/
IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006CompactModeling IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006CompactModeling

IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006CompactModeling - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
385 views
Uploaded On 2016-12-21

IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006CompactModeling - PPT Presentation

isthepermittivityofthegatedielectricisthepermittivityofspacermaterialisthewidthoftheMOSstructureandisthegatedielectricthicknessSince001893832000 ID: 504343

  isthepermittivityofthegatedielectric isthepermittivityofspacermaterial isthewidthoftheMOSstructureandisthegate-dielectricthickness.Since0018-9383/$20.00

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEETRANSACTIONSONELECTRONDEVICES,VOL.53..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006CompactModelingoftheEffectsofParasiticInternalFringeCapacitanceontheThresholdVoltageofGate-DielectricNanoscaleSOIMOSFETsM.JagadeshKumar,  ,SumeetKumarGupta,    ,andVivekVenkataraman,    —Acompactmodelfortheeffectoftheparasiticin-ternalfringecapacitanceonthethresholdvoltageofhigh-dielectricsilicon-on-insulatorMOSFETsisdeveloped.Theauthors’modelincludestheeffectsofthegate-dielectricpermit-tivity,spaceroxidepermittivity,spacerwidth,gatelength,andthe   isthepermittivityofthegatedielectric,isthepermittivityofspacermaterial,isthewidthoftheMOSstructureandisthegate-dielectricthickness.Since0018-9383/$20.00©2006IEEE  :PARASITICINTERNALFRINGECAPACITANCEONGATE-DIELECTRICNANOSCALESOIMOSFETS707 Fig.1.Cross-sectionalviewofanSOIMOSFETshowingtheinternalpara-siticfringecapacitance. Fig.2.FringingÞeldfromthebottomofthegateelectrodetothedrain(orsource).areinseries,thenetinÞnitesimalcapacitancecanbewrittenas  Thetotalinternalfringecapacitancecanbeobtainedbyintegrating(1)overthegate-dielectricthicknessas    Equation(2)isreÞnedbelowinordertotakecareoftheimperfectcircularityofthefringingÞeldlines.ThemodelbyKamchouchiandZaky[3]givestheparasiticcapacitanceperunitlengthconsideringtheelectricÞeldlinesfringingfromtheentireperimeterofthebottomedgeofthegateelectrodeas for isthegatelength.Thetotalfringecapacitancecanbeobtainedbymultiplying(3)withtheperimeterofthebottomedgeofthegateelectrode[3].SinceweneedtoaccountforelectricÞeldlinesfringingfromthebottomedgeofthegatetoeitherthesourceorthedrainregiononly,theinternalfringecapacitancecanbewrittenas   for Itcanbeseenthat(2)reducesto(4)inthelimitbutforaconstantfactor.ThisdifferencearisesbecauseoftheassumptionofthefringingelectricÞeldlinesbeingcircularwhilederiving(2).Thus,(2)ismultipliedbytheabovefactortoobtain  Theaboveexpressionreducesto(4)inthelimitTheKamchouchiandZakymodelin(4),andhence(5),assumesthattheseparationbetweentheelectrodesisverysmallincomparisontothelengthoftheelectrodes.Thisiscertainlynotthecaseinshortchannelhigh-dielectricSOIMOSFETs.Hence,(5)isfurthermodiÞedtorepresentthetruepicture.ThefringingÞeldfromthegatetothesource/drainregionsincreasesasafunctionof[1].ThisistheeffectoftheincreasedcrowdingofÞeldlinesinthespacerregionforlargegate-dielectricthicknesses,i.e,forcomparabletoHence,thefringecapacitanceinthespacerregionismorethanwhathasbeenassumedwhilederiving(5).Toaccountforthis,aneffectivespacerdielectricconstantisdeÞnedas Substituting(6)inplaceofin(5),wecanobtaintheÞnalexpressionfortheparasiticinternalfringecapacitanceas (7)   IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006III.EFFECTOFTHENTERNALAPACITANCEONTHEURFACEOTENTIALToincludetheeffectoftheinternalfringecapacitanceonthesurfacepotential,weassumethechargedistributioninducedinthesourceanddrainregionsduetothefringingelectricÞeldlinesasinauniformlychargedplateasshowninFig.3,withthechargedensitygivenby forthesourceregionforthedrainregionisthebuilt-inpotentialacrossthebodyÐsourcejunction,isthesiliconbandgap,isthebody/substratedopingconcentration,isthethermalvoltage,istheintrinsiccarrierconcentration,arethepotentialsappliedtothegateanddrainelectrodes,respectively,istheßat-bandvoltage,iswidthofthegate,andisthespacerthickness.Thepotentialduetothisuniformchargedistributionisevaluatedalongthechannelatthemiddleofthegatewidthastheeffectismaximumhere.InanMOSFET,theÞeldlinesoriginatingfromthebottomofthechargedplateonlywillcontributetothepotentialinthechannel;therefore,onlyhalfthecoulombpotentialduetothesechargesisconsidered.Then,thepotentialatadistanceÒxÓfromtheuniformlychargedplateisgivenby(Fig.3)     isthedielectricconstantofsilicon.Evaluationoftheintegralin(8)givestheexpressionforasgivenin(9)shownatthebottomofthepage.Young[4]proposedamodelforthesurfacepotentialalongthechannel(-directioninFig.1)forafullydepleted(FD)SOIMOSFET,assumingasimpleparabolicpotentialproÞleintheverticaldirection(-directioninFig.1)as Fig.3.Potentialduetoauniformlychargedplate.  istheßat-bandvoltage,isthesiliconsubstratethicknessandisthepermittivityofsilicon.Theparametersaregivenas    Intheaboveanalysis,wehaveassumedtheburiedoxidethicknesstobelargeandhenceneglectedthecorrespondingThesurfacepotentialminimumisat  andisgivenby Toobtainthesurfacepotentialincludingtheeffectoftheinternalfringecapacitance,thepotentialduetothechargesonthesourceanddrainregionsasgivenby(9),isaddedto(10)andtheexpressionforsurfacepotentialismodiÞedas                                                  :PARASITICINTERNALFRINGECAPACITANCEONGATE-DIELECTRICNANOSCALESOIMOSFETS709isthepotentialalongthechannelduetothechargesinthesourceregion,andisthepotentialalongthechannelduetothechargesinthedrainregion.TheminimumofthemodiÞedsurfacepotentialisgivenby IV.EFFECTOFTHENTERNALAPACITANCEONTHEOLTAGEIn[5],KumarandChaudhryproposedamodelforthethresholdvoltageofdual-materialgate(DMG)-SOIMOSFETsbyequatingthesurfacepotentialminimumgivenby(11)totwicetheFermipotentiali.e., Themodelin[5]canbemodiÞedforSMGSOIMOSFETsas          Toincorporatetheeffectoftheinternalfringecapacitance,wemodify(14)asisasgivenin(13).Solving(16)resultsinthesameexpressionforthethresholdvoltageasgivenin(15),exceptforamodiÞcationintheexpressionforÒÓgivenas     Fig.4.Internalfringecapacitancevariationwithgateoxidepermittivityfor;and(b)nm.GatewidthisÞxedat1m,EOTisdependenton[see(9)]andisthevalueof ,thevalueofthresholdvoltagecanbeeasilyobtainedbyiterativelysolving(15).V.SIMULATIONESULTSANDFig.4showsthevariationoftheinternalfringecapacitanceversusthegate-dielectricpermittivityevaluatedus-ingtheproposedmodelandcomparedwithMEDICI[10]simulationsforchannellengthsof60and40nm(seeTableIforadescriptionofthedeviceparameters).ThecapacitanceisextractedfromMEDICIinthefollowingmanner1)thegate,source,anddrainelectrodeheightsaremadenegligiblesothatothercomponentsofthefringecapacitancethatariseduetotheÞniteelectrodethicknessarenulliÞedand2)thetotalcapacitanceasseenfromthegateelectrodeforthisMOSFETstructureisextractedusingthemethodofincremen-talchargeduetothesmallincrementinvoltage.ThisgivesthefringecapacitanceplustheMOSgatecapacitance.Then,issubtractedfromthecapacitanceobtainedabovetoÞndthevalueof.ThereisadifferenceofaboutFbetweenourcalculatedandsimulated IEEETRANSACTIONSONELECTRONDEVICES,VOL.53,NO.4,APRIL2006TABLEISEDINTHEIMULATION Fig.5.Calculatedsurfacepotentialvariationalongthechannelforwithandwithouttheeffectofthefringecapacitance.TheparametersusedV,EOTvalues.ThevaluesoftheidealMOSgatecapacitanceFfor nmand nm.ItcanbeseenintheÞgurethattheparasiticfringecapacitanceincreaseswiththeincreasinggate-dielectricpermittivity.Thisisbecausethephysicalgate-dielectricthick-nessincreasesasthegate-dielectricpermittivityincreases[byafactorof]forthesameequivalentoxidethickness(EOT).ThisresultsinanincreaseinthefringingelectricÞeldlinesfromthebottomofthegateelectrodetothesourceanddrainregions.InFig.5,thevaluesofthesurfacepotentialwithandwithouttheeffectofparasiticfringecapacitanceareplottedagainstthehorizontaldistanceinthechannelforagate-dielectricpermittivityof60.IntheÞgure,itisevidentthatthesurfacepotentialincreasesduetotheeffectofthefringecapacitance,resultinginanincreaseoftheminimumsurfacepotential.Furthermore,itcanbeseenthattheeffectofthispotentialismaximumroughlyatthepointofminimumsurfacepotential;hence,onewouldexpectasigniÞcanteffectofonthethresholdvoltage.Toverifytheproposedmodel,the2-DdevicesimulatorMEDICI[10]wasusedtosimulatethethresholdvoltage.AnFDn-channelSOIstructureisimplementedinMEDICIhavinguniformlydopedsource/drainandbodyregions.This Fig.6.Comparisonofthesimulatedandcalculatedthresholdvoltagevaria-tionversusthegate-dielectricconstantfor(a)withouttheS/D-Gateoverlap;and(b)withtheS/D-Gateoverlap.Theparametersusedare:EOTstructureissimulatedbothwithandwithoutthegate-source/drain(S/D)overlap.InFig.6,thecalculatedvaluesofthethresholdvoltageasafunctionofthegate-dielectricpermittivityarecomparedwiththoseobtainedfromthe2-Dsimulation.AscanbeseenfromtheÞgure,thethresholdvoltageobtainedfromthemodeltracksthesimulationvalueswellwithamaximumoffsetofabout15mV.Themodelgivesagoodagreementwiththesimulationevenforthecaseofthegate-S/Doverlap.Itisevidentthatthethresholdvoltagedecreaseswiththeincreasing.ThisisbecauseoftheincreaseinthesurfacepotentialasaresultofthechargesinducedinthedrainandsourceregionsduetofringingÞeldlinesfromthebottomofthegateelectrode.Thisresultsinanearlyonsetofinversioninthechannelandhencealowerthresholdvoltage.Thedropinthethresholdvoltageisashighasabout60Ð80mVfor increasesfrom3.9to80.ToinvestigatethesigniÞcanceofquantummechanical(QM)effectsintheaboveanalysis,thesimulationswereperformedbyincludingtheQMeffectsinMEDICI[10].InFig.7,thethresholdvoltageobtainedwithandwithoutQMeffectsarecompared.AsisevidentfromtheÞgure,thereisaverysmallandinsigniÞcantdifferencebetweenthetwo,suggestingthat  :PARASITICINTERNALFRINGECAPACITANCEONGATE-DIELECTRICNANOSCALESOIMOSFETS711 Fig.7.EffectofincludingQMeffectsinthesimulation.Theparametersusedare:V,EOTtheQMeffectscanbeneglectedinthethresholdvoltageVI.CWehaveexaminedtheeffectsoftheparasiticinternalfringecapacitanceonthethresholdvoltageofFDhigh-MOSFETsbydevelopingasimplemodelfortheinternalfringecapacitanceandobtainingexpressionsforthesurfacepoten-tialandthresholdvoltageincludingtheeffectoftheinternalfringecapacitance.Wehavecomparedtheresultswithaccurate2-Dsimulations.Thecalculatedvaluesofthethresholdvolt-ageobtainedfromtheproposedmodelagreewellwiththesimulatedresults.ThereisasigniÞcantdropinthethresholdvoltageduetofringingÞeldlinesfromthebottomedgeofthegateelectrodetothesourceanddrainregionsforhighergate-dielectricpermittivities(i.e.,higherphysicalgate-dielectricthicknessforthesameeffectiveoxidethickness).ThismayaffectthedevicecharacteristicsandperformancesigniÞcantly;hence,itisimportanttorecognizethiseffectespeciallyforgate-dielectricSOIMOSFETs.Ourmodelcanbeeasilyimplementedinacircuitsimulatortoincludethiseffect.[1]B.Cheng,M.Cao,R.Rao,A.Inani,P.V.Voorde,W.M.Greene,J.M.C.Stork,Y.Zhiping,P.M.Zeitzoff,andJ.C.S.Woo,ÒTheimpactofhigh-gatedielectricsandmetalgateelectrodesonsub-100nm   ,vol.46,no.7,pp.1537Ð1544,Jul.1999.[2]A.ChaudhryandM.J.Kumar,ÒControllingshort-channeleffectsindeepsubmicronSOIMOSFETsforimprovedreliability:Areview,Ó ,vol.4,no.1,pp.99Ð109,Mar.2004.[3]H.KamchouchiandA.Zaky,ÒAdirectmethodfortheedgecapacitanceofthickelectrodes,Ó ,vol.8,no.5,pp.1365Ð1371,May1975.[4]K.K.Young,ÒShort-channeleffectinfullydepletedSOIMOSFETÕs,Ó   ,vol.36,no.2,pp.399Ð402,Feb.1989.[5]M.J.KumarandA.Chaudhry,ÒTwo-dimensionalanalyticalmodelingoffullydepletedDMGSOIMOSFETandevidencefordiminished   ,vol.51,no.4,pp.569Ð574,Apr.2004.[6]G.V.ReddyandM.J.Kumar,ÒAnewdual-materialdouble-gate(DMDG)nanoscaleSOIMOSFETÑtwo-dimensionalanalyticalmodel-ingandsimulation,Ó  ,vol.4,no.2,pp.260Ð268,Mar.2005.[7]K.Suzuki,ÒParasiticcapacitanceofsubmicrometerMOSFETs,Ó  ,vol.46,no.9,pp.1895Ð1900,Sep.1999.[8]R.ShrivastavaandK.Fitzpatrick,ÒSimplemodelfortheoverlapcapacitanceofaVLSIMOSdevice,Ó   vol.ED-29,no.12,pp.1870Ð1875,Dec.1982.[9]N.R.Mohapatra,M.P.Desai,S.G.Narendra,andV.R.Rao,ÒModelingofparasiticcapacitancesindeepsubmicrometerconventionalandhigh-KdielectricMOStransistors,Ó   ,vol.50,no.4,pp.959Ð966,Apr.2003.2003.  !",TechnologyModelingAssociates,Inc.,PaloAlto,CA, M.JagadeshKumar(MÕ95ÐSMÕ99)wasborninAndhraPradesh,India.HereceivedtheM.S.andPh.D.degreesfromtheIndianInstituteofTechnol-ogy(IIT),Madras,India,allinelectricalengineering.From1991to1994,heperformedpost-doctoralresearchinthemodelingandprocessingofhigh-speedbipolartransistorswiththeDepartmentofElectricalandComputerEngineering,UniversityofWaterloo,Waterloo,ON,Canada,wherehealsodidresearchonamorphoussiliconthin-Þlmtransistors.FromJuly1994toDecember1995,hewasinitiallywiththeDepartmentofElectronicsandElectricalCommunicationEngineering,IIT.HethenjoinedtheDepartmentofElectricalEngineeringofthesameuniversity,wherehebecameanAssociateProfessorinJuly1997andaFullProfessorinJanuary2005.Heisareviewerfordifferentjournalsincluding    #   $$      % &    .Heistheauthorofmore100publicationsinpeer-reviewedjournalsandconferences.HisresearchinterestsincludeVLSIdevicemodelingandsimulationfornanoscaleapplica-tions,ICtechnology,andpowersemiconductordevices.Dr.KumarisaFellowoftheInstituteofElectronicsandTelecommunicationEngineers,India.HisteachinghasoftenbeenratedasoutstandingbytheFacultyAppraisalCommittee,IIT.HewastheChairmanoftheFellowshipCommittee,TheSixteenthInternationalConferenceonVery-Large-Scale-Integration(VLSI)Design,January4Ð8,2003,NewDelhi,India.HewastheChairmanoftheTechnicalCommitteeforHighFrequencyDevices,12thInternationalWorkshoponthePhysicsofSemiconductorDevices,December13Ð17,2005,NewDelhi,India.HeisareviewerforIEEETRANSACTIONSONLECTRON SumeetKumarGupta(SÕ05)iscurrentlyworkingtowardtheB.Tech.degreeinelectricalengineeringattheIndianInstituteofTechnology,Delhi,India.Hiscurrentresearchinterestsincludedevicemodelingandsimulation.Heisalsointerestedinlowpowerverylargescaledesign,andmemorydesignandtesting. VivekVenkataraman(SÕ05)iscurrentlyworkingtowardtheB.Tech.degreeinelectricalengineeringattheIndianInstituteofTechnology,Delhi,India.Hisresearchinterestsincludesemiconductordevicephysics,nanoscaledevicemodelingandsim-ulation,andorganicsemiconductors/electronics.