/
EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker - PowerPoint Presentation

nephewhers
nephewhers . @nephewhers
Follow
344 views
Uploaded On 2020-07-02

EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker - PPT Presentation

1 Photodetection Principles Performance and Limitations Nicoleta Dinu LAL Orsay Thierry Gys CERN Christian Joram CERN Samo Korpar JSI Ljubljana Yuri Musienko Northwestern U USA Veronique Puill LAL Orsay ID: 792585

renker gys joram dinu gys renker dinu joram korpar musienko puill edit 2011 pixel lhcb electron hpd

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "EDIT 2011 N. Dinu, T. Gys, C. Joram, S. ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

1

Photodetection Principles, Performance and Limitations

Nicoleta Dinu (LAL Orsay)Thierry Gys (CERN)Christian Joram (CERN)Samo Korpar (JSI Ljubljana)Yuri Musienko (Northwestern U, USA) Veronique Puill (LAL, Orsay)Dieter Renker (TU Munich)

1

Slide2

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

2

OUTLINE

Basics Requirements on photodetectors

Photosensitive materials

‘Family tree’ of photodetectors

Detector types

Applications

Slide3

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

3

Basics

Photoelectric effectSolids, liquids, gaseous materialsInternal vs. external photoeffect, electron affinity

Photodetection as a multi-step process

The human eye as a photodetector

Slide4

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

4

Formatting guidelines for preparing slides

Use Calibri as default fontDefault color: white (avoid text in red, difficult to read for many people)Main title: 24 ptsNormal text: 16 pts

References: 10 pts

Slide5

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

5

Slide6

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

6

Energy loss eVth

in (thin) ohmic contactHybrid Photon Detectors (HPD’s) – Basic PrinciplesCombination of vacuum photon detectors and solid-state technology;

Input: collection lens, (active) optical window, photo-cathode;

Gain: achieved

in one step

by energy dissipation of keV pe’s in solid-state detector anode; this results in low gain fluctuations;

Output: direct electronic signal;

Encapsulation in the tube implies:

compatibility with high vacuum technology (low outgassing, high T° bake-out cycles);

internal (for speed and fine segmentation) or external connectivity to read-out electronics;

heat dissipation issues;

D

V

(C.A. Johansen et al., NIM A 326 (1993) 295-298)

Optical input window

n+

n

p+

+

+ -

+ -

Photon

Photoelectron

Typical stopping range 3-5

m

m

Slide7

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

7

Photo-emission from photo-cathode;Photo-electron acceleration to DV  10-20kV;Energy dissipation through ionization and phonons (WSi=3.6eV to generate 1 e-h pair in Si) with low fluctuations (Fano factor

F  0.12 in Si);Gain M:Intrinsic gain fluctuations sM : dominated by electronicsExample: DV = 20kV

M

5000 and

s

M

25

suited for single photon detection with high resolution;

(C.P. Datema et al., NIM A 387 (1997) 100-103)

Background from electron back-scattering

at Si surface

1 pe

2 pe

3 pe

4 pe

6 pe

7 pe

5 pe

Energy resolution of HPD’s - Basic Properties

Slide8

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

8

(http://cmsinfo.cern.ch/Welcome.html/

CMSdetectorInfo/CMShcal.html)

(P. Cushman et al.,

NIM A 504 (2003) 502)

Possible cross-talks

(http://cmsinfo.cern.ch/Welcome.html/

CMSdetectorInfo/CMShcal.html)

Multi-pixel proximity-focussed HPD – CMS HCAL

B=4T

proximity-focussing with 3.35mm gap and HV=10kV;

Minimize cross-talks:

pe back-scattering: align with B;

capacitive: Al layer coating;

internal light reflections: a-Si:H AR coating optimized @

l

= 520nm (WLS fibres);

Results in linear response over a large dynamic range from minimum ionizing particles (muons) up to 3 TeV hadron showers;

Slide9

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

9

DEP-LHCb development:

Multi-alkali photo-cathode;Commercial anode with 61 2mm-pixels; vacuum feed-throughs to external analog (VA2) readout electronics;Proximity-focussing electron optics;Poor intrinsic active area coverage (~50%);

Single-diode cross-focussing

Multi-pixel

proximity-focussing

(E. Albrecht et al.,

NIMA A 411 (1998) 249-264)

Single avalanche diode HPD

(DEP-LAA)

(DEP-LHCb)

(Hamamatsu)

18mm

extra slide

not shown

(R. DeSalvo et al.,

NIMA A 315 (1992) 375-384)

Various kinds of commercial HPD’s

Slide10

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

10

DEP-LHCb development:

Commercial anode;Cross-focussing electron optics (de-magnification by ~5);High intrinsic active area coverage (83%);

Multi-pixel,

cross-focussing

(E. Albrecht et al., NIMA A 442 (2000) 164-170)

(DEP-LHCb)

(DEP-LHCb)

72mm

extra slide

not shown

Various kinds of commercial HPD’s

Slide11

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

11

Object illuminance: 0.1lx

EBCCD

proximity-focussed

Commercial 2/3” CCD

Hamamatsu N7640

EB-CCD

(Hamamatsu)

Electron-bombarded CCD (EBCCD)

extra slide

not shown

Slide12

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

12

Am g source through a 2-hole lead collimator

1mm

(F. Cindolo et al., IEEE TNS , Vol. 50, No. 1, February 2003, 126-132)

Cosmic muon track through 60

m

m

scintillating fibres

(T. Gys et al., NIMA 355 (1995) 386-389)

500

m

m

g

ISPA-tube – Pioneering Work on Pixel-HPD’s

Imaging with Silicon Pixel Array:

Pixel array sensor bump-bonded to binary electronic chip, originally developed for tracking (CERN-RD19);

Flip-chip assembly encapsulated inside vacuum tube using standard parts, commercial ceramic carriers and packaging techniques;

First ISPA prototype (1994) used to read small-diameter scintillating fibres developed for tracking (CERN-RD7);

Spin-off applications for beta- and gamma-detection (quartz and YAP-crystal windows)

extra slide

not shown

Slide13

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

13

Industry-LHCb development:LHCb-dedicated pixel array sensor bump-bonded to binary electronic chip (in close collaboration with ALICE-ITS), specially-developed high T° bump-bonding;

Flip-chip assembly encapsulated inside vacuum tube using full-custom ceramic carrier;

(M. Moritz et al., IEEE TNS Vol. 51,

No. 3, June 2004, 1060-1066)

50mm

Pixel-HPD anode

72mm

(K. Wyllie et al., NIMA 530 (2004) 82-86)

Pixel-HPD’s for LHCb RICHes

(M. Campbell et al., IEEE TNS Vol. 53,

No. 4, August 2006, 2296-2302)

Slide14

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

14

RICH2 H X-section

Upper RICH1 HPD plane

Pixel-HPD’s for LHCb RICHes

Single photon sensitivity over 200nm-600nm (aerogel response and scattering, and chromatic dispersion in gases)

Detection area of 3.3m

2

(500 HPD’s) with active area fraction of ~65% and position resolution 2.5mm (optimum of pixel vs chromatic vs emission point errors)

Fast response for LHC bunch-crossing rate of 40MHz with good signal-to-noise ratio

Radiation tolerant (3krad per year)

LHCb data

(preliminary)

K ring in RICH1

Slide15

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

15

extra slide

not shown(J. Vallerga et al., Proc. SPIE, vol. 5490 (2004) 1256-1267)

Images of USAF test pattern,

100ms (left) and 100s (right) exposures,

50k MCP gain

Hybrid MCP for adaptive optics (AO)

Development of next-generation astronomical AO:

Alternative to replace more conventional high-speed CCD’s;

Aim for IR response, ultra-low noise and several kHz frame-rates;

GaAs photo-cathode;

Proximity-focussing electron optics;

High-gain wide dynamic range MCP;

Anode: Medipix2 photon-counting chip used both as direct electron detector (55mm pixels) and FE readout electronics;

Slide16

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

16

Non-exhaustive list:www.photonis.com: “Photomultiplier tubes, principles and applications”;www.hamamatsu.com;www.photek.com;A.H. Sommer, ”Photoemissive materials”, J. Wiley & Sons (1968);

H. Bruining, “Physics and Applications of Secondary Electron Emission”, Pergamon Press (1954); I. P. Csorba, “Image Tubes”, Sams (1985);Proceedings of the triennial NDIP (New Developments in Photo-detection) Conference (1996-2008), published in NIMA;Literature

Literature

Slide17

EDIT 2011

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker

17

Applications

Readout of scintillators / fibres with PMT/MAPMT. Readout of RICH detectors with HPD.

Readout of RICH detector with gas based detectors

Readout of inorganic crystals with APD. Example: CMS ECAL.

Readout of scintillators with G-APD.

Ultrafast timing for TOF with MCP-PMT