/
RESEARCHOpenAccess RESEARCHOpenAccess

RESEARCHOpenAccess - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
389 views
Uploaded On 2016-07-31

RESEARCHOpenAccess - PPT Presentation

FEMbasedshakedownanalysisofhardening structures Ph ID: 426941

FEM-basedshakedownanalysisofhardening structures Ph

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "RESEARCHOpenAccess" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

RESEARCHOpenAccess FEM-basedshakedownanalysisofhardening structures PhúTìnhPh  m 1* andManfredStaat 2 *Correspondence: phamphutinh@ yahoo.com 1 FacultyofCivilEngineering,Hanoi ArchitecturalUniversity,NguyenTrai Street,ThanhXuânDistrict,Hanoi, Vietnam Fulllistofauthorinformationis availableattheendofthearticle Abstract Thispaperdevelopsanewfiniteelementmethod(FEM)-basedupperbound algorithmforlimitandshakedownanalysisofhardeningstructuresbyadirect plasticitymethod.Thehardeningmodelisasimpletwo-surfacemodelofplasticity withafixedboundingsurface.Theinitialyieldsurfacecantranslateinsidethe boundingsurface,anditisboundedbyoneofthetwoequivalentconditions:(1)it alwaysstaysinsidetheboundingsurfaceor(2)itscentrecannotmoveoutsidethe back-stresssurface.Thealgorithmgivesaneffectivetooltoanalyzetheproblems withaveryhighnumberofdegreeoffreedom.Ournumericalresultsareveryclose totheanalyticalsolutionsandnumericalsolutionsinliterature. Keywords: Ratchetting;Kinematichardening;Two-surfaceplasticity;Shakedown;FEM Background Shakedownanalysisforhardeningstructure shasbeeninvestigated bymanyresearchers. Amonghardeningmodels,theisotropichardeni nglawisgenerallynotreasonableinsitua- tionswherestructuresaresub jectedtocyclicloadingbecauseitdoesnotaccountforthe Bauschingereffectandrejectsthepossibilityo fincrementalplasticity.Theunboundedkine- matichardeningmodelhasalreadybeenintrod ucedtheoreticallybyMelan[1]andlaterby Prager[2].Applicationsofthismodelhaveb eeninvestigatedbyMaier[3]andPonter[4]. Theunboundedkinematichardeningmodelcannotestimatetheplasticcollapseandalsoin- crementalplasticitybutonlylow-cyclefatigue,whilelow-cyclefatiguelimitwiththeki- nematicalhardeningmodelseemsnottobeessentiallydifferentfromtheperfectly plasticmodel,cf.GokhfeldandCherniavsky[5]andSteinandHuang[6]. plasticitywithafixedboundingsurfaceisachievedwhichappearstobemostbasic, suitableandsimpleforshakedownanalysis.Applicationofboundedkinematicharden- ingmodelwasintroducedtheoreticallyandnumericallybyWeichertandGroß-Weege [7]whousedthegeneralizedstandardmaterialmodel(GSM).TheyusedAiry'sstress functiontosatisfytheequilibriumconditionsintheinteriorofthestructuresfulfilled. Shakedowntheoremsforboundedlinearandnonlinearkinematichardeninghavebeen proposedbyBodovilléanddeSaxcé[8],Pham[9,10]andNguyen[11]. Numericalinvestigationsforboundedkinematichardeningusingbasicreduction techniquehavebeenintroducedbyStaatandHeitzer[12,13]andSteinandZhang [14].Bythelowerboundapproach,itpermitstoavoidthenondifferentiabilityofthe ©2014Ph  mandStaat;licenseeSpringer.ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninany medium,providedtheoriginalworkisproperlycited. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4 http://www.apjcen.com/content/1/1/4 objectivefunction,whichmustberegularizedviainternaldissipationenergyandthereisnoincompressibilityconstraintinnonlinearprogrammingproblem,butthisap-proachsuffersfromnonlinearinequalityconstraints.Acompanyoflowerboundalgorithmistheupperboundalgorithm,whichisbasedonKoitertheorem.Forperfectlyplasticstructures,theupperboundalgorithmhasbeenestab-lishedbyYanandNguyenDang[15,16]andYanetal.[17].Themajornumericalobstacleinthisapproachisthesingularpropertyofplasticdissipationfunction.Dealingwiththisdiffi-culty,theresearchersreplacedtheoriginaldissipationfunction,whereisaverysmallnumber.Thistechniqueisalsousedinouralgorithm.Byusingthestaticapproachandthecriterionofthemean,NguyenDangandKönig[18]showedthattheshakedownsolutioncanbeobtainedbyamaximizationoraminimizationproblem.TheyieldcriterionofthemeanwasfurtherappliedinpracticalcomputationsbydisplacementmethodandequilibriumfiniteelementbyNguyenDangandPalgen[19].Averyefficientprimal-dualalgorithm,whichcanderivelowerandupperboundsim-ultaneouslyofshakedownlimitloadfactorforcomplicatedstructures,hasbeenintro-ducedbyVu,YanandNguyenDang[20-22]andVu[23].Intheseworks,dualrelationshipbetweenupperboundandlowerboundforshakedownanalysisofperfectlyplasticstructureshasbeenproven.Theoreticallyspeaking,primal-dualalgorithmhelpstofindaveryaccuratesolutionofshakedownanalysisproblem.Whileusingthefiniteelementmethod(FEM)forlimitandshakedownanalysis,thestressmethodcanbeused,butthismethodisrestrictedsinceforcertainstructures,itisverydifficulttofindappropriatestressfunction,sothedisplacementmethodispre-ferredtomakethenumericalapproachasgeneralaspossible.Forthestructureswithhardeningmaterial,itisdifficulttoprovetherelationshipbetweenupperboundandlowerboundbecauseofthecomplicationoftheobjectivefunction.Fur-thermore,inthestaticapproach,itisdifficulttopresentalternatinglimitandratchetinglimitseparately.Inthispaper,wehavepresentedaFEM-basedupperboundalgorithmforshake-downanalysisofboundedkinematichardeningstructureswithvonMisesyieldcriterion.Bythedirectplasticitymethods,shakedownanalysisisanonlinearprogrammingproblem.Thepresentalgorithmcandealwithcomplicatedrealisticstructureswhicharemodelledby3D,20-nodeelementswithhugenumberofdegreeoffreedom.Twonumericalexamplesarein-cludedtovalidatethealgorithmandtostudytheinfluenceofhardeningeffect.BoundedkinematichardeningmodelForkinematichardeningmodel,theinitialyieldsurfacecantranslateinthemulti-axialstressspace,withoutchangingitsshapeandsize.Ifthetranslationisunlimited,orinotherwords,theultimatestrengthofmaterialisinfinite,wehaveunboundedmodel(Figure1).Thismodelisinadequatetopredicttheplasticcollapse(bothincrementalandinstantaneous)ofstructure.Itcanonlydescribethealternatingplasticitymode.TheinitialyieldsurfaceforvonMisesmaterialisdefinedasbelowThesubsequentsurfaceisdefinedasisthebackstress.Ifhardeningisunbounded,isinfinite.mandStaatAsiaPacificJournalonComputationalEngineering:4Page2of13http://www.apjcen.com/content/1/1/4 Formorerealisticmaterial,yieldstress  y mustbeboundedbyultimatestrength  u . Asimpletwo-surfacemodelisusedtomodeltheboundedhardening.Thesubsequent yieldsurfacemayormaynottouchthefixedboundingsurface;seeFigure2.Thisis satisfiedbyoneofthetwofollowingconditions: 1.Centreofsubsequentyieldsurfacecannotmoveoutsidetheback-stresssurface. Thisisexpressedby F  ½   u Š  y  2 : ð 3 Þ 2.Subsequentyieldsurfacealwaysstaysinsideboundingsurface.Thisisexpressedby F  ½   2 u : ð 4 Þ Figure1 Unboundedkinematichardeningmodel. Figure2 Asimpletwo-surfaceplasticitywithfixedboundingsurface. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page3of13 http://www.apjcen.com/content/1/1/4 Intheprecedingconditions,Equations3and4,equalitiesoccurwhenthesubsequentsurfacetouchesboundingsurface.Wehaveproventhatboundingconditions(3)and(4)areexactlyequivalent.SeedetailinthestudyofPhamandStaat[24].ShakedownformulationbasedonKoiter'stheoremProblemestablishmentUpperboundsolutionofshakedownloadmultiplieristhesolutionofaconstrainednonlinearprogrammingproblemdVdtðÞ¼ ðÞþwheretotalplasticenergydissipationinthestructureisasfollows: dVdt ThefirsttermintherighthandsideofEquation6isplasticenergydissipationofper-fectplasticitymaterial,andthesecondtermishardeningeffect.Evidently,if,wehaveidealplasticmaterial.Constraint(5b)isthedefinitionofplasticstrainaccumulation.Theplasticstrainratemaynotnecessarilybecompatible,butmustbecompatible.Thisisexpressedbyconstraints(5d)and(5e).Constraint(5c)istheincompressibilitycondition,and(5g)isthenormalizedcondition.ProblemdiscretizationBasedonFEM,wholestructureisdiscretizedintofiniteelementswithNG=Gaussianpoints,whereisnumberofGaussianpointsineachelement.Iftheloaddomainisconvex,itissufficienttocheckifshakedownwillhappenatallverticesof.Sotheloaddomaincanbediscretizedintofinitenumberofload=1,,andistotalnumberofverticesof.Bythesedis-cretizations,theshakedownanalysisisreducedtocheckingshakedownconditionsatallGaussianpointsandallloadvertices,insteadofcheckingforwholemandStaatAsiaPacificJournalonComputationalEngineering:4Page4of13http://www.apjcen.com/content/1/1/4 structureandentireloaddomain.Then,numericalformofEquation5isasfollows:  denotestheshakedownmultiplierinboundedlinearlykinematichardening.isthestrainvectorcorrespondingtoloadvertexatGaussianpointisthefictitiouselasticstressvectorcorrespondingtoloadvertexatGaussianisthenodaldisplacementvector,isthedeformationmatrixandisthesmallnumbertoavoidsingularity.andaresquarematrices,expressedinEquation9:111 2 1 111000111000111000000000000000000000Forthesakeofsimplicity,wedefinesomenewplasticstrain,fictitiouselastic,deformationmatrix,respectivelyasThenEquation(7)becomes  tosolveproblem(),usingpenaltyfunctionmethodforconstraints(b)andc),combinedwithLagrangemultipliermethodforconstraint(d).PenaltymandStaatAsiaPacificJournalonComputationalEngineering:4Page5of13http://www.apjcen.com/content/1/1/4 functionandLagrangefunctionareexpressedinEquationsandrespectively. c2Xmk¼1eTikDMeikþ !) c2Xmk¼1eTikDMeikþ !)AlgorithmStep1:Choosestartingpoint:displacementandstrainvectorsandsuchthatthenormalizedcondition(11d)issatisfied:Step2:Calculate)fromcurrentvaluesofmandStaatAsiaPacificJournalonComputationalEngineering:4Page6of13http://www.apjcen.com/content/1/1/4 Q i ¼ I i þ X m k ¼ 1 ~ M  1 ik N ik ð 21 Þ ~ M ik   X m k ¼ 1 e T ik X m k ¼ 1 e ik þ  2 s I ik þ cb ik D M ! ð 22 Þ N ik  a  e T ik e ik þ  2 q þ cb ik \f I ik ð 23 Þ b ik ¼  X m k ¼ 1 e T ik X m k ¼ 1 e ik þ  2 s  e T ik e ik þ  2 q ð 24 Þ  1 ¼ a X m k ¼ 1 e ik  e T ik e ik þ  2 q þ e ik  X m k ¼ 1 e T ik X m k ¼ 1 e ik þ  2 s þ c D M e ik b ik þ c X m k ¼ 1 e ik  ^ B i u ! b ik  cb ik ^ B i d u 1 ð 25 Þ  2 ¼ t ik  c ^ B i d u 2  ð 26 Þ  þ d  ðÞ¼ 1  X NG i ¼ 1 X m k ¼ 1 t T ik e ik þ d e ik ðÞ 1  X NG i ¼ 1 X m k ¼ 1 t T ik d e ik ðÞ 2 ¼  X NG i ¼ 1 X m k ¼ 1 t T ik d e ik ðÞ 1 X NG i ¼ 1 X m k ¼ 1 t T ik d e ik ðÞ 2 ð 27 Þ Step3:Performalinesearchtofind  u suchthat  u ¼ F P u þ  d u ; e þ  d e ðÞ  min ð 28 Þ Updatedisplacement u ,plasticstrain e ik u ¼ u þ  u d u a ðÞ e ik ¼ e ik þ  u d e ik b ðÞ ð 29 Þ Step4:Checkconvergencecriteria:iftheyareallsatisfied,thenstop;otherwisegoto step2. Figure3 Continuousbeam. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page7of13 http://www.apjcen.com/content/1/1/4 Resultsanddiscussions Twoexamplesarereported.Tocomparetheresultsonshakedownlimitforperfectly plasticmaterialswithotherresearches,wechoose  u =  y .Toinvestigatetheeffectof boundedhardening,wechoose  y  u  y .When  u  2  y ,wehaveunboundedkine- matichardeningmodel. Continuousbeam ThecontinuoussteelbeamisdescribedinFigure3subjectedtouniformdistributed loads: p 1 and P 2 varyindependentlyinthedomain: p 1 \b [1.2,2], p 2 \b [0,1].Theload domainisdescribedinFigure4. ThematerialmechanicalpropertiesareYoung'smodulus, E =1.8 \t 10 5 N/mm 2 ;yield stress,  y =100N/mm 2 ;ultimatestrength,  u =1.35  y andPoisson'sratio, \b =0.3.Bythe symmetryoftheproblem,onlyhalfofthestruct ureisdiscretizedinto589elements,8-node quadrangle,Figure5.Thestructureisconsideredasaplanestressproblem.Numericallimit andshakedownanalysisforthisstructuremade ofperfectlyplasticmaterialwerepresented inGarceaetal.[25]andTranetal.[26]. Table1showstheresultsoflimitandshakedownanalysis.Presentresultsarecloseto othersinliterature. InteractiondiagramofshakedownloadmultiplierisplottedinFigure6.Inthisstruc- ture,when p 2 isnotverylarge,thestructurefailsinratchetingmode,andbenefitof hardeningisquiteclear. Cylindricalpipeundercomplexloading Thisclosed-endpipeisinvestigatedforperfectlyplasticmaterialinVu[23]using primal-dualshakedownalgorithm.Thestructureissubjectedtobending M b and Figure4 Loaddomainforexample4.1. Figure5 FEMmesh. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page8of13 http://www.apjcen.com/content/1/1/4 torsion M t moments,internalpressure p andaxialtension T .Materialpropertiesare Young'smodulus, E =2.1 \t 10 5 N/mm 2 ;yieldstress,  y =160N/mm 2 ;ultimatestrength,  u =1.25  y andPoisson'sratio, \b =0.3.Using20-node3Delementstomodelwhole structurewiththedimensions:length L =2,700mm,meanradius r =300mmand thickness h =60mm,seeFigure7. Theanalyticalsolutionsofplasticcollapselimitforcylindricalpipeundercomplex loadingcanbecitedfromVu[23]. Purebendingcapacity: M b lim ¼ 4  y hr 2 þ h 2 12 \f ¼ 3647 : 52 \t 10 6 Nmm : ð 30 Þ Puretorsioncapacity: M t lim ¼ 2  3 p \t r 2 h  y ¼ 3134 : 24 \t 10 6 Nmm : ð 31 Þ Puretensioncapacity: T lim ¼ 2 \t rh  y ¼ 18095573 : 6N : ð 32 Þ Pureinternalpressurecapacity: p lim ¼  y h r ¼ 32N = mm 2 ð 33 Þ Table1Comparisonofplasticlimitcollapseandshakedownresults LimitShakedown Author[ p 1 , p 2 ]=[2.0,0.0][ p 1 , p 2 ]=[0.0,1.0][ p 1 , p 2 ]=[1.2,1.0][ p 1 , p 2 ]=[2.0,1.0] p 1  1 : 2 ; 2 ½ p 2  0 ; 1 ½ Garceaetal.[ 25 ]3.2808.7185.4673.2803.244 Tranetal.[ 26 ]3.4029.1925.7203.3883.377 Present(perfectly plastic) 3.3008.7445.5003.3003.264 Present(kin. hardening) 4.45511.8047.4254.4554.406 Figure6 Interactiondiagramforshakedownboundsofcontinuousbeam. Theresultsare notnormalized. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page9of13 http://www.apjcen.com/content/1/1/4 andthenormalizedloadmultiplierwhenbending,internalpressureandtensionare combinedisasfollows: m ¼  4  3 n 2  q 2 cos n   2 n x  4  3 n 2  q \t 2 2 6 4 3 7 5 ; ð 34 Þ where m ¼ M = M b lim n \n ¼ p = p lim n x ¼ T = T lim : 8 : ð 35 Þ Iftheaxialtensionforcecomesfromonlyinternalpressureonclosedends,then n x = n \n /2,andformula(35)canberewrittenas m ¼  4  3 n 2  q 2 ð 36 Þ FEanalysisisfulfilledforstructuresubjectedtocombinedinternalpressure p and bending M b .ResultsarepresentedinTable2,normalizedbypurebendingcapacityin Figure7 FEMmeshofcylindricalpipe. Table2Limitandshakedownloadmultipliersofcylindricalpipesubjectedtointernal pressureandbending LoadcombinationElastic factor Limitfactor (perfectly plastic) Shakedown factor(perfectly plastic) Shakedown factor(bounded hardening) Shakedownfactor (unbounded hardening) 0.0p_1.0M0.73381.00120.73380.73380.7338 0.2p_1.0M0.72280.98700.72970.73100.7304 0.4p_1.0M0.70110.94780.72280.72360.7231 0.6p_1.0M0.65700.89140.71310.71320.7134 0.8p_1.0M0.60230.82670.70110.70130.7014 1.0p_1.0M0.55090.76080.66670.68550.6853 1.0p_0.8M0.61680.85400.76960.81280.8127 1.0p_0.6M0.69210.95560.89060.98940.9894 1.0p_0.4M0.77271.05461.01791.23181.2346 1.0p_0.2M0.84861.13061.12041.38741.5506 1.0p_0.0M0.90191.15891.15861.44821.8091 Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page10of13 http://www.apjcen.com/content/1/1/4 formula(28)andpureinternalpressureinformula(33).Limitanalysisisimplemented for  u /  y =1.0tobecomparedtoformula(36),andinteractiondiagramisplottedin Figure8.Shakedownanalysiswithandwithouthardeningeffectisimplementedforthe loaddomain: p \b [0,1]; M b \b [  1,1].InteractiondiagramisplottedinFigure9. Figure8showsthatthepresentresultsoflimitanalysisfor  u /  y =1areclosetoana- lyticalsolutions.Figure9showsthatthehardeningeffectiscleariftheappliedmoment islessthan0.5 M b lim .If  u  2  y ,boundedhardeningmodelbecomesunbounded,and shakedownlimitofstructurecannotexceedtwotimesofelasticlimit. Conclusions Thepaperdevelopedanewupperboundalgorithmforshakedownanalysisofelastic plastic-boundedlinearlykinematichardeningstructures.Thisisanefficienttoolforprac- ticalcomputation,especiallyforcomplicatedstructuressubjecttomechanicalloads. Figure8 Interactiondiagramforlimitbounds. Comparisonbetweenanalyticalandnumericalsolutions. Figure9 Interactiondiagramforelasticandshakedownbounds,normalizedbypureplastic collapselimits, M b lim and p lim. Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page11of13 http://www.apjcen.com/content/1/1/4 Theproposedalgorithmgivesresultsthatareclosetotheresultsinliteratures.Ifitleadstoperfectlyplasticmaterial;if,itleadstounboundedkinematichardeningmaterial;otherwise,,wehaveboundedkinematichardeningmaterial.denoterespectivelyelasticlimit,shakedownlimitforelasticper-fectlyplasticandshakedownlimitforboundedkinematichardeningmaterial,respect-ively,then: Intheprecedingexpression,theleftequalityoccursifthesubsequentyieldsurfacetranslatesinsidetheboundingsurface,themiddleequalityoccursifthesubsequentyieldsurfacefixedontheboundingsurfaceandthelastequalityoccurswhenyieldsur-facetranslatesunboundedly.Ifthestructureshakesdowninalternatingplasticitymode,thenthereisnodifferencebetweenperfectlyplasticandkinematichardeningmodels.CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.AuthordetailsFacultyofCivilEngineering,HanoiArchitecturalUniversity,NguyenTraiStreet,ThanhXuânDistrict,Hanoi,Vietnam.FacultyofMedicalEngineeringandTechnomathematics,AachenUniversityofAppliedScience,JülichCampus,Heinrich-Mußmann-Str.1Jülich52428,Germany.Received:15August2013Accepted:30December2013Published:29April20141.MelanE(1938)ZurPlastizitätdesräumlichenKontinuums.Ing-Arch8:1162.PragerW(1956)Anewmethodofanalyzingstressandstraininworkhardeningplasticsolids.JApplMechASME3.MaierGA(1973)Shakedownmatrixtheoryallowingforworkhardeningandsecond-ordergeometriceffects.In:SawczukA(ed)Foundationsofplasticity.Springer,North-Holland,Amsterdam,pp4174.PonterARS(1975)Ageneralshakedowntheoremforelasticplasticbodieswithworkhardening.In:Proc.SMiRT-3,paperL5/25.GokhfeldDA,CherniavskyOF(1980)Limitanalysisofstructuresatthermalcycling.Sijthoff&Noordhoff,The6.SteinE,HuangYJ(1995)Shakedownforsystemsofkinematichardeningmaterials.In:WeichertD,DorozS,MrózZ(ed)Inelasticbehaviourofstructuresundervariablesloads.KluwerAcademicPublishers,Springer,Netherlands,pp337.WeichertD,Groß-WeegeJ(1988)Thenumericalassessmentofelastic-plasticsheetsundervariablemechanicalandthermalloadsusingasimplifiedtwo-surfaceyieldcondition.IntJMechSci30:7578.BodovilléG,deSaxcéG(2001)Plasticitywithnon-linearkinematichardeningmodellingandshakedownanalysisbythebipotentialapproach.EurJMechA/Solids20:999.PhamDC(2005)Shakedownstaticandkinematictheoremsforelastic-plasticlimitedlinearkinematic-hardeningsolids.EurJMechA/Solids24:3510.PhamDC(2007)Shakedowntheoryforelasticplastickinematichardeningbodies.IntJPlast23:124011.NguyenQS(2003)Onshakedownanalysisinhardening.JMechPhysSolids51:10112.StaatM,HeitzerM(2002)Therestrictedinfluenceofkinematichardeningonshakedownloads.ProceedingsofWCCMV,5thWorldCongressonComputationalMechanics,Vienna,Austria.http://opus.bibliothek.fh-aachen.de/13.StaatM,HeitzerM(ed)(2003)NumericalMethodsforLimitandShakedownanalysisDeterministicandProbabilisticProblems.NICSeries,vol15.JohnvonNeumannInstituteforComputing,Jülich.http://webarchiv.14.SteinE,ZhangG(1992)Theoreticalandnumericalshakedownanalysisforkinematichardeningmaterials.In:OwenDRJ,OñateE,HintonE(ed)Proc.3rdInt.Conf.onComputationalPlasticity(COMPLAS3),CIMNE.PineridgePress,Barcelona,Spain,pp115.YanAM,NguyenDangH(2000)Directfiniteelementkinematicalapproachesinlimitandshakedownanalysisofshellsandelbows.In:InelasticAnalysisofStructuresundervariableLoads,TheoryandEngineeringApplications.KluwerAcademicPublishers,Springer,Netherlands,pp23316.YanAM,NguyenDangH(2001)Kinematicalshakedownanalysiswithtemperature-dependentyieldstress.IntJNumMechEngng50:1415mandStaatAsiaPacificJournalonComputationalEngineering:4Page12of13http://www.apjcen.com/content/1/1/4 17.YanAM,KhoiVD,NguyenDangH(2003)Kinematicalformulationoflimitandshakedownanalysis.In:Numerical MethodsforLimitandShakedownAnalysis – DeterministicandProbabilisticProblems.NICSeries,vol15.Johnvon NeumannInstituteforComputing,Jülich.http://webarchiv.fz-juelich.de/nic-series/volume15/volume15.html 18.NguyenDangH,KönigJ(1976)Afiniteelementformulationforshakedownproblemsusingayieldcriterionof themean.CompApplMechEng1(Nr.2):179 – 182 19.NguyenDangH,PalgenL(1980-81)Shakedownanalysisbydisplacementmethodandequilibriumfiniteelement. TransacCSME6(Nr.1):32 – 39 20.VuDK,YanAM,NguyenDangH(2003)Adualformfordiscretizedkinematicformulationinshakedownanalysis. IntJSolidsStruct41(1):267 – 277 21.VuDK,YanAM,NguyenDangH(2004)Aprimal-dualalgorithmforshakedownanalysisofstructures.Comp MethodsApplMechEng(Elsevier)193(42 – 44):4663 – 4674 22.YanAM,VuDK,NguyenDangH(2004)Dualinkinematicalapproachesoflimitandshakedownanalysisof structures.In:DavidY(ed)Complimentarily,dualityandsymmetryinnonlinearmechanics,vol6.Gao,Kluwer AcademicPublishers,Springer,Netherlands,pp127 – 148 23.VuDK(2001)DualLimitandShakedownanalysisofstructures.PhDThesis.UniversitédeLiège,Belgium 24.Ph  mPT,StaatM(2013)Anupperboundalgorithmforlimitandshakedownanalysisofboundedlinearly kinematichardeningbodies.In:DeSaxcéGetal.(ed)DirectMethods.Springer,Netherlands 25.GarceaG,ArmentanoG,PetroloS,CasciaroR(2005)Finiteelementshakedownoftwo-dimensionalstructures.Int JNumerMechEngng63:1174 – 1202 26.TranTN,LiuGR,NguyenXH,NguyenTT(2010)Anedge-basedsmoothedfiniteelementmethodforprimal-dual shakedownanalysisofstructures.IntJNumerEngng82:917 – 938 doi:10.1186/2196-1166-1-4 Citethisarticleas: Ph  mandStaat: FEM-basedshakedownanalysisofhardeningstructures. AsiaPacificJournalon ComputationalEngineering 2014 1 :4. Submit your manuscript to a journal and bene“ t from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the “ eld 7 Retaining the copyright to your article Submit your next manuscript at 7 springeropen.com Ph  mandStaat AsiaPacificJournalonComputationalEngineering 2014, 1 :4Page13of13 http://www.apjcen.com/content/1/1/4