverSpa(Qp;Zp)isthesheafassociatedto(R;R+)7!lim�!R0R+(R[0)n:Proof.ThisfollowsdirectlyfromProposition2.2.2.2.4.Inverselimitsinthecategoryofadicspaces.Inverselimitsrarelyexistinthecategoryofadicspaces,evenwhenthetransitionmapsareane.Theproblemisthatif(Ai;A+i)isadirectsystemofanoidrings,thenthedirectlimittopologyoflim�!Aiwillnotbef-adic,andthereisnocanonicalchoiceforthetopology.(Anotherproblemarisesbecauseofnon-honestadicspaces.)Wewillusethefollowingde nition.De nition2.4.1.LetXibea lteredinversesystemofadicspaceswithquasicompactandqua-siseparatedtransitionmaps,letXbeanadicspace,andletfi:X!Xibeacompatiblefamilyofmorphisms.WewriteXlim �XiifthemapofunderlyingtopologicalspacesjXj!lim �jXijisahomeomorphism,andifthereisanopencoverofXbyanoidSpa(A;A+)X,suchthatthemaplim�!Spa(Ai;A+i)XiAi!Ahasdenseimage,wherethedirectlimitrunsoverallopenanoidSpa(Ai;A+i)XioverwhichSpa(A;A+)X!Xifactors.IftheinverselimitconsistsofasinglespaceX0,thenwewriteXX0insteadofXlim �X0.Proposition2.4.2.Let(Ai;A+i)beadirectsystemofcompleteanoidrings.Assumethatthereareringsofde nitionAi;0Aicompatibleforalli,and nitelygeneratedidealsofde nitionIiAi;0suchthatIj=IiAj;0Aj;0forji.Let(A;A+)bethedirectlimitofthe(Ai;A+i),equippedwiththetopologymakingA0=lim�!iAi;0anopenadicsubringwithidealofde nitionI=lim�!iIi.ThenSpa(A;A+)lim �Spa(Ai;A+i):Proof.Itisclearthat(A;A+)withthegiventopologyisananoidring.Moreover,givingavaluationon(A;A+)isequivalenttogivingacompatiblesystemofvaluationsonall(Ai;A+i).ThecontinuityconditionisgivenbyaskingthatjInj!0asn!1,checkingthatalsocontinuousvaluationscorrespond,thusjSpa(A;A+)j=lim �jSpa(Ai;A+i)j:Theconditiononringsissatis edbyde nition, nishingtheproof. 16MODULIOFP-DIVISIBLEGROUPSProposition2.4.3.InthesituationofDe nition2.4.1,letYi!Xibeanopenimmersionofadicspaces,andletYj=YiXiXj!Xjforjibethepullback,aswellasY=YiXiX!X.ThenYlim �jiYj.Proof.SeeRemark2.4.3in[Hub96].Proposition2.4.4.LetXbeapreperfectoidspaceoverSpa(K;OK),whereKisaperfectoid eld.Let^XbethestrongcompletionofX.Then^XX.Proof.Immediate.Ofcourse,thisshowsthatonemayhaveXX0,whileX6=X0.Letushoweverrecordthefollowingresult.Proposition2.4.5.LetKbeaperfectoid eld,letXibeaninversesystemofadicspacesoverSpa(K;OK)withqcqstransitionmaps,andassumethatthereisaperfectoidspaceXoverSpa(K;OK)suchthatXlim �Xi.Thenforanyperfectoidanoid(K;OK)-algebra(B;B+),wehaveX(B;B+)=lim �Xi(B;B+):Inparticular,ifYisaperfectoidspaceoverSpa(K;OK)withacompatiblesystemofmapsY!Xi,thenYfactorsoverXuniquely,makingXuniqueuptouniqueisomorphism.Proof.WemayassumethatX=Spa(A;A+)isanoidsuchthat(A;A+)isaperfectoidanoid(K;OK)-algebra.ThenX(B;B+)=Hom((A;A+);(B;B+)):Aslim�!im(X)Spa(Ai;A+i)XiAi!Ahasdenseimage,itfollowsthatthemapX(B;B+)!lim �Xi(B;B+)isinjective.Conversely,givenacompatiblesystemofmapsSpa(B;B+)!Xi,itfollowsthatSpa(B;B+)!XifactorsovertheimageofXinXi.Wegetamaplim�!im(X)Spa(Ai;A+i)XiA+i!B+:Passingtop-adiccompletions,theleft-handsidebecomesequaltoA+,as(A;A+)isstronglycomplete,andtheleft-handsideisdenseinA+.ThisgivesthedesiredmapA+!B+,i.e.(A;A+)!(B;B+).Itseemsreasonabletoexpectthatthereisagoodde nitionofanetalesiteforanyadicspace,andthatthefollowingresultistrue.Conjecture2.4.6.AssumethatXiisaninversesystemofquasicompactandquasiseparatedadicspaces,andthatXlim �Xi.ThentheetaletoposofXisequivalenttotheprojectivelimitoftheetaletopoioftheXi(consideredasa bredtoposintheobviousway).WewillonlyneedthecaseswhereallXiandXareeitherstronglynoetherianadicspaces,orperfectoidspaces.Inthatcase,thereisade nitionoftheiretaletopoi,andwehavethefollowingresult. MODULIOFp-DIVISIBLEGROUPS17Theorem2.4.7([Sch12],Thm.7.17).LetKbeaperfectoid eld,andassumethatallXiarestronglynoetherianadicspaces(inparticularquasicompactandquasiseparated)overSpa(K;OK),andthatXisaperfectoidspaceoverSpa(K;OK),Xlim �Xi.ThentheetaletoposofXistheprojectivelimitoftheetaletopoioftheXi.Weremarkthatthenotionintroducedhereisstrongerthanthenotion0introducedin[Sch12],whichonlytalksabouttheresidue eldsinsteadofthesectionsofthestructuresheafinanopenneighborhood.Asexplainedin[Hub96,Section2.4],oneshouldexpectthattheweakernotion0issucientintheconjectureifallXiareanalyticadicspaces,asisthecaseintheprevioustheorem.3.Preparationsonp-divisiblegroupsInthissection,weworkoveraringRwhichisp-torsion,andconsiderp-divisiblegroupsGoverR.LetNilpopRdenotethecategoryoppositeofthecategoryofR-algebrasonwhichpisnilpotent.Ofcourse,thelastconditionisvacuous,butlaterwewillpasstop-adicallycompleteZp-algebrasR.3.1.Theuniversalcoverofap-divisiblegroup.WewillconsiderGasthesheafonNilpopR,sendinganyR-algebraStolim�!G[pn](S).Lemma3.1.1.AssumethatGisisogenoustoanextensionofanetalep-divisiblegroupbyaconnectedp-divisiblegroup.ThenthefunctorGisrepresentablebyaformalscheme(stilldenotedG),whichlocallyadmitsa nitelygeneratedidealofde nition.Proof.Itisclearthatisogeniesinducerelativelyrepresentablemorphisms,whichdonotchangetheidealofde nition,sowemayassumethatGisanextensionofanetalebyaconnectedp-divisiblegroup.Thenonereducestotheconnectedcase,inwhichcaseGisaformalLiegroup,givingtheresult.Onecanalsoconsiderthecompletion^GofG,whichwede neasthefunctoronNilpopRsendinganyR-algebraSonwhichpisnilpotenttothesubsetofthosex2G(S)forwhichthereissomenilpotentidealISsuchthatx2G(S=I)isthezerosection.Werecallthatthisisalwaysrepresentable.Lemma3.1.2.Thefunctor^GisaformalLievariety,andinparticularrepresentablebyananeformalschemewith nitelygeneratedidealofde nition.IfGisconnected,thenG=^G.Moreover,ifLieGisfree,then^G=SpfRJX1;:::;XdK:Proof.Cf.[Mes72].Considerthesheaf~G(S)=lim �p:G!GG(S);onNilpopR,whichwecalltheuniversalcoverofG.Clearly,~GisasheafofQp-vectorspaces.Proposition3.1.3.(i)Let:G1!G2beanisogeny.Thentheinducedmorphism~:~G1!~G2isanisomorphism.(ii)LetS!Rbeasurjectionwithnilpotentkernel.Thenthecategoriesofp-divisiblegroupsoverRandSuptoisogenyareequivalent.Inparticular,foranyp-divisiblegroupGoverR,theuniversalcover~Gliftscanonicallyto~GSoverS.Moreover,~GS(S)=~G(R).(iii)AssumethatGisisogenoustoanextensionofanetalebyaconnectedp-divisiblegroup.Then~Gisrepresentablebyaformalscheme(stilldenoted~G),whichlocallyadmitsa nitelygenerated MODULIOFp-DIVISIBLEGROUPS19Lemma3.1.6.Thesheaf~GG^GisrepresentablebyananeformalschemeSpfSwith nitelygeneratedidealofde nitionISgivenbythepreimageoftheidealde ningtheunitsectionin^G.Moreover,S,IandS=Iare atoverR,andifRisofcharacteristicp,thenSisrelativelyperfectoverR,i.e.therelativeFrobeniusmorphismS=R:S R;R!Sisanisomorphism.Proof.AsGp!Gisrelativelyrepresentable(and nitelocallyfree),themapGG^G!^Gisrelativelyrepresentable,andthusGG^Gisrepresentable,wherethetransitionmapG!Gismultiplicationbyap-power.Moreover,theidealofde nitiondoesnotchange:Onecantakethepreimageoftheidealde ningtheunitsectionin^G.Uponpassingtotheinverselimit(i.e.,thedirectlimitonthelevelofrings),wegetrepresentabilityof~GG^G:The atnessassertionsareeasytocheck,as^GisaformalLievarietyandthetransitionmorphismsare niteandlocallyfree.TocheckthatSisrelativelyperfectoverR,onehastocheckthatthepullbackof^G(p)alongF:G!G(p)is^G,whichisobvious.Remark3.1.7.Notethat~GG^Gisstillacrystalonthein nitesimalsite,ascheckingwhetherasectionofGonathickeningS!RofRliesin^G(S)canbecheckedafterrestrictingtoR,byde nitionof^G.3.2.Theuniversalvectorextension,andtheuniversalcover.LetEGbetheuniversalvectorextensionofG:0!V!EG!G!0:De neamap(3.2.1)sG:~G(R)!EG(R)asfollows.Representanelementx2~G(R)byasequencexn2G(R).Liftxntoanelementyn2EG(R),andformthelimitlimn!1pnyn.Thelimitexistsbecausethedi erencespm+nym+n�pnynlieinpnV(R).Adi erentchoiceofliftschangesthevalueofybyanelementoftheformlimn!1pnvnwithvn2V(R),butthislimitis0.SetsG(x)=y.ItiseasytoseethattheformationofsGisfunctorialinG.WenotethatifG=Qp=Zp,thentheuniversalvectorextensionofGis0!Ga!GaQp Zp!Qp=Zp!0;andthemorphismsG:~G!EGisexactlytheinclusionofQpinto(RQp)=Zp.Lemma3.2.1.ThemorphismsGextendsfunctoriallytoamorphismofcrystals~G!EGonthenilpotentcrystallinesite(i.e.,thickeningswithanilpotentPDstructure).Proof.LetS!RbeanilpotentPDthickening.Asonecanalwaysliftp-divisiblegroupsfromRtoS,itisenoughtoprovethefollowingresult.Lemma3.2.2.LetG,Hbetwop-divisiblegroupsoverS,withreductionsG0,H0toR.Letf0:G0!H0beanymorphism.Thenthediagram~G(S)sG// ~f0 EG(S)Ef0 ~H(S)sH// EH(S) 20MODULIOFP-DIVISIBLEGROUPScommutes.Proof.Somemultiplepnf0off0liftstoamorphismf:G!HoverS.Itisclearthatthediagram~G(S)sG// ~f EG(S)Ef ~H(S)sH// EH(S)commutes,aseverythingisde nedoverS.Letg2Hom(~G(S);EH(S))denotethedi erenceofthetwomorphismsinthediagramofthelemma.Thenwejustprovedthatpng=0.Ontheotherhand,~G(S)isaQp-vectorspace.Itfollowsthatg=0.NowassumethatSisatopologicalZp-algebra,equippedwithasurjectionS!R,whosekernelistopologicallynilpotentandhasaPDstructure.WedonotrequirethePDstructuretobe(topologically)nilpotent.Forexample,weallowthesurjectionZ2!F2.Inthefollowing,wewriteM(G)forthecrystalLieEG.Notethatbythetheoryof[BBM82],itcanbemadeintoacrystalonthecrystallinesite,notjustonthenilpotentcrystallinesite.De nition3.2.3.Thequasi-logarithmmapisde nedasthemapqlogG:~G(S)!M(G)(S)[p�1]givenasthecomposite~G(S)sG�!EG(S)logEG�!M(G)(S)[p�1]:Remark3.2.4.Inthisde nition,wewanttoevaluateEGonS.Thismaynotbepossible,asthethickeningS!Risnotrequiredtohavea(topologically)nilpotentPDstructure.Theeasiestwayaroundthisisthefollowing.ConsiderR0=S=I2,whereI=ker(S!R).ThenS!R0isatopologicallynilpotentPDthickening.Uptoisogeny,workingoverRandR0isequivalent.Asthequasi-logarithmonlyinvolvesobjectsuptoisogeny,wecanusethede nitionforS!R0togettheresultforS!R.Lemma3.2.5.LetG0bealiftofGtoS.Thediagram~G(S)qlogG//  M(G)(S)[p�1] G0(S)logG0// (LieG0)[p�1]commutes.Remark3.2.6.Thislemmasaysthatontheuniversalcover~G(S),whichisindependentofthelift,onehasquasi-logarithmmap(whichisalsoindependentofthelift),andwhichspecializestothelogarithmmapofanychosenliftG0uponprojectiontothecorrespondingquotientM(G)(S)!LieG0.Proof.ReducetothecaseofatopologicallynilpotentPDthickeningasinthepreviousremark.Thenthemapsfrom~G(S)=~G0(S)bothfactoroversG0:~G0(S)!EG0(S).Theremainingdiagramisjustthefunctorialityoflog. 22MODULIOFP-DIVISIBLEGROUPS3.4.Thelogarithm.TheLiealgebraLieGisalocallyfreeR-module.Wecanassociatetoitanadicspace.WegivetheconstructionforanylocallyfreeR-module.Proposition3.4.1.LetMbealocallyfreeR-module.Theshea cationofthefunctoronCA Spa(R;R)sending(S;S+)toM RSisrepresentablebyanadicspaceoverSpa(R;R),whichwedenoteM Ga.Proof.OneimmediatelyreducestothecasewhereMisfree,andhencewhereM=R.Now,wecanassumethatR=Zp,asthegeneralcasefollowsfromthisbybase-change.Wehavetoshowthattheshea cationofthefunctor(S;S+)7!Soncompleteanoid(Qp;Zp)-algebrasisrepresentablebyanadicspaceGaoverQp.NotethatasS=S+[p�1],itcanbewrittenasthedirectlimitofthefunctor(S;S+)7!S+alongthemultiplicationbypmap.ThelatterfunctorisrepresentablebySpa(QphXi;ZphXi),henceGa=A1isrepresentablebytheincreasingunionoftheballsSpa(QphpmXi;ZphpmXi),m0.Theobjectsintroducedsofarsitinanexactsequence.Proposition3.4.2.(i)ThereisanaturalZp-linearlogarithmmaplogG:Gad!LieG GaofsheavesoverCA Spa(R;R).(ii)ThefunctorGadisrepresentablebyanadicspaceoverSpa(R;R).(iii)Thesequence0!Gad[p1]!Gad!LieG GaofsheavesofZp-modulesoverCA Spa(R;R)isexact.(iv)Thefunctor~GadisrepresentablebyanadicspaceoverSpa(R;R).(v)Thesequence0!V(G)ad!~Gad!LieG GaofsheavesofQp-vectorspacesoverCA Spa(R;R)isexact.Proof.Functoriallyin(S;S+),wehavetode neaZp-linearmaplogG:Gad(S;S+)!(LieG Ga)(S):RecallthatGadisthesheafassociatedto(S;S+)7!lim�!S0S+G(S0);andLieG Gaisthesheafassociatedto(S;S+)7!LieG RS.Changingnotationslightly,weseethatitisenoughtodescribeafunctorialmaplogG:G(R)!LieG[p�1]foranyp-adicallycompleteandseparated atZp-algebraR,andp-divisiblegroupGoverR.ThenLemma2.2.5of[Mes72]givesaZp-linearbijectionlogG:ker(G(R)!G(R=p2))=!p2LieG:AsmultiplicationbypistopologicallynilpotentonG(R),anysectionx2G(R)admitssomeintegern0suchthat[pn]G(x)2ker(G(R)!G(R=p2)).ThisallowsonetoextendthemorphismtologG:G(R)!LieG[p�1];asdesired.ItalsoshowsthatthekernelispreciselyG(R)[p1],whichprovespart(iii).Forpart(ii),notethatwehaveprovedthatthereisanopensubsetUoftheidentityofGadonwhichlogGisan MODULIOFp-DIVISIBLEGROUPS25ThenR[=FpJX1=p1;Y1=p1K,andwegetcanonicalTeichmullerlitsX;Y2W(R[).Let p(x)denotethep-thdividedpowerofx.Thenwecanconsidertheelement= p(X2) p(Y2)� p(XY)2:Itiseasytoseethatp=0,andalso'()=0.However,onecancheckthat6=0.Forthis,lookatthethickeningS=Fp[X1=p1;Y1=p1;U;V]=(X2+;X2Y;X1+Y;XY1+;XY2;Y2+;XU;YU;XV;YV;U2;V2)ofR.Hererunsthrough1=pn,foralln0.NotethatthekernelKofS!RhasanFp-basis(X2;XY;Y2;U;V;UV).Onecande nedividedpowersonKinauniquewayextending p(aX2+bXY+cY2+dU+eV+fUV)=apU+cpV:OnegetsaninducedmapAcris(R)!SsendingtoUV6=0.NotethatcanbeinterpretedasamorphismofDieudonnecrystalsfromQp=Zptop1,whichcannotcomefromamorphismofp-divisiblegroups.Inthis rstexample,Risf-semiperfect.Anotherpathologyoccursforsemiperfectringswhicharenotf-semiperfect.ConsidertheringR=Fp[X1=p11;X1=p12;:::]=I;whereI=(X1;X2;:::;8n:X1=pn1=(X2X3)1=pn=(X4X5X6)1=pn=:::):Inthisexample,R[=FpJX1=p11;X1=p12;:::K=(8n:X1=pn1=(X2X3)1=pn=(X4X5X6)1=pn=:::):Thisringiscompleteforthetopologymakingtheidealsk(J)=(Xpk1;Xpk2;:::),k0,abasisofopenneighborhoodsof0.Thentheelement[X1]pliesinthekernelofW(R[)!Acris(R).Indeed,itisenoughtoshowthatitisdivisiblebypkforallk.ButwecanwriteX1asaproductofkelementsofJ,X1=Y1Yk.(Forexample,ifk=3,takeY1=X4,Y2=X5,Y3=X6.)Then[X1]p=[Y1]p[Yk]p=(p!)k p(Y1) p(Yk);asclaimed.However,forf-semiperfectrings,thissecondpathologycannotoccur.Lemma4.1.7.LetRbeanf-semiperfectring.ThenthecanonicalmapW(R[)!Acris(R)isinjective.Proof.Fortheproof,wewillconstructcertainexplicitPDthickenings.LetJ=ker(R[!R);wemayassumethat(J)=Jp.Thisimpliesthatthesubset[J]:=fXi0[ri]pi2W(R[)jri2JgW(R[)isanideal.Moreover,W(R[)iscompleteforthe[J]-adictopology.LetWPDW(R[)[p�1]denotethesubringgeneratedbyalldividedpowersofelementsof[J].ItisthequotientofthePDhullofW(R[)!Rbyitsp-torsion.NowconsiderWPD;n=WPD=(WPD\'n([J][p�1])):ThenelementsofWPD;ncanbewrittenuniquelyasasumPi2Z[ri]pi,whereri2R[=n(J),andzeroforisucientlynegative.ItiseasytoseethatthePDstructureonWPD(R[)passesuniquelytothequotientWPD;n.Moreover,WPD;nisp-adicallycomplete.Onegetsaninducedmap MODULIOFp-DIVISIBLEGROUPS27withan2W(R[),convergingto0,de nesap-torsionelementinAcris(R).ThenthereexistsXn0bn n(T)2W(R[)hTiwith(X�T)Xn0bn n(T)=pXn0an n(T):Thismeanspa0=Xb0,pa1=Xb1�Tb0,andingeneralpan=Xbn�nTbn�1.UsingthatXisnottorsioninR[,onechecksinductivelythatbnisdivisiblebyp,whichthenshowsthatPn0an n(T)mapsto0inAcris(R),asdesired.Remark4.1.10.The nalcomputationshowingthatAcris(R)isp-torsionfreeifJ=ker(R[!R)isprincipalandgeneratedbyanon-torsionelement,isthesameastheclassicalcomputationshowingthatFontaine'sringAcris=Acris(OC=p)isp-torsionfree(andgeneralizesit),whereC=Qpisanalgebraicallyclosedcompleteextension.Moregenerally,wehavethefollowingproposition.Wewillnotneedthefollowingresultsintherestofthepaper,andincludethemonlyforcompleteness.Proposition4.1.11.LetRbeanf-semiperfectringsuchthatR=S=J,whereSisaperfectring,andJ=(s1;:::;sn)isanidealgeneratedbyaregularsequences1;:::;sn2S.ThenAcris(R)isp-torsionfree.Moreover,:R!RadmitsthestructureofaPDthickening.Proof.Easyandlefttothereader.WenotethatthePDstructureon:R!Rdependsonthechoiceoftheregularsequence(s1;:::;sn).Corollary4.1.12.LetRbeanf-semiperfectringsuchthatR=S=J,whereSisaperfectring,andJisanidealgeneratedbyaregularsequence.AssumeTheorem4.1.4.ThentheDieudonnemodulefunctoronp-divisiblegroupsoverRisfullyfaithful.Proof.WefollowtheproofofLemma11in[Fal10].LetG;Hbetwop-divisiblegroupsoverR.WehavetocheckthatHom(G;H)!Hom(M(G);M(H))isanisomorphism.AsAcris(R)isp-torsionfree,bothgroupsare atoverZp.Asthekernelandcokernelarep-torsion,weseethatthekernelistrivial;wehavetoshowthatthecokernelistrivialaswell.Forthis,wehavetocheckthatiff2Hom(G;H)suchthatM(f)isdivisiblebyp,thenfisdivisiblebyp.Forthis,evaluateM(f)atthePDthickening:R!R.Byassumption,thisevaluationis0,asRisp-torsion.FixingliftsofG0andH0to:R!R,we ndthatfliftstof0:G0!H0,andthatthemapinducedbyf0onLiealgebrasoftheuniversalvectorextensionistrivial.Weclaimthatf0factorsasacompositeG0F!G0(1)!H0(1)V!H0;whereG0(1);H0(1)arethepullbacksofG0;H0via:R!R.Byduality,itsucestocheckfactor-izationoverG0(1).ButG0!H0istrivialonLiealgebras,whichmeansthatthemapbecomestrivialonthekernelofFrobenius,i.e.thedesiredfactorization.Butthenwegetamapg(1):G0(1)!H0(1),whichisthesamethingasamapg:G!HoverR.Onechecksdirectlythatpg=f,asdesired.4.2.ThecaseQp=Zp!p1.Inthissection,wewillprovethefullfaithfulnessresultsuptoisogenyforthecaseofhomomorphismsfromQp=Zptop1.WenotethattheDieudonnemoduleM(Qp=Zp)(resp.,M(p1))isafreeAcris(R)-moduleofrank1,withFactingonabasiselementasp(resp.,as1). 28MODULIOFP-DIVISIBLEGROUPSLemma4.2.1.Thereisacanonicalidenti cationHomR(Qp=Zp;p1)=1+JR[;underwhichthecanonicalmapHomR(Qp=Zp;p1)!Hom(M(Qp=Zp);M(p1))[p�1]=B+cris(R)'=pisidenti edwiththemap1+J!B+cris(R)'=p:r7!log([r]):Proof.ThisfollowsfromLemma3.5.1above.Forthe rstpart,notethatanelementofHomR(Qp=Zp;p1)isgivenbyasequencer0;r1;:::2Rsuchthatri=rpi+1,andr0=1.Thisgivesrisetoanelementofr2R[suchthatrmapsto1inR,i.e.r21+J.LetI=ker(W(R[)!R).Thefollowinglemmaimpliesthat1+J!B+cris(R)'=pisinjective.Lemma4.2.2.Letw21+I.Iflogw=0,thenw=1.Ifp6=2,theninfactw=1.Proof.Assume rstp6=2.Notethatwp21+pA.Wehavelogwp=0,sothat0=logwp=(wp�1)1�wp�1 2+(wp�1)2 3�::::Thefactorontherightliesin1+pA2A,whencewp=1(inAcris(R),henceinW(R[)byLemma4.1.7).ButasR[isperfect,therearenonontrivialp-throotsinW(R[),hencew=1.Ifp=2,arguesimilarlywithw421+4A,showingthatw4=1.Forp=2,theonlynontrivial4-throotsofunityinW(R[)are1,givingtheresult.Inthefollowing,weuseProposition4.1.5and4.1.2toreplaceRbyanf-semiperfectringforwhichJ=ker(R[!R)satis es(J)=Jp.Fork0,letI(k)W(R[)betheidealI(k)=[Jpk]W(R[)+p[Jpk�1]W(R[)+:::+pk[J]W(R[)+pk+1W(R[);sothatI(0)=I.IntermsofthepresentationofWittvectorsassequences,wehaveI(k)=f(a0;a1;:::)jai2Jpkfori=0;1;:::;kg:ThusI(k)isthekernelofthehomomorphismfromW(R[)ontoWk+1(R[=Jpk),whereWiisthefunctoroftruncatedWittvectorsoflengthi.SinceW(R[)=lim �Wk(R[),andR[=lim �R[=Jpk,thefollowinglemmaisimmediate.Lemma4.2.3.TheringW(R[)iscompletewithrespecttothelineartopologyinducedbytheidealsI(k),i.e.,W(R[)=lim �W(R[)=I(k).Moreover,foranyi0,(1+I)pi1+I(i).RecallthequotientAcris(R)!W(R[)=[J]ofAcris(R)fromtheproofofLemma4.1.7.WeletNAcris(R)bethekernel.NotethatNisgeneratedby n([x]),forx2Jandn1.Lemma4.2.4.Themap'1:Icris(R)!Acris(R)preservesNIcris(R).Therestriction'1jNistopologicallynilpotent.Proof.RecallthatNisgeneratedasAcris(R)-modulebyz= n([x]),wherex2Jandn1.Wecomputefromthede nitionof'1,'1(z)='1( n([x]))=(np)! pn! np([x])2N:Moreover,thisisdivisibleby(n!)p�1,fromwhichoneeasilydeducesthat'1istopologicallynilpotent. 34MODULIOFP-DIVISIBLEGROUPSYisanFp-vectorspace.ThusY FpOC=pisfree.Ifitiskilledbyp1�,itfollowsthatY=0,asdesired.Werecallthatwewanttoshowthatthecokernelof :�TG(T+=p) Zp(T+) W(R)T+=pk!M(G) W(R)T+=pkiskilledbyp3�forsome�0.Takeanyt2TG(T+=p).Write :TG(T+=p)!M(G) W(R)T+=pkforthecanonicalmap.Weclaimthatp (t)liesintheimageof .Thiswillgivetheresult,astheimageof isthenaT+=pk-submoduleofM(G) W(R)T+=pkcontainingp (TG(T+=p)),givingtheresultby(4.3.1).Nowmodulopk, (t)2M(G) W(R)T+=pkwilllieinM(G) W(R)S+i=pkforilargeenough,whereweusethealgebrasS+iconstructedinLemma4.3.10.NotethatthemapsconstructedinLemma4.3.10giverisetoanelementx2(T+) W(R)S+i.Thent x2TG(T+=p) Zp(T+) W(R)S+i�!(TG(T+=p) Zp(T+)) W(R)T+mapsunder totheimageof (t) x2�M(G) W(R)S+i=pk Zp�(T+) W(R)S+iundertheevaluationmap�M(G) W(R)S+i=pk Zp�(T+) W(R)S+i!M(G) W(R)S+i=pkcontractingthesecondandthirdfactor.ButwehavechosenxsothatitactsthroughmultiplicationbyponS+i.Thismeansthattheresultwillbep (t),asdesired.WecannowcompletetheproofofTheorem4.3.1.RecallthatSistheR-algebrawhichrepresentsTG.WewanttoprovethatthecokernelofAcris(S)!M(G)iskilledbyp2.Itisenoughtoprovethisresultmodulopkforanyk3.Letm2p2M(G).ByLemma4.3.11,xhasapreimageinTG(T+=p) Zp(T+)modulopk.WewritethispreimageasPni=1ai i,withai2TG(T+=p),i2(T+).Itisenoughtoprovethattheimageofai iinM(G)isalsointheimageofAcris(S)!M(G).Butai2TG(T+=p)givesrisetoamapS!T+=pcarryingtheuniversalelementofTG(S)toai2TG(T+=p).WegetamorphismAcris(S)!Acris(T+=p)!T+;usingtheusualmap:Acris(T+=p)!T+,comingfromthefactthatT+!T+=pisaPDthickening.Byduality,thisgivesamap(T+)!Acris(S),throughwhichwecanconsideriasanelement0i2Acris(S).Itisnowaneasydiagramchasetocheckthat0imapstotheimageofai iinM(G).ThiscompletestheproofofTheorem4.3.1.4.4.Thegeneralcase.Inthissection,wewill nishtheproofofTheorem4.1.4.ThisfollowsanideawelearntfromapaperofdeJongandMessing,[dJM99](seetheproofofProp.1.2),namelyinordertoprovefullfaithfulnessformorphismsG!H,oneusesbase-changetotheringwithuniversalhomomorphismsQp=Zp!GandH!p1,overwhichoneappliestheresultforthespecialcaseofmorphismsQp=Zp!p1.WeneedabasiclemmaonHopfalgebras.LetGandHbe nitelocallyfreegroupschemesoveranyringR,withcoordinateringsAG,AH.ThecoordinateringofGH_isHomR(AH;AG)(R-modulehomomorphisms),sothatthelatterhasthestructureofanR-algebra. 36MODULIOFP-DIVISIBLEGROUPSProof.Notethatiff=0,then fisp-torsion,soitisenoughtoprovethatif f=0,thenp4f=0.Atthispoint,weneedTheorem4.3.1.Assumethat f=0andconsiderthediagramM(Qp=Zp)(Acris(S)) f=0ww  M(G)(Acris(AH_))fAH_ // M(G)(Acris(S))fS M(H)(Acris(AH_))// h M(H)(Acris(S))hS M(p1)(Acris(AH_))// M(p1)(Acris(S))Let betheimageof12Acris(S)=M(Qp=Zp)(Acris(S))inM(G)(Acris(S)).Takeanyv2M(G)(Acris(AH_)).LetAcris(S)betheAcris(AH_)-lineardualofAcris(S).ByTheorem4.3.1,thereexists2Acris(S)suchthat( )=p2v2M(G)(Acris(AH_)):TheelementinducesacommutativediagramM(Qp=Zp)(Acris(S)) f=0ww  M(G)(Acris(AH_))fAH_ M(G)(Acris(S))oo fS M(H)(Acris(AH_))h M(H)(Acris(S))oo hS M(p1)(Acris(AH_))M(p1)(Acris(S))oo whichshowsthat(hfAH_)(p2v)=0,i.e.p2(hfAH_)=0.Now,lookatthecommutativediagramM(G)(Acris(R))p2f//  M(H)(Acris(R)) g**TTTTTTTTTTTTTTTTM(G)(Acris(AH_))=044 p2fAH_// M(H)(Acris(AH_))h// M(p1)(Acris(AH_)):Weclaimthatthekernelofg:M(H)(Acris(R))!M(p1)(Acris(AH_))=Acris(AH_)iskilledbyp2.Indeed,useTheorem4.3.1forH_toseethatHomAcris(R)(Acris(AH_);Acris(R))!HomAcris(R)(M(H)(Acris(R));Acris(R)) 38MODULIOFP-DIVISIBLEGROUPSSimilarly,thebasechangetoS3oftheuniversalmorphisms(H1)S1!p1and(H2)S2!p1 tintoacommutativediagram(H1)S3$$IIIIIIIII( H)S3// (H2)S3zzuuuuuuuuup1:Fori=1;2,fiinducesamorphismfi2HomSi(Qp=Zp;p1)[p�1].Weclaimthatthesemor-phismsagreeuponbasechangetoS3.ConsiderthediagramM(Qp=Zp)(Acris(S3)) f1jS3'' =//  M(Qp=Zp)(Acris(S3)) f2jS3ww  M(G1)(Acris(S3))//  M(G2)(Acris(S3)) M(H1)(Acris(S3))//  M(H2)(Acris(S3)) M(p1)(Acris(S3))=// M(p1)(Acris(S3)):Thecentersquareinthisdiagramcommutesbyhypothesis.ThetopandbottomsquaresinthediagramcommutebyapplyingMtothecommutativetrianglesinLemma4.4.5.Thus f1jS3= f2jS3.Butthisimpliesthatf1jS3=f2jS3.ThemorphismsfideterminethesequencesofR-linearmapsrfi;n:A0Hi!AGi.RecallthatS3=HomR;cont(A0H2;AG1).ThefactthattheficoincideuponbasechangetoS3meansexactlythatthedesireddiagramcommutes.Lemma4.4.6.Letf:M(G)!M(H)beamorphismofcrystalsoverR.(i)Letff:M(GG)!M(HH)betheobviousmorphism.Wehaverff;n=rf;n rf;nasR-linearmapsA0H^ A0H!AG AG.(ii)Wehave(rf;n)_=rf_;nasR-linearmapsA0G_!AH_.Proof.Easyandlefttothereader.Finally,wecanshowthatrf;n:A0H!AGisamorphismofHopfalgebras.ConsiderthediagonalmapsG:G!GGandH:H!HH.ThenM(G):M(G)!M(GG)=M(G) M(G)isalsothediagonalmap,andsimilarlyforM(H).ThediagramM(G)M(G)// f M(GG)ff M(H)M(H)// M(HH) MODULIOFp-DIVISIBLEGROUPS39commutes.ByLemma4.4.4,thediagramA0H^ A0Hrf;n^ rf;n 0H// A0Hrf;n AG AGG// AGalsocommutes.ButG:AGAG!AGissimplythemultiplicationmap,andsimilarlyfor0H.Thusrf;nisanR-algebrahomomorphism.BydualizingandusingthesameresultforM(H_)!M(G_),oneseesthatrf;nisalsocompatiblewithcomultiplication,asdesired.Wegetthatrf;nliesinHomR-Hopf;cont(A0H;AG)=lim�!mHomR-Hopf(AH[pm];AG[pm])=lim�!mHom(G[pm];H[pm]);wherethelastHomisinthecategoryofgroupschemesoverR.Thusform�nlargeenough,rf;nisinducedbyamorphism 0n:G[pm]!H[pm].Letusassumethatf2HomS(Qp=Zp;p1)isintegral,whichwecanaftermultiplicationbyapowerofp.Thenthemorphismsrf;ncomefromelementssn2S,n0,satisfyingspn+1=sn,s0=1.Inparticular,spnn=1.ByLemma4.4.1,thismeansthatpn 0n=0,sothat 0nfactorsthroughamap n:G[pn]!H[pn].Nowtheconditionspn+1=snforalln0meansthatthemorphisms ncombinetoamorphism :G!Hofp-divisiblegroups.Insummary,wehaveconstructedamapHomR(M(G);M(H))[p�1]!HomR(G;H)[p�1];thatisinjectivebyProposition4.4.2.Ontheotherhand,thecompositionHomR(G;H)[p�1]!HomR(M(G);M(H))[p�1]!HomR(G;H)[p�1]istheidentitybyconstruction, nishingtheproofofTheorem4.1.4.5.Onp-divisiblegroupsoverOCInthissection,we xacompletealgebraicallyclosedextensionCofQp,andwillclassifyp-divisiblegroupsoverOC.FixamapFp!OC=p.Also,inthissectionwewillwriteB+cris=B+cris(OC=p);whichcomeswithanaturalmap:B+cris!C.5.1.Fromp-divisiblegroupstovectorbundles.First,wewillrelatesomeoftheconstructionsthatoccuredsofartothetheoryofvectorbundlesovertheFargues-Fontainecurve.LetPbethegradedQp-algebraP=Md0(B+cris)'=pd;andletX=ProjP.ThenXisacurve,inthesensethatitisaconnected,separated,regularNoetherianschemeofdimension1,cf.[FF11],Theoreme10.2.Moreover,Xisalsocompleteinthesensethatthereisahomomorphismdeg:Div(X)!Zwhichissurjective,nonnegativeone ectivedivisors,andzeroonprincipaldivisors.Fromhere,onede nestherankanddegreeofanycoherentsheafonX,andonegetsthefollowingresult. MODULIOFp-DIVISIBLEGROUPS41Proposition5.1.6.LetGbeap-divisiblegroupoverOC.LetE=E(G0)forG0=G OCOC=pandF=OX ZpTbeassociatedvectorbundlesoverX.Hereandinthefollowing,wewriteT=T(G)(OC).(i)ThereisanaturalexactsequenceofcoherentsheavesoverX,0!F!E!i1(LieG C)!0:Theglobalsectionsofthismapgivethelogarithmsequence0!T[p�1]!~G(OC)!LieG C!0:(ii)Undertheidenti cationi1E=M(G) OCC;theadjunctionmorphismE!i1i1Einducesonglobalsectionsthequasi-logarithmmorphism~G(OC)!M(G) C:WhenrestrictedtoT[1 p],itinducesasurjectivemap G:T C!(LieG_ C)_M(G) C:(iii)Thesequence0!LieG C(1) _G_(1)�!T C G�!(LieG_ C)_!0isexact.Inotherwords,ap-divisiblegroupofheighthoverOCgivesrisetoamodi cationEofthetrivialvectorbundleF=OhXalong12X.Wenotethat Gcanbedescribedmoreelementaryasfollows.OnehasthemapQp=Zp ZpT!G;whichisde nedasamapofp-divisiblegroupsoverOC,andinducesbyCartierdualityamapG_!p1 ZpT_:OnLiealgebras,thisgivesamapLieG_ C!T_ C.Dualizingagain,wegetthemapT C G!(LieG_ C)_:Proof.Firstofall,allidenti cationsofmapsareimmediatefromourpreparationsonp-divisiblegroups.Inparticular,thenaturalmapF!EinducedfromT!M'=pfactorsthroughF0=ker(E!i1(LieG C)):Moreover,theinducedmapF!F0isinjective.Indeed,itsucestocheckthisforF!E.ConsiderthediagramF// E // i1(LieG C) 0// F// E0// i1(T C(�1))// 0Onthelowerline,E0=T ZpOX(1),andthesequencecomesfromthep-divisiblegroupT(�1) Zpp1.Byadirectcomputationforp1,thelowerlineisexact.Inparticular,F,!E.ButFandF0arevectorbundlesofthesamerankhanddegree0,thusF=F0byProposition5.1.1. 42MODULIOFP-DIVISIBLEGROUPSPart(iii)istakenfrom[FGL08],AppendixCtoChapter2.Onecouldalsoreproveitusingthemachineryemployedhere.Infact,thesurjectivityof Gfollowsdirectlyfrompart(i)afteri1.Forpart(iii),itonlyremainstoseethatthecomposite G _G_(1)is0.WehaveacompositemapfG:E_G_!F_G_=FG!EG;whereweusesubscriptstodenotethep-divisiblegroupwithrespecttowhichweconstructthevectorbundles.Also,weuseatrivializationZp(1)=ZptoidentifythevectorbundlesF_G_andFG.Wehavetoseethati1fGis0.Forthis,itisenoughtoshowthatfG:E_G_!EG=E_G_ OXOX(1)ismultiplicationbyt2H0(X;OX(1)),wheret=log([])comesfromtheelement2O[CinducedfromthechosentrivializationZp(1)=Zp.Forthis,onecanreplaceGbyT ZpQp=Zp,whereitisimmediate.5.2.Classi cationofp-divisiblegroups.Themaintheoremofthissectionisthefollowingresult.Theorem5.2.1.Thereisanequivalenceofcategoriesbetweenthecategoryofp-divisiblegroupsoverOCandthecategoryoffreeZp-modulesTof niteranktogetherwithaC-subvectorspaceWofT C(�1).Thefunctorisde nedinthefollowingway.ToG,oneassociatestheTatemoduleT=T(G),togetherwithW=LieG C,embeddedintoT Cvia _G_:LieG C!T C(�1):Proof.Westartbyprovingthatthefunctorisfullyfaithful.ThiswasalreadyobservedbyFargues,[Far12].LetG0=T(G)(�1) Zpp1beamultiplicativep-divisiblegroupequippedwithamapG!G0inducinganisomorphismT(G)=T(G0).WealsogetamapLieG!LieG0=T(G)(�1) OC.Itiseasytocheckthatthismapisidenti edwith _G_(afterinvertingp).Theresultingadicspaces tintoacommutativediagram0// Gad[p1]= // Gad // LieG Ga 0// G0ad[p1]// G0ad// LieG0 GaWeclaimthattherightsquareiscartesian.Indeed,ifx2G0ad(R;R+)mapstoLieG Ga,thenfornsucientlylarge,pnx2Gad(R;R+),asonasmallneighborhoodof0,logG0isanisomorphism.Onegetsx2Gad(R;R+),asGadpn//  Gad G0adpn// G0adiscartesian.ItfollowsthatwecanreconstructGadfrom(T;W)=(T(G);LieG C).ButthenwecanalsoreconstructG=GYGadSpfH0(Y;O+Y); MODULIOFp-DIVISIBLEGROUPS43whereYrunsthroughtheconnectedcomponentsofGad.Itremainstoprovethatthefunctorisessentiallysurjective.Forthis,letus rstassumethatCissphericallycomplete,andthatthenormmapjj:C!R0issurjective.So,assumegiven(T;W).Wede neG0asbefore,andthenGadG0adasthe breproduct.WehavetoseethatGYGadSpfH0(Y;O+Y)de nesap-divisiblegroup.Onechecksdirectlythat(therigid-analyticspacecorrespondingto)Gadisap-divisiblerigid-analyticgroupinthesenseof[Far12]:De nition5.2.2.Ap-divisiblerigid-analyticgroupoverCisacommutativesmoothrigid-analyticgroupGoverCsuchthatp:G!Gis nitelocallyfreeandfaithfully at,andp:G!Gistopologicallynilpotent.Abasicfactisthatthesedecomposeintoconnectedcomponents.Lemma5.2.3.[Far12,Corollaire9]LetGbeap-divisiblerigid-analyticgroupoverC.ThenG=G00(G),whereG0isaconnectedp-divisiblerigid-analyticgroupoverC,and0(G)=(Qp=Zp)rforsomeintegerr.ByTheoreme15of[Far12],itisenoughtoshowthattheconnectedcomponent(Gad)0oftheidentityisisomorphictoad-dimensionalopenunitballBd:Thattheoremveri esthatif(Gad)0=Bd,thentheformalgroupinducedonSpfH0((Gad)0;O+(Gad)0)=SpfOCJT1;:::;TdKisp-divisible,i.e.thekernelofmultiplicationbypis niteandlocallyfree.Moreover,weknowthefollowing.Proposition5.2.4.[Far12,Proposition14,Lemma13]Onecanwrite(Gad)0asanincreasingunionofconnectedanoidsubgroupsUn(Gad)0,suchthatUn=Bdforalln0.Proof.ThesubgroupsUncanbede nedasthe(connectedcomponentof)theintersectionof(Gad)0withincreasingclosedballsinG0ad=Bh.Fortheconvenienceofthereader,werecallthecrucialargumentinshowingthatUn=Bd.WriteUn=Spa(A;A+).Using[BGR84],weknowthatA+istopologicallyof nitetypeoverOC,andithasthestructureofatopologicalHopfalgebra.Let A=A+ OCk,wherekistheresidue eldofOC.ThenSpec Aisaconnectedcommutativeanereducedgroupschemeoverksuchthatmultiplicationbypisnilpotent.Asitisreducedandagroupscheme,itissmooth;itfollowsthatitisanextensionofatorusbyaunipotentgroup.Asmultiplicationbypisnilpotent,thetorusparthastobetrivial.Itfollowsthat A=k[T1;:::;Td],andhenceA+=OChT1;:::;Tdi,andthusUn=Bd.Nowwe nishtheproofbyusingthefollowingproposition(whichistheonlyplacewhereweuseourassumptionsonC).Proposition5.2.5.AssumethatKisasphericallycompletenonarchimedean eldforwhichthenormmapjj:K!R0issurjective.LetXbeanadicspaceoverSpa(K;OK)withapoint02XwhichcanbewrittenasanincreasingunionX=SXnofquasicompactopensubsets02X0X1:::.Moreover,weassumethefollowingconditions.(i)Foralln0,theinclusionXnXn+1isastrictopenembedding. MODULIOFp-DIVISIBLEGROUPS45Remark5.2.9.Theconverseto(ii)isfalse.Indeed,letG1beQp=Zp,letG2beconnectedofdimension1andheight2,andletG3bep1.ThentherearemapsG1!G2!G3whosecompositionis0,andsuchthatonTatemodules0!T1!T2!T3!0andLiealgebras0!W1!W2!W3!0,onegetsexactsequences.However,thesequence0!G1!G2!G3!0isnotexact,asonecheckseasilyonthespecial bre.Proof.For(i),usetheHodge{Tatesequence.Part(ii)isclear.6.Rapoport{Zinkspaces6.1.Thespaceoflevel0,andtheperiodmorphism.LetHbeap-divisiblegroupoveraperfect eldkofcharacteristicp,ofheighthanddimensiond.De nition6.1.1.LetR2NilpW(k).AdeformationofHtoRisapair(G;),whereGisap-divisiblegroupoverRand:H kR=p!G RR=pisaquasi-isogeny.LetDefHbetheassociatedfunctoronNilpW(k),takingRtothesetofisomor-phismclassesofdeformations(G;)ofHtoR.RecallthefollowingtheoremofRapoport{Zink,[RZ96].Theorem6.1.2.ThefunctorDefHisrepresentablebyaformalschemeMoverSpfW(k),whichlocallyadmitsa nitelygeneratedidealofde nition.Moreover,everyirreduciblecomponentofthereducedsubschemeisproper.LetM(H)denotetheDieudonnemoduleofH,afreeW(k)-moduleofrankh.AssumenowthatRisap-adicallycompleteW(k)-algebraequippedwiththep-adictopology.ThenviaGrothendieck{Messingtheory,(G;)givesrisetoasurjectionoflocallyfreeR[1 p]-modulesM(H) R[1 p]!LieG[1 p],whichdependson(G;)onlyuptoisogeny.Wegettheinducedperiodmap:Mad!F`;whichwecallthecrystallineperiodmap.Here,F`isthe agvarietyparametrizingd-dimensionalquotientsoftheh-dimensionalW(k)[1 p]-vectorspaceM(H)[1 p];weconsiderF`asanadicspaceoverSpa(W(k)[1 p];W(k)).Moreover,wewillconsiderthefollowingvariantofDefH.ConsiderthefunctorDefisogHthatassociatestoap-adicallycomplete atW(k)-algebraRequippedwiththep-adictopologythesetofdeformations(G;)ofHtoR,moduloquasi-isogenyoverR.Observethatgivingaquasi-isogenyoverRisstrictlystrongerthangivingacompatiblesystemofquasi-isogeniesoverthequotientsR=pn,sothatDefisogHcannotbede nedonNilpW(k).Usingtheusualprocedure,onegetsasheaf(DefisogH)adonthecategoryofcompleteanoid(W(k)[1 p];W(k))-algebras.Wenotethatfactorsoveramap,stilldenoted,:(DefisogH)ad!F`:Our rstgoalistoprovethefollowingresult,whichisessentiallycontainedin[dJ95].Proposition6.1.3.Thesheaf(DefisogH)adisrepresentablebyanadicspace,whichisidenti edwithanopensubspaceUF`under.Weremarkthatifd=1,i.e.weareworkingintheLubin-Tatecase,then(DefisogH)ad=F`,themapiscalledtheGross{Hopkinsperiodmap,andtheresultfollowseasilyfromthetheoryin[GH94]. 50MODULIOFP-DIVISIBLEGROUPS(i)Thematrix(qlog(s1);:::;qlog(sh))2(M(H) R)hisofrankexactlyh�d;letM(H) R!Wbetheinduced niteprojectivequotientofrankd.(ii)Forallgeometricpointsx=Spa(C;OC)!Spa(R;R+),thesequence0!Qhp(s1;:::;sh)������!~Had(C;OC)!W RC!0isexact.Weremarkthattheconditionontherankissayingmorepreciselythatallminorsofsizeh�d+1vanish,andthattheminorsofsizeh�dgeneratetheunitideal.Lemma6.3.6.ThereisanaturalisomorphismoffunctorsM1=M01.Moreover,M01(~Had)hisalocallyclosedsubfunctor.Proof.WestartbyconstructingamapM1!M01.So,let(R;R+)beacompleteanoid(W(k)[1 p];W(k))-algebra,and(G;; )2M1(R;R+),where(G;)isde nedoversomeopenandboundedsubringR0R+.Using,wegetanidenti cation~HR0=~G.Therefore,wegetamap :Zhp!~Gad(R;R+)=~Had(R;R+);i.e.hsectionss1;:::;sh2~Had(R;R+).Wehavetocheckthattheysatisfyconditions(i)and(ii)above.Condition(ii)isclearlysatis ed,whenW=LieG R.Forcondition(i),notethatwehaveacommutativediagram~Had(R;R+)// qlog Gad(R;R+)log M(H) R// LieG R:Thisimpliesthatqlog(si)2ker(M(H) R!LieG R),whichisanh�d-dimensionalprojectiveR-submodule.Therefore,allminorsofsizeh�d+1vanish.Tocheckthattheminorsofsizeh�dgeneratetheunitideal,itsucestocheckforallx=Spa(K;K+)2Spa(R;R+),thesectionsqlog(s1);:::;qlog(sh)2M(H) Kgenerateanh�d-dimensionalsubspace.WecanassumethatK=Cisalgebraicallyclosed,andthatK+=OC.Inthatcase,thisfollowsfromthesurjectivityofT(G) C!(LieG_)_ C;cf.Proposition5.1.6(iii).NotethattheseconsiderationsalsoshowthatthequotientofM(H) Rbythesubmodulegeneratedbyqlog(s1);:::;qlog(sh)isexactlyW=LieG R.NowwewillconstructtheinversefunctorM01!M1.First,observethatM01!F`factorsoverUF`,whereUdenotestheimageoftheperiodmorphism.AsUF`ispartiallyproper,itisenoughtocheckthisongeometricpointsSpa(C;OC),i.e.thoseofrank1.WehavethevectorbundleE=E(H)ontheFargues{FontainecurveX.LetF=ker(E!i1W):ThenH0(X;F)=Qhpbycondition(ii).WeclaimthatF=OhX.AsFisofrankhanddegree0,ifF6=OhX,thenthereexistssome�0suchthatOX(),!F.ButdimQpH0(X;OX())=1for�0,contradiction.ByTheorem6.2.1,thisimpliesthedesiredfactorization.Next,considerthefunctorFde nedsimilarlytoM01,butwithcondition(ii)weakenedtotheconditionthatthequotientWofM(H) Rde nesapointofUF`.ThenFisclearlylocallyclosedin(~Had)h.Moreover,thereisanaturalmorphismF!U,sothatlocallyonSpa(R;R+)F,onehasadeformation(G0;0)ofHtoanopenandboundedW(k)-subalgebraR0R+.However,(G0;0)isonlywell-de neduptoquasi-isogenyoverR0;i.e.wehaveasection(G0;0)2(DefisogH)ad(F): 52MODULIOFP-DIVISIBLEGROUPSThepropositionconstructsadeformation(G;)ofHtoF0.Moreover,wehaves1;:::;sh2V(G)ad(F0):Infact,theylieinthesubsetT(G)ad(F0).AsT(G)adV(G)adisanopenembedding,thiscanbecheckedonpoints,whereitisclear.Thismeansthats1;:::;shgiveamap :Zhp!T(G)ad(F0);whichisclearlyanisomorphismateverypoint.ThisgivestheinversefunctorM01!F0!M1,asdesired.Infact,M01=F0=M1.Nowwecan nishtheproofthatM1ispreperfectoid.Indeed,M1(~Had)hislocallyclosed,and~Hadispreperfectoid.Thus,byProposition2.3.11,M1ispreperfectoid.Finally,wegiveadescriptionofM1purelyintermsofp-adicHodgetheory,onthecategoryofperfectoidalgebras.So,letus xaperfectoid eldKofcharacteristic0.Proposition6.3.9.ThefunctorM1onperfectoidanoid(K;OK)-algebrasistheshea cationofthefunctorsending(R;R+)tothesetofh-tuplesp1;:::;ph2(M(H) W(k)B+cris(R+=p))'=p;forwhichthefollowingconditionsaresatis ed.(i)Thematrix((p1);:::;(ph))2(M(H) R)hisofrankexactlyh�d;letM(H) R!Wbetheinducedquotient.(ii)Forallgeometricpointsx=Spa(C;OC)!Spa(R;R+),thesequence0!Qhp(p1(x);:::;ph(x))����������!(M(H) W(k)B+cris(OC=p))'=p!W RC!0isexact.Proof.Wehave~Had(R;R+)=~H(R+)=~H(R+=p)=(M(H) W(k)B+cris(R+=p))'=p;byTheorem4.1.4.Itfollowsthatthedatumofp1;:::;phisequivalenttothedatumofhsectionss1;:::;sh2~Had(R;R+);andtheconditions(i)and(ii)clearlycorrespond.Corollary6.3.10.LetCbeanalgebraicallyclosedcompletenonarchimedeanextensionofQp,andletXbetheassociatedFargues{Fontainecurve.LetF=OhXandE=E(H)beassociatedvectorbundlesonX.ThenM1(C;OC)isgivenbythesetofmorphismsf:F!Ethatgiverisetoamodi cation0!Ff!E!i1W!0;whereWissomeC-vectorspace. MODULIOFp-DIVISIBLEGROUPS536.4.TheLubin-Tatespaceatin nitelevel.Inthissection,Hisaconnectedp-divisiblegroupoverkofdimension1andheighth.Weassumethatkisalgebraicallyclosed,sothatHonlydependsonh.LetMh1betheassociatedin nite-levelRapoport-Zinkspace.WeshowherethatMh1iscutoutfrom(~Had)hbyasingledeterminantcondition.Letusbeginwiththecaseofh=1,sothatH=p1;k.ThenHliftsuniquelytothep-divisiblegroupp1overW(k).WehaveM(p1;k)=Liep1=W(k).Thequasi-logarithmmapreducestotheusuallogarithmmap,whichsitsinsidetheexactsequence0// V(p1)ad// ~adp1;log// GaofsheavesofQp-vectorspacesonCA Spa(W(k)[1=p];W(k)).Nowlet(R;R+)beacompleteanoid(W(k)[1 p];W(k))-algebra.ByLemma6.3.6,M11(R;R+)isthesetofsectionss2~adp1(R;R+)whichsatisfybothlog(s)=0andtheconditionthats(x)6=0forallpointsx=Spa(K;K+)2Spa(R;R+).ThismeansthatM11=V(p1)adnf0g:Eitherfromthisdescription,orfromthedescriptionofM11asclassifyingtriples(G;; ),itfollowsthatM11=Gn2ZSpa(L;OL);whereListhecompletionofW(k)[1 p](p1).Indeed,thedecompositionbyn2Zcomesfromtheheightof.Assumethatisofheight0;thenG=p1canonically,byrigidityofmultiplicativep-divisiblegroups.Now :Zp!Tp1amountstothechoiceofacompatiblesystemofp-powerrootsofunity,whencetheresult.Nowreturntothegeneralcase,sothatHhasdimension1andheighth.Weconstructadeterminantmorphismfromtheh-foldproductof~Hadinto~adp1;.Let^hM(H)bethetopexteriorpoweroftheW(k)-moduleM(H);then^hM(H)isfreeofrank1withFrobeniusslope1,sothat^hM(H)=M(p1;k).Write~HfortheuniversalcoverofH,consideredoverthebaseW(k).ByCorollary3.1.5,~HhisrepresentablebyaformalschemeSpfR,whereR=W(k)JX1=p11;:::;X1=p1hK.InparticularR=pisaninverselimitoff-semiperfectrings.Theprojectionmaps~Hh!~Hgivehcanonicalelementss1;:::;sh2~H(R=p).AppealingtoTheorem4.1.4,theDieudonnemodulefunctorgivesusisomorphisms H:~H(S)!(M(H) W(k)B+cris(S))=1and p1:~p1(S)!(M(p1;k) B+cris(S))=1foranyf-semiperfectringS.Wegetanelement �1p1( H(s1)^^ H(sh))of~p1(S).AsR=pisaninverselimitoff-semiperfectrings,wegetamorphismofformalschemesdet:~Hh!~p1overSpeck,andthenbyrigidityalsooverSpfW(k).Passingtogeneric bres,wegetamorphismofadicspacesdet:(~Had)h!~adp1; 54MODULIOFP-DIVISIBLEGROUPSwhichisQp-alternatingwhenconsideredasamapbetweensheavesofQp-vectorspacesonCA Spa(W(k)[1=p];W(k)).Thismorphismmakesthediagram(~Had)hdet// qlog ~adp1;log (M(H) Ga)hdet// M(p1;k) Gacommute.Theorem6.4.1.ThereisacartesiandiagramMh1det//  M11 (~Had)hdet// ~adp1;:Proof.First,wehavetoprovethatdet:Mh1!~adp1;factorsoverM11.Forthis,supposethattheh-tuples1;:::;shrepresentsasectionofMh1overananoidalgebra(R;R+).Sincethematrix(qlog(s1);:::;qlog(sh))hasrankh�1,wehavedet(qlog(s1);:::;qlog(sh))=0,i.e.log(det(s1;:::;sh))=0.Itremainstoshowthatdet(s1;:::;sh)(x)6=0atallpointsx2Spa(R;R+).Forthis,itisenoughtocheckongeometricpointsSpa(C;OC),whereitisreadilydeducedfromCorollary6.3.10,notingthatVhF,!VhE.Itremainstoseethatthesquareiscartesian.Forthis,lets1;:::;shrepresentasectionofthe breproductover(R;R+).Thismeansthatdet(s1;:::;sh)isasectionofV(p1)adnf0g.Wehavedet(qlog(s1);:::;qlog(sh))=log(det(s1;:::;sh))=0;meaningthatthematrix(qlog(s1);:::;qlog(sh))hasrankatmosth�1.Thereforetoshowthats1;:::;shliesinMh1,weonlyneedtoshowthatthismatrixhasrankexactlyh�1,andthatcondition(ii)inDe nition6.3.5issatis ed.ThiscanbecheckedongeometricpointsSpa(C;OC).Thetuples1;:::;shcorrespondstoamapF!EofvectorbundlesontheFargues-FontainecurveX,withF=OhXandE=E(H).Sincethesections1^^shofE(p1)vanishesonlyat1,wehaveanexactsequence0!F!E!i1W!0;whereWisaC-vectorspaceequaltothequotientofM(H) W(k)Cbythespanofs1;:::;sh.Countingdegrees,wegetdimW=1,verifyingtheconditionontherank.Takingglobalsections,onegetstheexactsequence0!Qhp(s1;:::;sh)������!~Had(C;OC)!W RC!0;verifyingcondition(ii)inDe nition6.3.5.Remark6.4.2.ThespaceM11=FZSpa(L;OL)hasanobviousintegralmodel,namely^M11=FZSpfOL.Thissuggestsde ninganintegralmodel^Mh1asthe breproductof~Hhand^M11over~p1.Ontheotherhandwehavetheintegralmodels^Mhnof nitelevel,duetoDrinfeld.Itisprovedin[Wei12]that^Mistheinverselimitlim �^MninthecategoryofformalschemesoverSpfZp. MODULIOFp-DIVISIBLEGROUPS556.5.ELstructures.Inthissection,wegeneralizethepreviousresultstoRapoport{ZinkspacesofELtype.ItwouldnotbeproblematictoconsidercasesofPELtype.However,thegrouptheorybecomesmoreinvolved,andthepresenttheorymakesitpossibletoconsideranaloguesofRapoport{ZinkspaceswhicharenotofPELtype,sothatwewillleavethisdiscussiontofuturework.Letus xasemisimpleQp-algebraB,a nitenondegenerateB-moduleV,andletG=GLB(V).FixamaximalorderOBBandanOB-stablelatticeV.Further, xaconjugacyclassofcocharacters:Gm!GQp,suchthatinthecorrespondingdecompositionofVQpintoweightspaces,onlyweights0and1occur;writeVQp=V0V1forthecorrespondingweightdecomposition,andsetd=dimV0,h=dimV,sothath�d=dimV1.Moreover, xap-divisiblegroupHofdimensiondandheighthoverkwithactionOB!End(H),suchthatM(H) W(k)W(k)[p�1]=V QpW(k)[p�1]asB QpW(k)[p�1]-modules.Inthefollowing,wewriteD=(B;V;~H;)fortherationaldata,andDint=(OB;;H;)fortheintegraldata.Moreover,letEbethere ex eld,whichisthe eldofde nitionoftheconjugacyclassofcocharacters.SetE=EW(k).De nition6.5.1.TheRapoport{ZinkspaceMDintofELtypeassociatedtoDintisthefunctoronNilpOEsendingRtothesetofisomorphismclassesof(G;),whereG=Risap-divisiblegroupwithactionofOBsatisfyingthedeterminantcondition,cf.[RZ96,3.23a)],and:H kR=p!G RR=pisanOB-linearquasi-isogeny.ThenRapoport{ZinkproverepresentabilityofMDint.Theorem6.5.2.ThefunctorMDintisrepresentablebyaformalscheme,whichlocallyadmitsa nitelygeneratedidealofde nition.Onthegeneric bre,wehavetheGrothendieck{MessingperiodmorphismGM:(MDint)ad!F`GM;wherethe agvarietyF`GMparametrizesB-equivariantquotientsWofM(H) W(k)Rwhichare niteprojectiveR-modules,andlocallyonRisomorphictoV0 QpRasB QpR-modules.Foranyn1,onealsode nesthecoverMDint;nofitsgeneric bre(MDint)ad,asparametrizingOB-linearmaps=pn!G[pn]adwhichareisomorphismsateverypoint.Wehavethefollowingde nitionofMDint;1.De nition6.5.3.ConsiderthefunctorMDint;1oncompleteanoid(E;OE)-algebras,sending(R;R+)tothesetoftriples(G;; ),where(G;)2(MDint)ad(R;R+),and :!T(G)ad(R;R+)isamorphismofOB-modulessuchthatforallx=Spa(K;K+)2Spa(R;R+),theinducedmap (x):!T(G)ad(K;K+)isanisomorphism.Ourargumentsimmediatelygeneralizetothefollowingresult. MODULIOFp-DIVISIBLEGROUPS59Theorem7.2.3.ThereisanaturalG(Qp)G(Qp)-equivariantisomorphismMD;1=MD;1;underwhichGM:MD;1!F`GMgetsidenti edwithHT:MD;1!F`HT,andviceversa.Proof.Let(R;R+)beanycompleteanoid(E;OE)-algebra.ThenrecallthatMD;1istheshea - cationofthefunctorsending(R;R+)tothesetofB-linearmapss:V!~Had(R;R+)forwhichtheinducedquotientM(H) R!WbytheimageofV RislocallyoftheformV0 R,andwhichgiveexactsequencesateverygeometricpoint.Similarly,MD;1istheshea cationofthefunctorsending(R;R+)tothesetofEndB(V)-linearmapss:EndB(H)!V B~Had(R;R+)forwhichtheinducedquotientM(H) W(k)R=EndB(V) QpR!WbytheimageofEndOB(H) RislocallyoftheformEndB(V0;V) R,andwhichgiveexactsequencesateverygeometricpoint.Letus rstcheckthatsandscorrespond.Indeed,de ne(s(f))(v)=f(s(v));wheref2EndB(H)andv2V.Onereadilychecksthatthisde nesabijectivecorrespondencebetweensands.NowconsiderthemapEndB(H) R!M(H) W(k)R=EndB(V) QpRinducedbys.WeclaimthatitisthesameasHomB R(�;V R)appliedtothemapV QpR!M(H) Rinducedfroms;thisisadirectveri cation.Fromhere,onededucesthatWislocallyoftheformV0 RifandonlyifWislocallyoftheformHomB(V0;V) R,aswellasthecompatibilitywithperiodmaps.Moreover,theexactnessconditionsatgeometricpointscorrespond.7.3.EquivariantcoversofDrinfeld'supperhalf-space.Fixa niteextensionFofQp,andlet Pn�1denoteDrinfeld'supperhalf-space,whereweconsidereverythingasanadicspaceoverSpa(C;OC),whereour eldofscalarsCisacompletealgebraicallyclosedextensionofF.AsanapplicationofthedualityofRapoport{Zinkspaces,weprovethefollowingresult.Theorem7.3.1.Let~ ! bea niteetaleGLn(F)-equivariantmorphismofadicspaces.Thereexistsanm0suchthatMDrm! factorsthrough~ .Proof.Let^MLT1be(thestrongcompletionofthebase-changetoCof)theLubin-TatespaceofheightnforFatin nitelevel,andlet^MDr1be(thestrongcompletionofthebase-changetoCof)theDrinfeldspaceofheightnforFatin nitelevel.Thenboth^MLT1and^MDr1areperfectoidspacesoverSpa(C;OC).Byduality,wehavetheGLn(F)D-equivariantisomorphism^MLT1=^MDr1,whereDisthedivisionalgebraoverFofinvariant1 n.(WenotethattheGLn(F)-actionwhichcomesfromthegeneraldualitystatementdi ersfromthestandardGLn(F)-actionontheDrinfeldtowerbyg7!(g�1)t.Thisdoesnotchangeanyofthestatementstofollow.)Let~^MDr1bethe breproduct~  ^MDr1.Then~^MDr1!^MDr1isaGLn(F)-equivariant niteetalemorphismofperfectoidspacesoverSpa(C;OC).Bythedualityisomorphism,itgivesrisetoaGLn(F)-equivariant niteetalemorphism~^MLT1!^MLT1. MODULIOFp-DIVISIBLEGROUPS61References[BBM82]PierreBerthelot,LawrenceBreen,andWilliamMessing,TheoriedeDieudonnecristalline.II,LectureNotesinMathematics,vol.930,Springer-Verlag,Berlin,1982.[Ber80]PierreBerthelot,TheoriedeDieudonnesurunanneaudevaluationparfait,Ann.Sci.EcoleNorm.Sup.(4)13(1980),no.2,225{268.MR584086(82b:14026)[BGR84]S.Bosch,U.Guntzer,andR.Remmert,Non-Archimedeananalysis,GrundlehrenderMathematischenWissenschaften[FundamentalPrinciplesofMathematicalSciences],vol.261,Springer-Verlag,Berlin,1984,Asystematicapproachtorigidanalyticgeometry.[BO78]PierreBerthelotandArthurOgus,Notesoncrystallinecohomology,PrincetonUniversityPress,Princeton,N.J.,1978.[BO83]P.BerthelotandA.Ogus,F-isocrystalsanddeRhamcohomology.I,Invent.Math.72(1983),no.2,159{199.[Bre00]ChristopheBreuil,Groupesp-divisibles,groupes nisetmodules ltres,Ann.ofMath.(2)152(2000),no.2,489{549.[CF00]PierreColmezandJean-MarcFontaine,Constructiondesrepresentationsp-adiquessemi-stables,Invent.Math.140(2000),no.1,1{43.MR1779803(2001g:11184)[dJ95]A.J.deJong,Etalefundamentalgroupsofnon-Archimedeananalyticspaces,CompositioMath.97(1995),no.1-2,89{118,SpecialissueinhonourofFransOort.[dJM99]A.J.deJongandW.Messing,CrystallineDieudonnetheoryoverexcellentschemes,Bull.Soc.Math.France127(1999),no.2,333{348.[Dri76]V.G.Drinfel0d,Coveringsofp-adicsymmetricdomains,Funkcional.Anal.iPrilozen.10(1976),no.2,29{40.[Fal02]GerdFaltings,ArelationbetweentwomodulispacesstudiedbyV.G.Drinfeld,Algebraicnumbertheoryandalgebraicgeometry,Contemp.Math.,vol.300,Amer.Math.Soc.,Providence,RI,2002,pp.115{129.[Fal10] ,Coveringsofp-adicperioddomains,J.ReineAngew.Math.643(2010),111{139.[Far12]LaurentFargues,Groupesanalytiquesrigidesp-divisibles,preprint.[FF11]LaurentFarguesandJean-MarcFontaine,Courbeset bresvectorielsentheoriedeHodgep-adique,preprint,2011.[FF12] ,Vectorbundlesandp-adicHodgetheory,preprint.[FGL08]LaurentFargues,AlainGenestier,andVincentLa orgue,L'isomorphismeentrelestoursdeLubin-TateetdeDrinfeld,ProgressinMathematics,vol.262,BirkhauserVerlag,Basel,2008.[GH94]B.H.GrossandM.J.Hopkins,EquivariantvectorbundlesontheLubin-Tatemodulispace,Topologyandrepresentationtheory(Evanston,IL,1992),Contemp.Math.,vol.158,Amer.Math.Soc.,Providence,RI,1994,pp.23{88.[Har08]UrsHartl,Onperiodspacesforp-divisiblegroups,C.R.Math.Acad.Sci.Paris346(2008),no.21-22,1123{1128.MR2464250(2009h:14077)[Har11] ,PeriodspacesforHodgestructuresinequalcharacteristic,Ann.ofMath.(2)173(2011),no.3,1241{1358.MR2800715[Hub94]R.Huber,Ageneralizationofformalschemesandrigidanalyticvarieties,Math.Z.217(1994),no.4,513{551.[Hub96]RolandHuber,Etalecohomologyofrigidanalyticvarietiesandadicspaces,AspectsofMathematics,E30,Friedr.Vieweg&Sohn,Braunschweig,1996.[Ked04]KiranS.Kedlaya,Ap-adiclocalmonodromytheorem,Ann.ofMath.(2)160(2004),no.1,93{184.MR2119719(2005k:14038)[Kis06]MarkKisin,CrystallinerepresentationsandF-crystals,Algebraicgeometryandnum-bertheory,Progr.Math.,vol.253,BirkhauserBoston,Boston,MA,2006,pp.459{496. 62MODULIOFP-DIVISIBLEGROUPSMR2263197(2007j:11163)[Lau10]EikeLau,Framesand nitegroupschemesovercompleteregularlocalrings,Doc.Math.15(2010),545{569.[Lau13] ,Smoothnessofthetruncateddisplayfunctor,J.Amer.Math.Soc.26(2013),no.1,129{165.MR2983008[Mes72]WilliamMessing,ThecrystalsassociatedtoBarsotti-Tategroups:withapplicationstoabelianschemes,LectureNotesinMathematics,Vol.264,Springer-Verlag,Berlin,1972.[RZ96]M.RapoportandTh.Zink,Periodspacesforp-divisiblegroups,AnnalsofMathematicsStudies,vol.141,PrincetonUniversityPress,Princeton,NJ,1996.[Sch12]PeterScholze,PerfectoidSpaces,Publ.Math.del'IHES116(2012),no.1,245{313.[Tat67]J.T.Tate,p-divisiblegroups,Proc.Conf.LocalFields(Driebergen,1966),Springer,Berlin,1967,pp.158{183.[Wei12]JaredWeinstein,Semistablemodelsformodularcurvesofarbitrarylevel,preprint.