PPT-Machine Learning from Big Datasets
Author : olivia-moreira | Published Date : 2018-03-15
William Cohen Outline Intro Who Where When administrivia WhatHow Course outline amp load Resources languages and machines Java for Hadoop Small machines understand
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Machine Learning from Big Datasets" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Machine Learning from Big Datasets: Transcript
William Cohen Outline Intro Who Where When administrivia WhatHow Course outline amp load Resources languages and machines Java for Hadoop Small machines understand essence of scaling. William Cohen. Outline. Intro. Who, Where, When - . administrivia. What/How. Course outline & load. Resources – languages and machines. Java (for . Hadoop. ). Small machines – understand essence of scaling. Clustering and pattern recognition. W. ikipedia entry on machine learning. 7.1 Decision tree learning. 7.2 Association rule learning. 7.3 Artificial neural networks. 7.4 Genetic programming. 7.5 Inductive logic programming. Lecture . 4. Multilayer . Perceptrons. G53MLE | Machine Learning | Dr Guoping Qiu. 1. Limitations of Single Layer Perceptron. Only express linear decision surfaces. G53MLE | Machine Learning | Dr Guoping Qiu. Machine Learning. Large scale machine learning. Machine learning and data. Classify between confusable words.. E.g., {to, two, too}, {then, than}.. For breakfast I ate _____ eggs.. “It’s not who has the best algorithm that wins. . William Cohen. Outline. Intro. Who, Where, When - . administrivia. What/How. Proposed outline & load. Resources – languages and machines. Java (for . Hadoop. ). Small machines – understand essence of scaling. R/Finance. 20 May 2016. Rishi K Narang, Founding Principal, T2AM. What the hell are we talking about?. What the hell is machine learning?. How the hell does it relate to investing?. Why the hell am I mad at it?. David Kauchak. CS 451 – Fall 2013. Why are you here?. What is Machine Learning?. Why are you taking this course?. What topics would you like to see covered?. Machine Learning is…. Machine learning, a branch of artificial intelligence, concerns the construction and study of systems that can learn from data.. CS539. Prof. Carolina Ruiz. Department of Computer Science . (CS). & Bioinformatics and Computational Biology (BCB) Program. & Data Science (DS) Program. WPI. Most figures and images in this presentation were obtained from Google Images. Dan Roth. University of Illinois, Urbana-Champaign. danr@illinois.edu. http://L2R.cs.uiuc.edu/~danr. 3322 SC. 1. CS446: Machine Learning. Tuesday, Thursday: . 17:00pm-18:15pm . 1404 SC. . Office hours: . An Overview of Machine Learning Speaker: Yi-Fan Chang Adviser: Prof. J. J. Ding Date : 2011/10/21 What is machine learning ? Learning system model Training and testing Performance Algorithms Machine learning The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand The Desired Brand Effect Stand Out in a Saturated Market with a Timeless Brand Nicolas . Borisov. . 1,. *, Victor . Tkachev. . 2,3. , Maxim Sorokin . 2,3. , and Anton . Buzdin. . 2,3,4. . 1. Moscow . Institute of Physics and Technology, 141701 Moscow Oblast, Russia. 2. OmicsWayCorp. Er. . . Mohd. . Shah . Alam. Assistant Professor. Department of Computer Science & Engineering,. UIET, CSJM University, Kanpur. Agenda. What is Machine Learning?. How Machine learning . is differ from Traditional Programming?.
Download Document
Here is the link to download the presentation.
"Machine Learning from Big Datasets"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents