/
Regensburger  zur Wirtschaftswissenschaft University of Regensburg Wor Regensburger  zur Wirtschaftswissenschaft University of Regensburg Wor

Regensburger zur Wirtschaftswissenschaft University of Regensburg Wor - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
381 views
Uploaded On 2015-07-24

Regensburger zur Wirtschaftswissenschaft University of Regensburg Wor - PPT Presentation

Rolf Tschernig holds the chair of Econometrics at the Department of Economics and Econometrics at the University of Regensburg 93040 Regensburg Germany Phone 499419432737 Email rolftschern ID: 91940

Rolf Tschernig holds the chair

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Regensburger zur Wirtschaftswissenschaf..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Regensburger zur Wirtschaftswissenschaft University of Regensburg Working Papers in Business, Economics and Management Information Systems Fractionally Integrated VAR Models with a Fractional Lag Operator and Deterministic Trends: and Two-step Estimation , Roland Weigandng memory, maximum likelihood estimation, fractional Rolf Tschernig holds the chair of Econometrics at the Department of Economics and Econometrics at the University of Regensburg, 93040 Regensburg, Germany. Phone: +49-941-943-2737, E-mail: rolf.tschernig[at]wiwi.uni-regensburg.de Enzo Weber holds the chair of Empirical Economics, especially Macroeconometrics and Labour Markets at the Department of Economics and Econometrics at the University of Regensburg, 93040 Regensburg, Germany, and is head of the research department Forecasts and Structural Analysis of the Institute for Employment Research (IAB), 90478 Nuremberg, Germany. Phone: +49 -911-179-7643, E-mail: enzo.weber[at]iab.de Roland Weigand is a researcher at the research department Forecasts and Structural Analysis of the Institute for Employment Research (IAB), 90478 Nuremberg, Germany. Phone: +49 -911-179-3291, E-mail: roland.weigand[at]iab.de FractionallyIntegratedVARModelswithaFractionalLagOperatorandDeterministicTrends:FiniteSampleIdenti cationandTwo-stepEstimationRolfTscherniga,*,EnzoWebera,b,andRolandWeigandbaUniversityofRegensburg,DepartmentofEconomics,D-93040RegensburgbInstituteforEmploymentResearch(IAB),D-90478NurembergJanuary2013AbstractFractionallyintegratedvectorautoregressivemodelsallowtocapturepersistenceintimeseriesdatainavery exibleway.Additional exibilityfortheshortmemoryproper-tiesofthemodelcanbeattainedbyusingthefractionallagoperatorofJohansen(2008)inthevectorautoregressivepolynomial.However,italsomakesmaximumlikelihoodestimationmoredicult.Inthispaperwe rstidentifyparametersettingsforunivariateandbivariatemodelsthatsu erfrompooridenti cationin nitesamplesandmaythereforeleadtoesti-mationproblems.Second,weproposetoinvestigatetheextentofpooridenti cationbyusingexpectedlog-likelihoodsandvariationsthereofwhicharefastertosimulatethanmultivari-ate nitesampledistributionsofparameterestimates.Third,weprovidealineofreasoningthatexplainsthe ndingfromseveralunivariateandbivariatesimulationexamplesthatthetwo-stepestimatorsuggestedbyTschernigetal.(2010)canbemorerobustwithrespecttoestimatingthedeterministiccomponentsthanthemaximumlikelihoodestimator.Keywordsfractionalintegration,longmemory,maximumlikelihoodestimation,fractionallagoperator. Correspondingauthor.Email:Rolf.Tschernig@wiwi.uni-regensburg.de.Phone:(+49)941943-2737Aformerversionwastitled:Conditionalversusapproximateconditionalmaximumlikelihoodestimationinfractionallyintegratedvectorautoregressivemodelswithafractionallagoperatoranddeterministictrends.1 1IntroductionFractionallyintegratedvectorautoregressive(VAR)modelshavebecomeavaluableextensionofVARmodelswithintegerordersofintegration.Recently,Tschernigetal.(2010)introducedthefractionallagoperator(seeJohansen,2008)intostandardfractionallyintegratedVARmodelsinordertoavoidcertainshortcomingsinimpulseresponseanalysisunderlong-runidenti cationrestrictions.Theadditionalmodeling exibilityduetothefractionallagoperator,however,makesmaximumlikelihoodestimationmoredicult,inparticularifdeterministiccomponentsareincluded.Inthispaperwe rstidentifyparametersettingsforunivariateandbivariatemodelver-sionsthatsu erfrompooridenti cationin nitesamplesandmaythereforeleadtoestimationproblems.Second,weproposetoinvestigatetheextentofpooridenti cationbyuseofexpectedlog-likelihoodsandvariationsthereofwhicharefastertosimulatethanmultivariate nitesam-pledistributionsofparameterestimates.Third,weprovidealineofreasoningthatexplainsthe ndingfromseveralunivariateandbivariatesimulationexamplesthatthetwo-stepes-timatorsuggestedbyTschernigetal.(2010)canbemorerobustwithrespecttoestimatingthedeterministiccomponentsthanthemaximumlikelihoodestimator.Withinthemaximumlikelihoodapproachtheestimatorofthedeterministiccomponentsanditspropertiesdependonthesimultaneouslyestimatedfractionalparameters.Ifthelatteraresubjecttopoor nitesampleidenti cation,thedeterministiccomponentsmaybepoorlyestimatedwhichaddstothedicultiesofestimatingthefractionalparameters.Wethereforesuggesttoapplythetwo-stepestimatorinpractice.Section2brie ypresentsfractionallyintegratedVARmodelswithafractionallagoperatorwhileSection3treatsthemaximumlikelihoodestimatorforthesemodels.InSection4wediscussprominentcasesofunivariatedatageneratingprocessesthatmaybepronetopooridenti cation.Section5explainshowtheexpectedlog-likelihoodandvariationsthereofallowtovisualizethemagnitudeofpooridenti cationforagivendatageneratingprocess.InSection6weshowhowtheproblemofpooridenti cationworsensoncedeterministiccomponentshavetobeestimatedaswell.Finally,Section7extendstheanalysistobivariatefractionallyintegratedVARprocesseswithafractionallagoperator.2 2FractionallyintegratedVARbmodelsInthissectionweconsiderfractional(vector)autoregressiveprocesseswithafractionallagoperatoranddeterministicterms.Usingthefractionaldi erenceoperator(1�L)d=1Xj=0�(j�d) �(�d)�(j+1)Lj;where�()denotesthegammafunction,thefractionallagoperatorLbisde ned(seeJohansen,2008)asLb=1�(1�L)b=c1L+c2L2+withb�0:Thedegreeoffractionalintegrationbisrequiredtobepositiveinordertoguaranteethatapplyingthefractionallagoperatordoesnotchangethedegreeofintegration.Forb=1oneobtainsthestandardlagoperatorL.Afractionallyintegratedk-variatevectorautoregressiveprocesswithfractionallagoperator(FIVARb)processforxtisgivenbyA(Lb)(L;d)xt=ut;utWN(0;);t=1;2;:::(1a)(L;d):=diag(1�L)d1;(1�L)d2;:::;(1�L)dk:(1b)Heretheerrorsutaremultivariatewhitenoise(WN)withmeanzeroandhomoscedasticcovariancematrix.Forthepth-ordervectorautoregressivelagpolynomialA(z)=I�A1z��ApzpwerequirethestabilityconditionofJohansen(2008,Corollary6)tohold.ItprovidesaconditionsuchthateachelementinthevectorprocesstgivenbyA(Lb)t=ut;t=:::;�2;�1;0;1;2;:::;(2)isI(0).TherootsofjA(z)j=0havetobeoutsideCb,whichistheimageoftheunitcircleunderthemappingf:z7!1�(1�z)b.ThisconditiondependsbothonA(.)andonbandcaneasilybecheckedonceparametervaluesaregiven.Sincez=1liesonCbregardlessofthevalueofb,stabilityoftheA(Lb)polynomialexcludestheunitrootcaseandalsoimpliesnonsingularityofA(1).Underthestabilityconditiontheparameterbaddssome exibilitytotheshort-runprop-ertiesoftheprocessratherthanhavingin uenceontheintegrationorders.Forb=1oneobtainsastandardfractionallyintegratedVARprocess(e.g.Nielsen,2004a).Inthesequeldenotetheparametervectorwithallparametersofthemodelby2SwhereSistheparameterspacethatcontainsallparametersthatful lthestabilitycondition.3 2.1TreatmentofpresamplevaluesInordertoobtainasolutiontotheprocess(1)fornonstationaryxtwemakeuseofthetrun-catedoperatornotation(Johansen,2008,AppendicesA.4,A.5).Let(L)denoteanin nitematrixpolynomialandI()theindicatorfunction.Then+(L)xt=I(t1)Pt�1i=0ixt�iand�(L)xt=(L)xt�+(L)xt.1Notealsothat+(L)canalwaysbeinvertedbyexpanding(z)�1aroundzeroandtakingthe rsttterms.Thepresamplevaluesxt,t=0;�1;:::,arenotmodeledalthoughtheyareallowedtobestochastic.Undermildconditionsonthepresamplevalues,seee.g.JohansenandNielsen(2012a),anequivalentrepresentationoftheFIVARbprocess(1)isgivenbyA+(Lb)+(L;d)xt=ut+mt;t=1;2;:::;(3)mt=[A+(Lb)�(L;d)+A�(Lb)+(L;d)+A�(Lb)�(L;d)]xtwithitssolutiongivenbyxt=A+(Lb)�1+(L;d)�1ut+t;t=A+(Lb)�1+(L;d)�1mt;(4)wheretcapturestheimpactofthepresamplevalues.Notethattheforecasterrorimpulseresponses hforhorizonhcanbecomputedfromthetruncatedlagpolynomial +(L)=A+(Lb)�1+(L;d)�1,replacingin(4)tbyt+h.2.2DeterministiclineartrendsThemodelingoflineardeterministictimetrendsisrestrictedtothesampleofmodeleddatabyassumingthatyt=8�&#x]TJ ;� -1; .63; Td;&#x [00;:0+1t+xt;ift1;xtift0:(5)Therefore,theFIVARbmodelwithdeterministictrendsisgivenbyA(Lb)(L;d)(yt�0�1t)=ut;t=1;2;::::(6) 1Notethatforaproduct(L)=(L)(L)ofVARpolynomials(L),(L)onehas+(L)=+(L)+(L);�(L)=+(L)�(L)+�(L)+(L)+�(L)�(L):4 ByexplicitlystatingthedependenceonpresamplevaluesoneobtainstherepresentationsA+(Lb)+(L;d)yt=ut+A+(Lb)+(L;d)(0+1t)+mt;t=1;2;:::;(7)yt=A+(Lb)�1+(L;d)�1ut+(0+1t)+t;t=1;2;::::(8)Ifitisassumedthatallpresamplevaluesarezero,xt=0,t0,thenmt=t=0,t=1;2;:::.3MaximumlikelihoodestimationInthefollowingwestatetheconditionalmaximumlikelihoodestimatorforgivenpresamplevaluesxt,t=0;�1;:::;Tp.Forbrevityitiscalledmaximumlikelihoodestimatorthroughoutthepaper.Let =vec(A1;:::;Ap)denotethevectorofallVARcoecientsandY=�y�Tp;:::;y�1;y0;y1;:::;yTthevectorofobservablepresampleandsamplevalues.Foranobservedtimeseries,themaximumlikelihoodestimatorsforthegeneralmodel(6)allowingfordeterministictrendsisgivenby^d;^b;^0;^1;^ ;^=argmaxd;b;0;1; ;L(d;b;0;1; ;;Y);(9)wherethemaximizationiscarriedoutoveranappropriateparameterspace.Further,weassumenormallydistributederrorsinordertoderivethelog-likelihoodfunctionexplicitly:L(d;b;0;1; ;;Y)=�Tk 2log2�T 2logjj�1 2TXt=1ut(d;b;0;1; )0�1ut(d;b;0;1; );(10)whereut(d;b;0;1; )isobtainedbyrearranging(6)asut(d;b;0;1; )=(L;d)(yt�(0+1t))| {z }zt(d;0;1)�A1Lb(L;d)(yt�(0+1t))| {z }zt�1(d;b;0;1)��ApLpb(L;d)(yt�(0+1t))| {z }zt�p(d;b;0;1);t=1;2;::::(11)Sincezt(d;0;1)doesnotdependon itfollowsfrom(11)thatforgivend,b,0,1theVARcoecientmatricesA1,...,Ap,ifunrestricted,areobtainedbyleastsquares,regressingzt(d;0;1)onzt�1(d;b;0;1);:::;zt�p(d;b;0;1).Togetherwithconcentratingoutthissimpli esthemaximizationconsiderablyandleadstotheconcentratedlog-likelihoodLc(d;b;0;1;Y)=�Tk 2(log2+1)�1 2log TXt=1ut(d;b;0;1)ut(d;b;0;1)0 ;(12)5 thatcanbemaximizedinsteadof(10).Forexample,inthebivariatecasethemaximizationofthisconcentratedlog-likelihoodfunctiononlyrequiresanonlinearoptimizationonsevenparametersindependentlyoftheVARorderp.AvailablerelatedasymptoticresultsarederivedbyJohansenandNielsen(2012a)inaframeworkoffractionalcointegrationundertheassumptionofnodeterministictrends.Whileintheirsettingidenticaldisareassumed,thisdoesnotimplythattheindividualfractionalordersofintegrationareidenticalduetothepossibilityoftrivialcointegrationwith =(1;0)0.However,weexcludethepossibilityoffractionalcointegrationbythestabilityrestrictionontheVARpolynomialA(Lb).ForthestandardFIVARmodelunderthestabilityconditionwithb=1asymptoticresultsarederivedbyNielsen(2004a)andimpliedbyHualdeandRobinson(2011).ItremainstobecheckedifHualdeandRobinson(2011)coverstheFIVARbmodelforb6=1andzeropresamplevalues.Withrespecttounivariateprocessestheasymptoticbehaviorofthemaximumlikelihoodestimator(9)isinvestigatedbyNielsen(2004b),whorequiresb=1,astableARpolynomial,andzeropresamplevaluesbutallowsforadeterministictrend,andbyJohansenandNielsen(2010),whoallowfornonzeropresamplevalues,b6=1aswellasforunitrootsintheARpolynomial.Theyexcludedeterministictrends,however.JohansenandNielsen(2012b)derivetheasymptoticsecond-orderbiasduetopresamplevaluesforapureunivariatefractionalprocessdxt=ut.WiththeexceptionofJohansenandNielsen(2010)andJohansenandNielsen(2012a)allmentionedresultsrequiretheA(Lb)polynomialtobestable.4Poor nitesampleidenti cationincaseofunivariatepro-cessesItiswellknownthatparameterestimationmaybemoredicultiftheparametervaluesofthedatageneratingprocessareclosetotheboundaryoftheparameterspacewhereallorsomeparametersarenotidenti ed.Togiveanexample,letthedatageneratingprocessbeasmoothtransitionautoregressiveprocessthatisveryclosetoalinearautoregressiveprocess.Sincetheparametersofasmoothtransitionautoregressivemodelarenotidenti edifthedatageneratingprocessisinfactlinear,aweaknonlinearstructuremaynotbedetectableinmanysamplessuchthatestimationtakesplaceasifparametersarenotidenti ed.AnotherwellknownexamplearecommonrootsinARMA(p;q)models.Ifthetrueorders6 arep0andq0,thenestimatinganARMA(p0+1;q0+1)modelsu ersfromcommonrootswhichcausestheparametersofthemodeltobenotidenti ed.Incontrasttothepreviousexamplewhereaweaknonlinearstructureinthedatageneratingprocesscausesestimationproblems,itistoolargeamodelorderinthelatterexample.WhenestimatingFIVARbprocessessimilarscenariosmayoccurwheretheorderoftheautoregressivepolynomialistoolarge,p�p0:a)p0=0andp=1:AssumethatthedatageneratingprocessisaunivariatewhitenoisebutaunivariateFIVARbmodeloforderoneis tted,(1�a1Lb)dxt=ut;utWN(0;2);t=1;2;::::(13)ThismodelwillhenceforthbecalledaFARbmodeloforderone.i)Insertingthetrueparametervaluesa1;0=0andd0intothelagpolynomialsdelivers(1�0Lb)d0=d0sothatbcantakeanypositivevalue.Thus,bisnotidenti edbutdis.ii)However,onemayalsoinserta1;0=1.Then(1�Lb)d=b+dwhichhastobeequaltod0.Thenthereisacontinuumofcombinationsforbanddforwhichb+d=d0holds.b)p0=1andp=2:Since(1�a1Lb�a2L2b)d=(1�1Lb)(1�2Lb)d,insertingthetrueparameters0a1;01,b0&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0,andd0&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0intoaFARbmodelwithorder2deliverstworepresentationsusing1=a1;0:i)2=0andthusa2=0,beingequivalenttoaFARbmodeloforderone.ii)2=1.Then(1�a1;0Lb0)d0=(1�a1;0Lb0)b0d0�b0=(1�a1;0Lb0)(1�1Lb0)d0�b0=(1�a1Lb0�a2L2b0)d0�b0wherea1=a1;0+1,a2=�a1;0.Notethatinii)thestabilityconditionisviolatedsince2=1.IncontrasttoCasea),theparametersforeachscenarioarelocallyidenti edbutnotglobally.Thus,onemayexpectthelog-likelihoodtobebimodal.7 Eveniftheparametersareidenti ed,theymaybeclosetotheboundaryof(partial)non-identi cation.Assumingp0=1and0a1;01suchthatthestabilityconditionholds,itcanstillhappenthatthesampleinformationisnotsucienttokeeptheestimateofa1reasonablyfarawayfromzerosothatanidenti cationproblemmayresultin nitesamples,resemblingcasea)i)above.Similarly,ifa1;0issmallerthanunitybutnotdistinguishablefromoneina nitesample,thend=d0+b0�b(14)givestheapproximatelocationsofestimateddandb.Onlyd+bisappropriatelyidenti ed.Wecallthesescenariospoor nitesampleidenti cation.ForhigherorderFARbmodels,p1,poor nitesampleidenti cationmayalsoresultfromthepossibilitythatanestimateofbisclosetozero.ThenonehasajLjb0=aj1�(1�L)b00(15)independentlyofthevalueofaj.Therefore,ifaDGPthatiswhitenoiseismodeledbyaFARbprocesswithorderp,theARparametersaj,j=1;2;:::;parepoorlyidenti edforvaluesofbclosetozero.Hencealsoforthisreasonitisimportanttoaimatusingcorrectlagorders.Dependingonthepurposeofthemodel,poor nitesampleidenti cationmayormaynotbeharmful.Ifoneisinterestedinthelong-rundynamicsimpliedbythedegreeofintegration,thenitcanbeveryproblematic.Asanexample,comparethedegreeofintegrationimpliedbyaprocesswitha1closetoonetothecasea1=1foridenticald0andb0:whiletheformerisanI(d0)process,thelatterisanI(d0+b0)process.Whetherpoor nitesampleidenti cationisanissueforagivensamplemaybecheckedbyinvestigatingthelog-likelihoodfunctionontherelevantrangeoftheparametersofinterest.FortheFARbmodel(13)oforderone,onemayplottheconcentratedlog-likelihoodonagridfordandbandvisuallycheckwhethertherearetwopeaksormountainridgesthatindicatepoor nitesampleidenti cation.Incaseonewantstocheckthepotentialofpoor nitesampleidenti cationpriortosampling,onemaysimply\average"thelog-likelihoodfunction(10)overpossiblesamplesbytakingexpectationsofthelog-likelihoodfunctionatthetrueparametervector.Thisdeliverstheexpectedlog-likelihoodfunction(16)furtherdescribedinthenextsection.Finally,ifthetrueparametersarefarenoughawayfromtheboundaryof(partial)non-identi cation,poor nitesampleidenti cationshouldnotbeamajorissue.Thus,incaseofthe8 FARbmodel(13),onemayexpectreasonable nitesampleidenti cationincaseofa1;0=0:6.5Visualizingtheexpectedlog-likelihoodIntheprevioussectionitwasarguedthatpoor nitesampleidenti cationmaybecheckedwithoutreferringtoanysamplebyinvestigatingtheexpectedlog-likelihoodfunction.Thissuggestiondi ersfromthecommonlyusedmethodforinvestigating nitesampleestimationpropertiesbysimulatingthe nitesampledistributionof^.Theexpectedlikelihoodcomputa-tionstakeintoaccountadditionalinformationabouttheshapeofpossiblelikelihoodfunctionsawayfromtheirmaxima.Additionally,whenjointlyconsideringmorethantwoparameters,theexpectedlikelihoodcanbesimulatedfasterthanthejointdensityoftheparameterestimator.5.1Theexpectedlog-likelihoodLetE0[]indicatethattheexpectationistakenwithrespecttothedatageneratingprocess.Thentheexpectedlog-likelihoodisgivenbyE0[L(;Y)]=Zlogf(Y;)f(Y;0)dY:(16)Notethat0maynotbeuniquewithouttherestriction02S.Plottingcontourlinesorsurfacesoftheexpectedlog-likelihood(16)isonlypossibleifisoflengthl=2.Onewaytodealwiththecasel�2istosplitthe(l1)vectorintoa(21)vectorIthatcontainsthetwoparametersofinterestanda((l�2)1)vectorIIofallotherparametersandthenmaximize(16)withrespecttoII:E0[L(I;mII(I);Y)];wheremII(I)=argmaxIIE0[L(I;II;Y)]:(17)FortheunivariateFARbprocess(13)onemayde neI=(d1;b)0andII=�d2;a1;20.Ifaconcentratedlog-likelihoodisavailable,itmaybepreferabletoconsidertheexpectedconcentratedlog-likelihood.IfIIcanbeconcentratedoutcompletely,theexpectedconcen-tratedlog-likelihoodisde nedbyE0hLI;^II(I;Y);Yi(18)throughconcentrating^II(I;Y)=argmaxIIL(I;II;Y):(19)9 Consideringtheexpectedconcentratedlog-likelihoodallowstostudytheindirecte ectsthatestimatingIIhasontheestimationofI,whilesuchindirecte ectsareignoredinthemaximizationapproach(17).Further,onemayuse(18)tocomparevariousestimatorsfor^II(Y)withrespecttotheirin uenceontheestimationproblemofI.Ifanalternativeestimatorto(19)isused,thenoneobtainsdi erentobjectivefunctionsfortheestimationofIwhichcanbecompared.FinallyonemaycombinebothapproachesbyconcentratingoutsomeparametersofIIwhiletakingthemaximumwithrespecttotheremainingones.Asanexamplewithrespectto(10)onemayde neI=(d1;b)0,II=d2,andIII=(vec(A)0;00;01;vech()0)0.Thentheexpectedconcentratedlog-likelihooddependingonIisgivenbyE0hLI;mII(I);^III(I;mII(I;Y);Yi(20)throughconcentrating^III(I;II;Y)=argmaxIIIL(I;II;III;Y)and'optimizingout'mII(I)=argmaxIIE0hLI;II;^III(I;II;Y);Yi:5.2Expectedconcentratedlog-likelihoodsforFARbprocessesoforderoneInthissectionweusesimulationstocomputetheexpectedconcentratedlog-likelihoodsforvariousFARbprocesses(13)oforderone.Wechoosed0=b0=0:8andconsidera1;0=0:1;0:6;0:9.ForgivenI=(d;b)0andII=(a1;2)0theconcentratedlog-likelihoodiseasilycomputedasdescribedinSection3.Inordertoapproximatetheexpectedconcentratedlog-likelihood(18)wedraw100realizationsforgivendandb.Forobtainingcontourplotswevarytheparametersd2[�1;1:5]andb=[0:02;1:5]usinggridswithstepsizeof0.02.Themagnitudeofpoor nitesampleidenti cationofdandbisvisualizedbytheshapeandsizeoftheareawiththelargestvaluesoftheexpectedconcentratedlog-likelihood,whichcanwellbeseenfromaplotwithcontourlines.ForsamplesizeT=250anda1;0=0:9thecontourlinesoftheexpectedconcentratedlog-likelihoodareshowninthetoppanelofFigure1.Ifa1;0wereexactly1,onewouldexpectfrom(14)thatthelocationofthelargestvaluesof10 theexpectedconcentratedlog-likelihoodisdescribedby^dd0+b0�^b=1:6�^b.FromthetoppanelofFigure1itisseenthatbylettinga1;0deviateslightlyfromone,thislocationisshiftedsomewhatto^d1:8�^b.AsarguedinSection4,pooridenti cationinsmallsamplesislessofaproblemifa1;0isneitherclosetozeronortoone,saya1;0=0:6,ascanbeseenfromthemiddlepanelofFigure1.ThelowerpanelofFigure1showsthatthepoor nitesampleidenti cationissueisagainprominentifa1;0=0:1andthusclosetozero.FromCasea)ii)inSection4itfollowsthatifa1wereexactlyzero,^bcan oatarbitrarilywhile^d0:8.Thisexplainstheupperridgeifa1isestimatedclosetozero.Thelowerridgeisexplainedbyestimatesa11leadingtoanegativetrade-o betweendandb.6DealingwithdeterministictrendsInthissectionweinvestigatewhytheproblemofpoor nitesampleidenti cationworsensifdeterministictrendsareallowedinthemodel.InordertoestimatetheparametersoftheFIVARbmodel(6)withlineartrendsonemayusethemaximumlikelihoodestimatorbasedon(10)inSection3.Inthefollowingweprovideargumentsandafewsimulationresultsthatatwo-stepestimationismorerobust.6.1PitfallsinthemaximumlikelihoodestimationOnemayrewrite(6)sothat0and1canbeestimatedbyleastsquaresifalltheotherparametersd,b,and aregiven:A(Lb)(L;d)yt=A+(Lb)+(L;d)10+A+(Lb)+(L;d)t1+ut;t=1;2;:::;T:(21)Thereforetheestimatesofthedeterministiccomponentsarein uencedbyboththelongmem-oryparametersdandtheparameters andbdeterminingtheI(0)dynamics.Asaconse-quence,ifoneofthecasesinvestigatedinSections4and5.2occurswhereforagivensamplesizeandDGPonlyd+biswellidenti edwhiledandbarenot,bmaybeestimatedtoolargeanddtoosmall.Toseethepossibleimplications,consideraunivariateDGPwithd0=1,0;06=0,1;0=0,anda1;0closetoone.Suppose^dtakesthetruevalued0=1,thentheregressionforestimating0and1correspondingto(21)is(1�a1Lb)yt=(1�a1Lb)I(t=1)0+(1�a1Lb)I(t1)1+ut;t=1;2;:::;T:(22)11 Then0isestimatedfromonlyoneobservation,t=1,andVar(^0)1forT!1.Thisisnotproblematicastheimpactoftheestimated0vanisheswithgrowingsamplesize.Duetopoor nitesampleinformationa1maybeestimatedclosetoone.Sincefora1;0=1,onlyd+bisidenti edby(14),^dmaybeclosetozeroand^bcloseto1+b0.Then,settingd=0,no(fractional)di erencesaretakenandtheerrorsin(1�a1Lb)yt=(1�a1Lb)I(t1)0+(1�a1Lb)tI(t1)1+ut;t=1;2;:::;T(23)exhibitaunitroot.InthiscaseitcanbeshownthatVar(^0)increaseswithsamplesizeT.Then,theestimateof0canbeexpectedtoremainin uential.Thus,theimplicitestimationpropertiesfor0anditsimpactontheotherestimatescruciallydependonthedestimate.Itcanbeshownthatthisalsoholdsforthe1estimate.Suchdicultiesduetoagrosslywrongdestimatescanbeavoidedifthepoor nitesampleidenti cationproblemiscircumventedwhenestimating0and1.Toachievethis,weinvertA(Lb)in(21),whichisalwayspossibleifthestabilityconditionholds,andconsidertheregression(L;d)yt=+(L;d)10++(L;d)t1+"t;t=1;2;:::;T;(24)wheretheerrors"t=A(Lb)�1utareautocorrelatedbutI(0).Inthisregressionbdoesneitherentertheregressandnortheregressor.Usingtheregression(24)workssincetheregressorsaredeterministicandthereforetheautocorrelatederrorsdonotmattermuchforestimating0and1.Therefore,estimatingtheparametersofthedeterministictermsonbasisof(24)onlyrequiresknowledgeofdwhichcanbeestimatedbysomesemiparametricestimatorthatdoesnotsu erfromthe nitesampleidenti cationproblems.Thisleadsdirectlytothetwo-stepestimatordescribednext.6.2Two-stepestimationWithinthetwo-stepestimationprocedure,thedeterministiccomponentsareestimatedinthe rststep.Inthesecondstepthelog-likelihoodfunctionismaximizedafterreplacingthedeterministiccomponentsbytheirestimatesfromthe rststep.The rststepinvolvesrunningtheregression(24).Thisamountstocomputingtheleast12 squaresestimatorfrom(1�L)dsys;t=(1�L)ds+10;s+(1�L)ds+t1;s+"s;t;s=1;2;:::;k;t=1;2;:::;T:(25)Weobtainthefollowingtwo-stepestimatorsuggestedbyTschernigetal.(2010):Firststep:Foreachseriess=1;2;:::;kestimatethememoryparameterdswiththesemipara-metricexactlocalWhittleestimatorofShimotsu(2010)thatallowsfordeterministictrends.Inordertoobtain~0;sand~1;s,runtheregression(25)aftertakingfractionaldif-ferencesbasedonthe~dsestimate.Dothisfors=1;2;:::;k.Secondstep:Maximizethelog-likelihoodfunction(10)with0=~0and1=~1.Notethatinthebivariatecasethenonlinearoptimizationinthesecondsteponlyincludesthethreeparametersd1;d2;b.6.3Expectedconcentratedlog-likelihoodsforFARbprocessesoforderonewithdeterministictrendsWeconsiderthesamethreeDGPsasinSection5.2butestimateaFARbmodelallowingforadeterministictrend.Figures2,4,and6displaythecontourlinesoftheexpectedconcentratedlog-likelihoodwherethemaximumlikelihoodestimatorisusedforconcentratingout0and1.Figures3,5,and7displaythecontourlinesoftheexpectedconcentratedlog-likelihoodwherethetwo-stepestimatorofSection6.2isusedforestimatingthedeterministicterms.Comparingthecontourlinesofbothestimatorsfora1;0=0:9inFigures2and3showsthattheregionofhighestexpectedconcentratedlog-likelihoodisclosertothetruevaluesforthetwo-stepestimatorthanforthemaximumlikelihoodestimatorasconjecturedintheprevioussubsection.FortheotherFARbwitha1;0=0:1whoseestimationmayalsosu erfrompoor nitesampleidenti cation(closetoCasea)inSection4),themaximumlikelihoodestimatorinFigure6isevenmoreo incomparisontothetwo-stepestimatorinFigure7.Evenforthecaseofa1;0=0:6whichshowstheleast nitesampleidenti cationproblemsincaseofnodeterministiccomponentthetwo-stepprocedureseemssuperiorascanbeseenfromcomparingFigures4and5.Whencomparingthecontourlinesfromthetwo-stepprocedure13 withtheresultsincaseofknowndeterministictermsoneobservesthatestimatingdeterministiccomponentsiscostlysincetheregionsofhighestexpectedconcentratedlog-likelihoodnolongerincludethetrueparameters.Inordertocheckwhethertheidenti cationproblemreallydependsonthesamplesizewealsocomputedtheexpectedconcentratedlog-likelihoodsfortheFARbwitha1;0=0:9forsamplesizeT=1000.NowbothestimationproceduresworkmuchbetterascanbeseenfromFigures8and9althoughthetwo-stepconcentratedlikelihoodstillshowsahighercurvature.Insum,thetwo-stepestimatorworksbetteraswasexpectedfromthereasoninginSections6.1and6.2.Itremainstobeinvestigatedhowthese ndingscarryovertothebivariateFIVARbmodel(6)whichisdonenext.7Poor nitesampleidenti cationinbivariateFIVARbpro-cessesInthissectionweconsidertheFIVARbprocesses(1)and(6).7.1Processeswithpoor nitesampleidenti cationIfthebivariateDGPhasadiagonalVARcoecientmatrix0@I�0@10021ALb1A0@(1�L)d100(1�L)d21Axt=ut;t=1;2;:::;(26)thenmaximizingthelikelihoodcanbeexpectedtobeclosealthoughnotidenticaltomaximizingthelikelihoodofeachunivariateseries.Thelattergenerallydeviatesfromthejointestimationsincebisestimatedforeachseriesseparately.Ifdandbareknown,bothestimatorscoincide.However,sincebisidenticalacrosstheindividualseries,oneeigenvalueneitherbeingclosetoonenorzeroshouldhelptoestimatebsucientlywellsothattheothereigenvaluedoesnolongercauseproblemsevenifitisclosetooneorzero.Forthisreason,weexpectestimationproblemsfrompoor nitesampleidenti cationifneitherindividualprocesshelpstodeterminebandweexpectthatsuchaFIVARbprocessinheritsthepoor nitesampleidenti cationproblemsfromtheindividualFARbprocesses.Inthefollowingwewillinvestigateprocesses(26)with=1=2.Sinceistheeigenvalue(withmultiplicity2)oftheautoregressiveparametermatrixA,itisinterestingtoinvestigatewhetherthepoor nitesampleidenti cationproblemsdiminishonce14 dependencebetweenthetwoprocessesthroughtheautoregressivepolynomialisintroducedwhilekeepingtheeigenvalueconstant.InordertoobtainamatrixAthatexhibitsthesameeigenvaluebutnonzeroo -diagonalelementsweapplytheJordandecompositionforrealmatrices(Lutkepohl,1996,Section6.2.1(2)).UsinganonsingularJ=(acbd),a(22)matrixAwithoneeigenvaluecanbewrittenasA=J0@101AJ�1=0@�ac ad�bca2 ad�bc�c2 ad�bc+ac ad�bc1A:(27)Weconjecturethatthepoor nitesampleidenti cationproblemsdiminishforacommoneigenvalueoncethedependencebetweenthetwoprocessesisincreasedthrougho -diagonalelementsinA.Wealsoconjecturethattheimpactoftheseproblemsmattersmoreforthemaximumlikelihoodestimatorthanforthetwo-stepestimatorlikeintheunivariatecase.Inordertochecktheseclaimsweinvestigatetheexpectedconcentratedlog-likelihoodfunctionsfortwoDGPsnext.7.2Expectedconcentratedlog-likelihoodsforFIVARbprocessesoforderoneAllDGPsconsideredhavenormallydistributederrorswith0=(10:50:51);nodeterministictrend,0;0=1;0=0,andzeropresamplevalues.Tochecktheclaimthatidenticaleigenvaluesclosetoonewithoutautoregressivedependenceposeproblemsweconsider:DGPdiagthediagonalprocess(26)withd1;0=b0=0:8andd2;0=1:8.ThefractionalparametervaluesresemblevaluesthatwereestimatedbyTschernigetal.(2010)forUSrealGDPandpricedata.Inordertoinvestigatethee ectofautoregressivedependence,wechooseJin(27)suchthatthecorrelationbetweeny1tandy2tisabout-0.5when=I.ThisisthecaseforJ0=�1�111.ThisdeliversthefollowingDGP:DGPdep0@I�0@+1 2+1 2�1 2�1 21AL0:81A0@(1�L)0:800(1�L)1:81Axt=ut;t=1;2;:::(28)Supposethattherearenowthreeparametersofinterest:d1,d2andb.Forcomputingtheexpectedlog-likelihoodswe rstconcentrateoutallparametersexceptthosethreeandthen15 plotcontourlineswherewetakethemaximumoftheexpectedconcentratedlog-likelihoodwithrespecttothethirdparameter.Asanexamplechoosein(20)I=(d1;b)0,II=d2,andIII=( 0;00;01;vech()0)0.We rstdiscusstheresultsofthediagonalDGPdiag.Ifnodeterministiccomponentsareestimated,Figure10showsthatthetrueparametersareclosetothepointofhighestexpectedconcentratedlog-likelihood.Oncedeterministiccomponentsareallowedforintheestimationmodel,thisisnolongerthecaseforthemaximumlikelihoodestimatorascanbeseenfromtheleftcolumninFigure11.Incontrast,thetwo-stepestimatorstilldeliversreasonableresults.This ndingsupportsthereasoningofSection7.1.Ifdynamicspill-oversbetweentheseriesarepresentasintheDGPdep,thenitturnsoutfrominspectingFigures12and13(forestimationwithoutandwithdeterministiccomponents,respectively)thattheweak nitesampleidenti cationproblemislesspronouncedthaninthediagonalcasealthoughbseemstobeestimablelesspreciselythand1andd2.Notablydi erente ectsoftheestimatorsforthedeterministictermsarenotpresentinFigure13.8ConclusionWediscussed nitesampleestimationpropertiesoffractionallyintegratedVARmodelswherehigh exibilityisintroducedthroughthefractionallagoperatoranddeterministictrends.Weidentifysituationswhereidenti cationmaybepoorin nitesamplesandverifytheseclaimsbyplottingexpected(concentrated)likelihoods.Deterministictrendsaggravatetheproblems.Atwo-stepestimatorhelpstocircumventatleastpartofthe awswhicharefacedifthemaximumlikelihoodestimatorisused.Subsequentworkmaybeconcernedwiththeasymptoticpropertiesoftheestimators.Asageneralrecommendation,futureempiricalresultsusingfractionallyintegratedtimeseriestechniquesshouldbecheckedwithrespectto nitesampleidenti cationissuesbothtoassessrobustnessoftheresultsandtosupportanappropriateestimatorchoice.16 ReferencesHualde,J.andRobinson,P.M.(2011),\GaussianPseudo-MaximumLikelihoodEstimationofFractionalTimeSeriesModels,"TheAnnalsofStatistics,39,3152{3181.Johansen,S.(2008),\ARepresentationTheoryforaClassofVectorAutoregressiveModelsforFractionalProcesses,"EconometricTheory,24,651{676.Johansen,S.andNielsen,M..(2010),\LikelihoodInferenceforaNonstationaryFractionalAutoregressiveModel,"JounalofEconometrics,158,51{66.|(2012a),\LikelihoodInferenceforaFractionallyCointegratedVectorAutoregressiveModel,"Econometrica,80,2667{2732.|(2012b),\Theroleofinitialvaluesinnonstationaryfractionaltimeseriesmodels,"WorkingPaper1300,Queen'sEconomicsDepartment.Lutkepohl,H.(1996),HandbookofMatrices,Wiley&Sons.Nielsen,M..(2004a),\EcientInferenceinMultivariateFractionallyIntegratedTimeSeriesModels,"EconometricsJournal,7,63{97.|(2004b),\EcientLikelihoodInferenceinNonstationaryUnivariateModels,"EconometricTheory,20,116{146.Shimotsu,K.(2010),\ExactLocalWhittleEstimationofFractionalIntegrationwithUnknownMeanandTimeTrend,"EconometricTheory,26,501{540.Tschernig,R.,Weber,E.,andWeigand,R.(2010),\Long-runIdenti cationinaFraction-allyIntegratedSystem,"RegensburgerDiskussionsbeitragezurWirtschaftswissenschaft447,UniversityofRegensburg.17 Figure1:Theexpectedconcentratedlog-likelihoodfunctionforaFAR0:8process(13)with250observations,d=0:8anda1=0:9(above),a1=0:6(middle)anda1=0:1(below)18 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.7 -2.7 -2.7 -2.7 -2.6 -2.6 -2.5 -2.5 -2.4 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -3.6 -3.6 -3.6 -3.6 -3.6 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.4 -3.3 -3.3 -3.3 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -2.25 -2.25 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.15 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.05 -2.05 -2.05 -2.05 -2.05 -2.05 -2.05 -2.05 -2.05 -2 -2 -2 -2 -2 -2 -2 -1.95 -1.95 -1.95 -1.95 -1.95 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.85 -1.85 -1.85 -1.85 -1.85 -1.8 -1.8 -1.8 -1.8 -1.75 -1.75 -1.75 -1.7 -1.7 -1.7 -1.65 -1.65 -1.65 -1.6 -1.6 -1.6 -1.55 -1.55 -1.55 -1.5 -1.5 -1.5 -1.45 -1.45 -1.45 -1.4 -1.4 -1.4 -1.35 -1.35 -1.35 -1.3 -1.3 -1.25 -1.25 -1.2 -1.2 -1.15 -1.1 Figure2:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:9with250observations. Figure3:Theexpectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:9with250observations.19 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -2 -2 -2 -2 -2 -2 -2 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.6 -1.6 -1.6 -1.6 -1.6 -1.4 -1.4 -1.4 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -2.9 -2.9 -2.9 -2.9 -2.9 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.7 -2.6 -2.6 -2.6 -2.6 -2.6 -2.6 -2.5 -2.5 -2.5 -2.5 -2.5 -2.4 -2.4 -2.4 -2.4 -2.3 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 Figure4:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:6with250observations. Figure5:Theexpectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:6with250observations.20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1.8 -1.8 -1.8 -1.8 -1.8 -1.6 -1.6 -1.6 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -3.2 -3.2 -3.2 -3.2 -3.2 -3 -3 -3 -3 -3 -3 -3 -3 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.6 -2.6 -2.4 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 Figure6:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:1with250observations. Figure7:Theexpectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:1with250observations.21 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -1.3 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7 -0.6 -0.6 -0.5 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 Figure8:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:9with1000observations. Figure9:Theexpectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrendforaFAR0:8process(13)withd=0:8anda1=0:9with1000observations.22 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -8.5 -8.5 -8.5 -8.5 -8.5 -8.5 -8.5 -8 -8 -8 -8 -8 -8 -8 -8 -7.5 -7.5 -7.5 -7.5 -7.5 -7 -7 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d -10 -10 -10 -10 -10 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9 -9 -9 -9 -9 -9 -9 -9 -9 -8.5 -8.5 -8.5 -8.5 -8.5 -8.5 -8 -8 -7.5 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 Figure10:Theexpectedconcentratedlog-likelihoodfunctionfortheFIVAR0:8processDG-Pdiag(26)withd1=0:8,d2=1:8anda1=0:8with250observations.23 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 24.2 24.8 25.3 25.3 25.3 25.8 25.8 25.8 26.4 26.4 26.4 26.4 26.4 26.9 26.9 26.9 26.9 27.4 27.4 27.4 27.4 27.9 27.9 27.9 27.9 28.5 28.5 29 29 29 29.5 29.5 30.1 30.1 30.6 30.6 30.6 31.1 31.1 31.6 31.6 32.2 32.2 32.7 32.7 33.2 33.2 33.8 34.3 34.8 35.3 35.9 36.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 24.3 24.3 27.9 27.9 27.9 27.9 31.5 31.5 31.5 35.1 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 31.4 32 32 32 32 32 32.7 32.7 32.7 32.7 32.7 32.7 32.7 33.3 33.3 33.3 33.3 33.3 33.3 33.9 34.6 35.2 35.8 36.5 Figure11:Leftcolumn:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrends.Rightcolumn:expectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrends.EachfortheFIVAR0:8processDG-Pdiag(26)withd1=0:8,d2=1:8anda1=0:8with250observations.24 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 27.9 27.9 28.5 28.5 29 29.5 29.5 30.1 30.1 30.6 30.6 31.1 31.1 31.1 31.6 31.6 32.2 32.2 32.2 32.7 32.7 32.7 33.2 33.2 33.8 33.8 33.8 34.3 34.8 34.8 35.3 35.9 36.4 36.4 36.9 36.9 37.5 37.5 38 38.5 39.1 39.6 40.1 40.6 41.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 25.3 25.8 25.8 26.4 26.4 26.9 26.9 27.4 27.4 27.9 27.9 27.9 28.5 28.5 28.5 29 29 29.5 29.5 29.5 30.1 30.1 30.6 30.6 30.6 31.1 31.1 31.6 31.6 31.6 32.2 32.2 32.7 33.2 33.2 33.8 33.8 34.3 34.3 34.8 34.8 35.3 35.9 36.4 36.9 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 31.5 31.5 31.5 31.5 35.1 35.1 38.7 38.7 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 27.9 27.9 27.9 27.9 27.9 27.9 31.5 31.5 31.5 35.1 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 36.5 37.1 37.1 37.1 37.1 37.8 37.8 37.8 37.8 38.4 38.4 38.4 39 39.7 40.3 41 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 32.7 32.7 32.7 33.3 33.3 33.3 33.3 33.9 33.9 33.9 33.9 33.9 34.6 34.6 34.6 35.2 35.8 36.5 37.1 Figure12:Theexpectedconcentratedlog-likelihoodfunctionfortheFIVAR0:8processDG-Pdep(28)withd1=0:8,d2=1:8and=0:8butautoregressivedependencewith250observations.25 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 -46.9 -43.7 -43.7 -40.4 -40.4 -40.4 -40.4 -37.1 -37.1 -33.8 -33.8 -33.8 -33.8 -30.5 -30.5 -30.5 -27.2 -27.2 -27.2 -23.9 -20.6 -17.3 -14 -10.7 -7.4 -4.1 -0.8 -0.8 2.5 2.5 5.8 5.8 9.1 9.1 12.4 12.4 15.7 15.7 19 19 22.3 22.3 25.6 28.9 32.1 35.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 5.3 5.3 5.3 8.4 8.4 8.4 8.4 8.4 8.4 11.4 11.4 11.4 11.4 11.4 14.4 14.4 17.5 17.5 20.5 20.5 23.6 26.6 29.6 32.7 35.7 35.7 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 3.4 3.4 3.4 3.4 5.3 5.3 5.3 5.3 5.3 7.1 7.1 7.1 7.1 7.1 9 9 9 9 10.9 10.9 10.9 12.7 12.7 14.6 16.4 18.3 20.2 22 23.9 25.7 27.6 29.4 31.3 33.2 35 Figure13:Leftcolumn:Theexpectedconcentratedlog-likelihoodfunctionwithestimateddeterministictrends.Rightcolumn:expectedconcentratedtwo-stepapproximatelog-likelihoodfunctionwithestimateddeterministictrends.EachfortheFIVAR0:8processDG-Pdep(28)withd1=0:8,d2=1:8and=0:8butautoregressivedependencewith250observations.26 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 -17.3 -14 -14 -10.7 -10.7 -10.7 -7.4 -7.4 -4.1 -4.1 -0.8 -0.8 2.5 2.5 5.8 5.8 9.1 9.1 12.4 12.4 15.7 15.7 19 19 22.3 22.3 25.6 25.6 28.9 32.1 35.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -1.0 -0.5 0.0 0.5 1.0 1.5 b d1 -56.8 -46.9 -46.9 -43.7 -43.7 -37.1 -37.1 -33.8 -30.5 -27.2 -23.9 -20.6 -17.3 -14 -10.7 -7.4 -7.4 -4.1 -4.1 -0.8 -0.8 2.5 2.5 5.8 5.8 9.1 9.1 12.4 12.4 15.7 15.7 19 19 22.3 22.3 25.6 28.9 32.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 11.4 11.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4 17.5 17.5 17.5 20.5 20.5 23.6 23.6 26.6 26.6 29.6 32.7 35.7 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 2.5 b d2 2.3 5.3 5.3 5.3 5.3 8.4 8.4 8.4 8.4 8.4 11.4 11.4 11.4 14.4 14.4 14.4 17.5 17.5 20.5 20.5 23.6 23.6 26.6 29.6 32.7 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 7.1 7.1 7.1 7.1 7.1 9 9 9 9 9 9 10.9 10.9 10.9 10.9 12.7 12.7 14.6 14.6 14.6 14.6 16.4 16.4 18.3 20.2 22 23.9 25.7 27.6 29.4 31.3 33.2 35 36.9 -1.0 -0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5 d1 d2 -0.3 1.6 1.6 1.6 3.4 3.4 3.4 3.4 3.4 5.3 5.3 5.3 5.3 5.3 7.1 7.1 7.1 7.1 9 9 10.9 10.9 12.7 14.6 16.4 18.3 20.2 22 23.9 25.7 27.6 29.4 31.3 33.2