/
REVIEWOpenAccessObservingtheunwatchablethroughaccelerationloggingofani REVIEWOpenAccessObservingtheunwatchablethroughaccelerationloggingofani

REVIEWOpenAccessObservingtheunwatchablethroughaccelerationloggingofani - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
373 views
Uploaded On 2015-11-29

REVIEWOpenAccessObservingtheunwatchablethroughaccelerationloggingofani - PPT Presentation

CorrespondencedaniellebrownwkueduDepartmentofBiologyWesternKentuckyUniversity1906CollegeHeightsBlvd11080BowlingGreenKY421011080USAFulllistofauthorinformationisavailableattheendofthearticl ID: 209330

*Correspondence:danielle.brown@wku.eduDepartmentofBiology WesternKentuckyUniversity 1906CollegeHeightsBlvd.#11080 BowlingGreen KY42101-1080 USAFulllistofauthorinformationisavailableattheendofthearticl

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "REVIEWOpenAccessObservingtheunwatchablet..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

REVIEWOpenAccess Observingtheunwatchablethroughacceleration loggingofanimalbehavior DanielleDBrown 1* ,RolandKays 2,3,4 ,MartinWikelski 4,5,6 ,RoryWilson 7 andAPeterKlimley 8 Abstract Behaviorisanimportantmechanismofevolutionanditispaidforthroughenergyexpenditure.Nevertheless,field biologistscanrarelyobserveanimalsformorethanafractionoftheirdailyactivitiesandattemptstoquantify behaviorformodelingecologicalprocessesoftenexcludecrypticyetimportantbehavioralevents.Overthepast fewyears,anexplosionofresearchonremotemonitoringofanimalbehaviorusingaccelerationsensorshas smashedthedecades-oldlimitsofobservationalstudies.Ani mal-attachedaccelerometersmeasurethechangeinvelocity ofthebodyovertimeandcanquantifyfine-scalemovementsan dbodyposturesunlimitedbyvisibility,observerbias,or thescaleofspaceuse.Pioneeredmorethanadecadeago,a pplicationofaccelerometersasaremotemonitoringtool hasrecentlysurgedthankstothedevelopmentofmoreaccessiblehardwareandsoftware.Ithasbeenappliedtomore than120speciesofanimalstodate.Accelerometermeasur ementsaretypicallycollectedinthreedimensionsof movementatveryhighresolution�(10Hz),andhavesofarbeenappliedtowardstwomainobjectives.First,the especificbehaviorsthroughanimalmovementandbody posture.Second,thevariationinaccelerometerwavefo rmmeasurementshasbeenshowntocorrelatewithenergy expenditure,openingupasuiteofscientificquestionsinspeciesnotoriouslydifficulttoobserveinthewild.Todate, studiesofwildaquaticspeciesoutnumberwildterrestrialspe ciesandanalysesofsocialbehaviorsareparticularlyfewin number.Researchersofdomesticandcaptivespeciesals otendtoreportmethodologymorethoroughlythanthose studyingspeciesinthewild.Therearesubstantialchalle ngestogettingthemostoutofaccelerometers,including validation,calibration,andthemanagementandanalysisofl argequantitiesofdata.Inthisreview,weillustratehow accelerometerswork,provideanoverviewoftheecologicalquestionsthathaveemployedaccelerometry,andhighlight theemergingbestpracticesfordataacquisitionandanalysi s.Thistooloffersalevelofdetailinbehavioralstudiesof free-rangingwildanimalsthathaspreviouslybeenimpossible toachieveand,acrossscientificdisciplines,itimproves understandingoftheroleofbehavioralmechanismsinecologicalandevolutionaryprocesses. Keywords: Accelerometer,Activity,Animalbehavior,Bio-loggi ng,Deadreckoning,Energyexpenditure,Ethogram, Remoteobservation,Telemetry danielle.brown@wku.edu 1 DepartmentofBiology,WesternKentuckyUniversity,1906CollegeHeights Blvd.#11080,BowlingGreen,KY42101-1080,USA Fulllistofauthorinformationisavailableattheendofthearticle ©2013Brownetal.;licenseeBioMedCentralLtd.ThisisanopenaccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycited. Brown etal.AnimalBiotelemetry 2013, 1 :20 http://www.animalbiotelemetry.com/content/1/1/20 Abstract Resumen: Elcomportamientoesunmecanismoimportantedelaevoluciónyquesepagaatravésdelgastode energía.Sinembargo,losbiólogosdecamporaramenteobservanlosanimalesdurantemásdeunafraccióndesus actividadesylosintentosdecuantificarelcomportamientoparaelmodeladodelosprocesosecológicosa menudoexcluyeneventoscrípticosperoimportantes.Enlosúltimosañosseprodujeronavancesimportantesenel monitoreoremotodelcomportamientodelosanimales,utilizandosensoresdetelemétrodeaceleración (acelerómetros)queempujanloslímitestradicionalesdelosestudiosobservacionales.Acelerómetrosunidosalos animalesmidenelcambiodelavelocidaddelcuerpoeneltiempoypuedencuantificarlosmovimientosaescala finayposturascorporalesilimitadasporlavisibilidad,elsesgodelobservador,olaescaladelautilizacióndel espacio.Comopionerohacemásdeunadécada,laaplicacióndelosacelerómetroscomounaherramientade monitoreoremotohaaumentadorecientementedebidoaldesarrollodehardwareysoftwaremásaccesibles.Seha aplicadoamásde120especiesdeanimaleshastahoy.Medidasdelosacelerómetrosserecogentípicamenteen tresdimensionesdemovimientoamuyaltaresolución�(10Hz),yhastaahorasehanaplicadohaciadosobjetivos principales.Primero,lospatronesdelasformasdelosacelerómetrosdeondasepuedenutilizarparadeducir comportamientosespecíficosatravésdemovimientodelosanimalesylaposturacorporal.Segundo,seha demonstradoquelavariaciónenlasmedidasdeformadelosacelerómetrosdeondasehademostradoquese correlacionaconelgastodeenergía,abriendounaseriedepreguntasdecaráctercientíficosobreespeciesmuy difícilesdeobservarenlanaturaleza.Hastalafecha,losestudiosdelasespeciesacuáticassilvestressuperanalas especiesterrestressilvestres,ylosanálisisdeloscomportamientossocialessonmuypocosennúmero.Los investigadoresdelasespeciesdomésticasyencautiveriotiendenareportarmetodologíamáscompletaquelos queestudianlasespeciessilvestres.Hayretosimportantesparaconseguirelmáximorendimientodelos acelerómetros,incluyendolavalidación,calibraciónygestiónyanálisisdegrandescantidadesdedatos.Enesta revisiónseilustracómofuncionaelacelerómetro,seproporcionaunavisióngeneraldelasinvestigaciones ecológicasquehanempleadolosacelerómetrosysedestacanlasmejoresprácticasemergentesparalaadquisición yanálisisdedatos.Estaherramientaofreceunniveldedetalleenlosestudiosdecomportamientodelosanimales salvajesquehansidohastaahoraimposiblesdealcanzary,entodaslasdisciplinascientíficas,quemejorala comprensióndelpapeldelosmecanismosdecomportamientodelosprocesosecológicosyevolutivos. Palabrasclaves: Acelerómetro,actividad,bio-registro,comportamientoanimal,gastoenergético,etograma, navegaciónaestima,observaciónadistancia,telemetría. Review “ Mangoestonaturetolearnwhatnatureis,but,inso doing,heintroducespossibilitiesofdistortionthroughhis ownpresence. ”– T.C.Schneirla(p.1022,[1]). Naturalistshavelongbeenawarethattheirpresencecan affectanimalbehavior[1,2].Directobservationpresents obviousdifficultieswhenanimalsperceivehumansaspred- ators[3]orwhentheyarenaturallysecretiveandelusive [4,5].Habituatingindividualstoanobserverissometimes possiblebutitislabor-intensive,andcanrequirelong-term study[6,7].Furthermore,thoughthesubjectsunderstudy maybehabituated,humanpresencecanstillaffecttheir behavioralinteractionswithothernon-habituatedpredator, preyorcompetitorspecies[8].Theobserverisrarelyun- detectableandevenanimalsthatdonotappeartoreactto humanpresencemaystillchangetheirbehaviorinsubtle ways[9,10].Directobservationsarealsobiasedbyourown physicallimitations[11-13]andtendenciestoattendto someeventsandsubjectsmorethanothers[14]. Thefieldofbiotelemetrygrewoutoftheneedtolo- cateanimalsatwillandobserveandrecordtheirhabitsdes- pitetheirabilitiestotravelrapidlyandwidelyininclement weather,underwater,oratnight[12,13,15].Locatingani- malsinspacehasprogressedfrommanualtrackingof animal-borneradio-oracousti csignalstoautomateddepth andgeomagneticloggersandsatellite-basedpositioningsys- temsthatpracticallyeliminatetheobservereffectandcan nowprovidepreciseworldwidelocationswithfewtemporal orspatialconstraints[11,16].Nevertheless,arecordofani- mallocationsoradepthprofiletellswheretheanimalwas andhowlongitstayedthere,butthebehavioralcontextis absentandmusteitherbeinferredordemandsareturnto directobservationmethods[17].Theseissuesunderscore theneedforremotemeasurementofanimalbehaviortore- duceoreliminatethepotentialeffectsofobserverpresence whilemaintainingahighlevelofdetailindatarecording thatiscomparabletodirectobservation[18].Overthepast fewyears,therehasbeenanexplosionofresearchonre- motemonitoringofanimalbehaviorusingmeasurements ofacceleration(Figure1)[19, 20].Thistool,theaccelerom- eter,hasrepeatedlycircumventedmanyoftheage-old limitsofdirectobservationofanimalsinthefield. Figure2providesabasicexplanationofhowanaccel- erometerworks[21].Anaccelerometerisaspring-like Brown etal.AnimalBiotelemetry 2013, 1 :20 Page2of16 http://www.animalbiotelemetry.com/content/1/1/20 piezoelectricsensor.Whendeformed,thesensorgener- atesawave-likevoltagesignalthatisproportionaltothe acceleration(changeinvelocity)itexperiences[22].The sensorisdeformedbothbygravitationalaccelerationas wellasinertialaccelerationduetomovement.Fromone tothreeofthesesensorsarealignedorthogonallytoone anotherandaffixedtoananimalsothateachsensor measuresaccelerationinasingleplane,ordimension,of movement(surge,heave,andsway(Figure2)).Allthree sensorscollectingsimultaneousmeasurementscanrep- resentthree-dimensionalmovementrealistically[20,23]. Thesensorscanbeuser-programmedtosampleacceler- ationatfrequenciesrangingfrom0.5to10,000Hz,and canbesettorecordcontinuouslyorinrepeatedbursts (e.g.,every2min).Thevoltagesignals,alsoknownas rawaccelerometeroutput,maybeusedintheirraw state,orconvertedtoactualaccelerationiftheunitis carefullycalibrated(measuredin g ;1 g =9.8m/s 2 ).Under staticcircumstances,suchasduringrestorafterdeath,the accelerometersignalonlyrepresentsthegravitationalforce actingonthesensors.Whenananimalismoving,sensor outputrepresentsaccelerationduetogravitycombined withtheinertialaccelerationgeneratedbymovement[23]. Accelerometerstypicallyincorporateamicroprocessorand digitalmemorytostoreloggedmeasurementsuntilthein- strumentisretrieved[24]. Measurementofaccelerationisawell-establishedre- searchtoolinbiomechanics[25,26]andexercisescience [27,28].Thefirst(wired)accelerometerswereusedto examinethebiomechanicsofmovementinhumans[29] andfish[30]andthentoascertainthecorrelationbe- tweenbodilyaccelerationandoxygenconsumptionin humansubjects[28].Theintroductionofair-bagtech- nologyinpassengervehiclesleadtothedevelopmentof relativelyinexpensiveaccelerometersthatuseverylittle power[31].Thesewerequicklyadoptedforstudiesout- sidethelaboratoryenvironment,becausetheyare “ small, low-costinstrumentsthatprovidequantitative[andob- jective]measurements[ofactivity] ” p.679,[32].Animal studiesusingthesemodern,trulyportableacceleration sensorsdidnotappearintheliteratureuntilthelate 1990s[33,34].Initially,animalstudieswereconfinedto captiveanddomesticatedspecies,aswellasaquatictaxa, forwhomfewotherbehavioralobservationmethods werepossible[12,35,36].Sincethen,theongoingreduction inthesizeofcomputermicroprocessorsandimprove- mentsinbatterysize,weight,andlongevitycombinedwith thesesmallsolid-stateaccelerationsensorshaveresulted inamodernaccelerometerthatcanweigh0.7g(withouta battery)andmeasure9.5×15×4mm(availablefrom: http://www.technosmart.eu/axy.php).Modernaccelerome- tersalsoconsumeverylittledigitalmemorywitheach measurement[37],sodatacollectionanddatastorageon- boardtheinstrumentitselfispossibleforuptoseveral monthsoryears,dependingonthesamplingschedule.Ac- celerometersthatsimplylogtheirdatamustberetrieved afterthesamplingperiod,aswithothertypesoftelemetric dataloggers.However,someaccelerometersincorporate ultra-highfrequencydatadownloadtechnologyinsimilar frequencybandwidthsasthoseusedincellularphones [38].Thisfeaturemakesitpossibletodownloadthedata fromtheaccelerometerfromareasonabledistance(upto 500m,personalobservation)evenifthedeviceandits bearerarenotvisibleortheinstrumentcannotbere- trievedbecauseithasbeendiscardedinatreecavity,for example[21].Radiooracousticbeaconsarecommonly usedonloggersthatmustberetrieved[21,24]. Movementisthefundamentalbehavioralresponseto bothinternalmotivationsandtheexternalenvironment [13,17].Usingaccelerometers,biologistscanmeasurethe movementbehaviorofwildanimalsoverbiologicallyand Figure1 Primarypapersusingaccelerometersinanimal behaviorresearch1998 – 2012. Figure2 Howanaccelerometerworksandtypicalorientation ofinstrumentaxesonaterrestrialmammal( Tamandua mexicana )[21]. Brown etal.AnimalBiotelemetry 2013, 1 :20 Page3of16 http://www.animalbiotelemetry.com/content/1/1/20 ecologicallysignificanteventsandperiods,practicallyun- limitedbyvisibility,observerbias,orgeographicscale.Ac- celerometerscanbedeployedwithothersensors,suchas thoserecordinglocation(GPS,acoustictelemetry,water depth),physiologicalmeasurements(heartrate,bodytem- perature),andenvironmentalvariableslikeairtemperature, lightlevelsandmagneticheading[24,39,40].Particularly whencombinedwithotherinstruments,measurementsof accelerationcanprovideawiderangeofdetailedinforma- tionontheenvironmentalcontextofanimalbehaviorand physiologythatcanexceedthedescriptiveabilitiesofthe humanobserveranddeepenourknowledgeevenforwell- knownspeciessuchasdomesticanimals.Here,wereview howaccelerometershavebeenusedtodateinthestudyof animalbehavior,includingthetaxonomicandresearch trendsintheliteratureandweillustratethetypeofdata producedbythistechnologyfrominstrumentsdeployed onavarietyofspecies.Further,weprovideasummary ofthecurrentlyavailabletechniquesfordatacalibration, managementandanalysis,andsuggestkeydirectionsfor futureresearch. Methods WeaccessedBIOSIS®PreviewsandISIWebofKnow- ledge®onlineandransearchesforanypublicationcontain- ingreferencestoaccelerometryinthetitle,abstractor keywords.Welimitedouranalysistoprimaryresearch publishedinpeer-reviewedjournalsandbookchapters throughDecember2012.Fromthose,weselectedstudies utilizinganimal-bornesensorsappliedtonon-humanspe- cies.Weassessedtheresultingworksforthefollowing:i) studypurpose;ii)speciesandwhethersubjectswerecap- tive/domesticorfree-ranging,andaquaticorterrestrial; iii)numberofaccelerationaxes;iv)samplingfrequency utilized;v)thebehavioralresolutionoftheresultingmea- surements;vi)theparametersoftheaccelerometerdata usedforanalysis;vii)whetherornotbehavioralclassifica- tionaccuracywasreported(ifpertinent);andviii)whether accelerometrywascombinedwithothertelemetrysensors. Resultsarepresentedaspercentages;notallpercentages willsumto100becausenotallcategoriesweremutually exclusive. Results Wediscovered176accelerometrystudiesandcounted125 animalspeciesthathaveborneaccelerometers(Additional file1).Studieswererelativelyevenlysplitbetweenaquatic (48.3%)andterrestrial(52.8%)habitatsandbetweenfree- rangingwildanimals(50%)anddomesticated/captivewild animals(33/27.3%),buttherewerebiasesamongtaxafor thesecategories(Figures3and4).Mammalsrepresented 45.6%ofallstudyspecieswithdomesticcattleandPinni- pedsbeingthemost-studiedamongthemammals(14%of studiesand18%ofspecies,respectively).Birdscomprised 33.6%ofallstudyspeciesand38%ofavianspecieswereei- therSphenisciformesorSuliformes.Fishesincluded11.2% ofspeciesandhalfofallfishspecieswereElasmobranch sharks.Eightreptilespecies,fiveofthemChelonians,com- prised6.4%ofstudysubjects.Giantcuttlefish( Sepia apama ),Humboldtsquid( Dosidicusgigas ),Kingscallop ( Pectenmaximus )andCanetoad( Bufomarinus )werethe fourstudyspeciesremainingoutsideofthesefourtaxon categories. Morethanhalfofallstudies(62.3%)utilized3-axisac- celerometers;90.3%ofstudiesutilizedeither2-or3-axis accelerometers.Samplingfrequenciesrangedfrom0.5Hz to10,000Hz,with60%ofstudiesusingoneofthefollow- ingmostcommonsamplingfrequenciesof8,10,16,32, 64or100Hz.Forty-eightpercentofstudiescollected Figure3 Accelerometrystudiesperformedonwildfree-ranging animalscomparedtodomestic/captiveanimalsbytaxon. Figure4 Accelerometrystudiesperformedonaquaticanimals comparedtoterrestrialanimalsbytaxon. Brown etal.AnimalBiotelemetry 2013, 1 :20 Page4of16 http://www.animalbiotelemetry.com/content/1/1/20 accelerationdatacontinuouslyand13.3%collecteddatain discreteburstsorintervals;38.7%ofstudiesdidnotclearly reporttheircollectionmethod.Sixty-threepercentofstud- iescombinedanaccelerometerwithothertelemetricin- struments;however,free-rangingwildspecieswere3times morelikelythancaptivewildspeciesand6timesmore likelythandomesticatedspeciestobeoutfittedwithtelem- etrydevicesthatcontainedmultiplesensors.Themost commonremotesensorsusedintandemwithaccelerome- tersmeasureddepth(35.6%ofstudies),travelspeed(16% ofstudies)andtemperature(14.7%ofstudies). Surveyofquestionscurrentlyservedbyaccelerometry: bodypostureandbodymovement Theaccelerationwaveformsovershort(millisecond)to long(minutes)periodscanbeusedtodeducebehavior- specificbodyposturesandbodymovements(Figures5 and6)[41,42].Acrosstaxa,36.4%ofstudiesreportedac- celerationethogramsoracceleration-baseddescriptions ofbehavior.Justunderhalf(46.6%)ofallstudiesutilized theaccelerometerwaveformstodetermineactivitybudgets. AsshowngraphicallyinFigu re5,accelerometervoltage outputofinactiveorrestbehav iorismoreorlessconstant, whilewhole-bodymovementofanykindproducesfluctuat- ingaccelerationwaveformswithhighlevelsofvariance amongmeasurements.Ofthestudiesexaminingactivity budgets,35%ofauthorsusedth isvariancecharacteristicof accelerometerwaveformstosimplyidentifythetimingof activityvs.rest[43-46].Sixty- fivepercentofauthorsidenti- fieddistinctwaveformsforspecificbehaviorsandthenesti- matedtheamountoftimeanimalsspentengagedinthese behaviorssuchaschasingpreyorfeeding,flight,swimming, walking,running,climbing,standing,lyingdown,thermo- regulationandsleeping.Quan tifyingforagingeffortisan applicationofaccelerometrythatfewothertelemetrytech- nologiescanaccomplishandisparticularlyusefulforani- malsthatforageorhuntoutofsight.Researchershave documentedforagingstrategiesthatdifferbyspecies,age orsex[47-52].Otherstudiesplacedaccelerometersensors onthehead/mandibletodirectlymeasureattemptsatfood capture[53],althoughforagingeffortdidnotnecessarily correlatewithforagingsuccess[54].Thereareseveral methodsforidentifyingandcategorizingwaveformsthat representspecificbehaviors(see ‘ BestPractices ’ ,below). Onaverage,thesestudieswereabletoidentifyfourdistinct accelerationwaveformprofiles(range2to7),typicallyfall- ingunderthebroadbehavioralcategoriesoflocomotion, resting,andfeeding/foraging[55-57].Ingeneral,whilethe accelerometerpatternsofactivelocomotorybehaviors (walking,running,climbing,swimmingandflying)are clearlydistinguishablefrominactivebehaviorssuchas sleep,thermoregulationanddigestion,thewaveformsof thesetypesofrelativelyimmobilebehaviorsarenotpar- ticularlydistinctfromoneanother[19]. Whenanaccelerometeriscombinedwithothersen- sorsonataggedanimal,researcherscandescribethe broaderecologicalcontextofaccelerometer-determined behaviors.Lightlevelandambienttemperaturesensors intandemwithaccelerometrypermitexaminationofactiv- itytiminginrelationtoenvironmentalconditions[58-61]. Accelerometersandremotely-sensedlocationviaGPS, compass,depthoracousticsensorsprovidethespatialdis- tributionsofaccelerometer-determinedbehaviors[62-66] andcanleadtonovelinsightsaboutspecies ’ behavioral ecology.Forexample,traditionalobservation-onlyresearch ofthelittle-knownoilbird( Steatorniscaripensis )ledtothe hypothesisthatthesenocturnalfrugivorousbirdswerenot seeddispersersbecausetheseedsfromtheirdietwerere- gurgitatedinthedarkcaveswherethebirdsroost.Holland Figure5 Accelerometer-baseddeterminationofbodyposture andthetimingofrestvs.activity. Dataarefromastudyofthe northerntamanduaanteater Tamanduamexicana [21].Acceleration wassampledat19Hzfor~3secondsevery2min.Forsimplicity,the y-axisisnotshownandwaveformsrepresenttheaveragevoltage measuredevery2minforeachaxis. Figure6 Heave-axisaccelerationwaveformsofthreebehaviors oftheSwallow-tailedgull (Creagrusfurcatus) . They-axisshowsthe unit-freevoltageoutputoftheaccelerometersensor.Photograph anddatapreparedbySebastiánCruz(unpublished). Brown etal.AnimalBiotelemetry 2013, 1 :20 Page5of16 http://www.animalbiotelemetry.com/content/1/1/20 etal.[38]determinedthatoilbirdsoutfittedwithGPS/ac-celerationloggersspentonlyeverythirddayincaves,otherwiseremainingintherainforestwheretheyregurgi-tatedseedsontotheforestflooratconsiderabledistancesfrombothfeedingsitesandcaveroosts.Theauthorsmain-tainedthatoilbirdsshouldbereconsideredasanimportantlong-distanceseeddisperserinNeotropicalforests,anovelhypothesisfortheecologyofthatecosystem.Behavioralanalysisappliedtomonitoranimalwelfarewasasignificantcomponentofaccelerometryresearchonterrestrialanimals;80%oftheterrestrialstudies(and25%ofallstudies)examinedthewelfareofdomesticatedspecies.Typically,authorsusedaccelerometrytomonitorbehavioralchangesassociatedwithreproduction[67,68]orbehavioralresponsestoveterinaryorhusbandryprac-tices[69-74].Instudyingwelfareoffree-rangingwildspe-cies,mortalitysensorsareacommonfeatureoftelemetersandtypicallyprovideaspecialsignaltoalertresearcherstotheanimalsdemise[75].Theadvantageofusingaccel-erometerstodetectmortalityisthatitincludesarecordofbehaviorleadinguptothetimeofdeath,providingarichercontextthatasimplelocationandtimeofdeathoftendonot.Forexample,Kroneetal.[76]wereabletoidentifyachangeinactivityand,ultimately,themomentofdeath,duetotoxinexposureinawhite-tailedseaeagleHaliaeetusalbicillaWhatislargelyabsentfromthisbodyof82articlesaboutactivitybudgetsisthemeasurementofsocialbehav-iors.Whilenumerousstudiescomparedbehaviorbudgetsduringparticularreproductivestatesandreportedetho-gramsforbroodingornestpreparation[52,57,66,77-81],onlytwostudiesexaminedwhethermatingbehaviorhadacharacteristicaccelerationprofile[82,83].Thescarcityofpublishedaccelerometryethogramsforaggressiveinterac-tions,territorialorcourtshipdisplays,andplayandparent-offspringbehavior[84,85]couldbebecausethesesocialbehaviorsweregenerallyrareinthemajorityofthespeciesthathavebeenstudied,theaccelerationwaveformsofsocialbehaviorswereindistinguishablefromthoseofnon-socialbehaviors,orbecauseitwasnotfeasibletotagmultipleanimalsinthesamegroup.Inter-individualtel-emetry,withanimalsbearingtagsthatareabletorecordthedateandtimeofproximitytoothertaggedanimalshasrecentlybeenreportedforacoustictransmitters[86].Theapplicationofaccelerometerstostudiesofsocialbe-haviorwouldbenefitmightilyfromaccelerometertagsthathavetheabilitytorecordproximity,identityorevenbehavioroftaggedindividualsincontactwiththeanimalthatbearstheprimarytag.Surveyofquestionscurrentlyservedbyaccelerometry:biomechanicsandtheenergeticsofmovementEnergeticshavelongbeenofinteresttobehavioralecolo-gists[87,88]becauseallmovementsrequireenergy,andprudentallocationofenergytospecificactivitiessuchasforaginghasdirectconsequencesforfitnessandnaturalselection[77,89,90].Priortotherecentdevelopmentsinaccelerometry,measuringenergyexpenditureinwildani-malsinthefieldinvolveddoubly-labeledwaterorheartratetelemetry,bothofwhichhavelogisticallimitationsthathaverestrictedtheiruse[91,92].Accelerometertechnologyhasdramaticallyadvancedourunderstandingoftheroleofenergyinbehavioralstrategiesbymakingitpossibletostudyfine-scale,behavior-specificenergyexpenditureout-sidethelaboratoryindiversetaxa[93].WilsonandHalseyetal.havetestedforcorrelationsbetweenbodilyacceler-ationandoxygenconsumed(assumingatleastpredomin-antlyaerobicmetabolicpathways)acrossawiderangeofspeciesfromaquaticmammals[94,95],birds[64,77,96-99],fishes[100,101],reptiles[52,102-104]andabivalve[105],toterrestrialmammals,birds[56,106-108]andoneam-phibian[109].Althoughthestrengthoftherelationshipbe-tweenbodilyaccelerationandoxygenconsumption(asaproxyformetabolicrate)variesanddependsonanumberoffactors,therelationshipisvalidacrossallspeciesexam-inedtodate[110].WilsonsmetricOverallDynamicBodyAcceleration(ODBA)[77]hasbecomethemostcom-monlyusedacceleration-basedproxyofmetabolicrate(en-ergyexpenditure)andseveralarticleshavebeendevotedtostandardizingthisproxyorvariantsofit[19,106,110-112].Thecurrentavailableresearchindicatesthatbodilyacceler-ationcanqualitativelyassesshowtheamountofmechan-icalworkperformedbythebodydiffersamongactivelocomotivebehaviors,adistinctimprovementonoldertechniquesthatwerenotbehavior-specific(Figure7)[110].Seventy-threearticlesappliedaccelerometrytobio-mechanicalresearch(42.7%ofallarticlesexamined).Asmallminorityofthesestudies(7),eschewedapplicationstometabolismandinsteadremainedwithinthetraditionalrealmofevaluatingperformance:runninginracehorses[113-117],swimminginseasnakes[118],andflightinProcellariformseabirds[119].Theremaining90%ofarti-clesfocusedonenergyefficiencyduringlocomotionfortravelorforaging[31,35,94,120-124].Inordertobetterunderstandtheselectionpressuresoncurrentpatternsoflocomotorbehavior,researcherscomparedmovementen-ergeticsacrossspecies,movementstrategies,demographicclassesandbehaviors[42,48,102,107,122-127].Therewasastronghabitatbiasinexistingaccelerometry-basedresearchonbiomechanicalenergetics,withaheavyemphasisonmarinedivinganimalssuchasPinnipedsandCetaceans[36,95,128,129],penguins[97,130,131],Pelicaniformbirds[77,99,126,131-133],andmarinetur-tles[79,134].Terrestrialtaxa,mainlybirds,wererepre-sentedinonlyfive(of66)studiesofmovementenergetics[56,106-108].Oftheterrestrialspecies,wewereabletoidentifyonlyasinglepublishedfieldstudyofenergeticsfornon-volantterrestrialanimals:canetoads(Bufomarinusetal.AnimalBiotelemetryPage6of16http://www.animalbiotelemetry.com/content/1/1/20 [109].Batterysizeandweightstillmostlyprecludeaccel- erometryenergeticsstudiesofthesmallestwildmammals (particularlybats)andbirds.Afurtherlimitationisthatac- celerometersdonotappeartobeaparticularlygoodproxy ofenergyexpendedduringimmobilebutstillenergetically costlybehaviorssuchasthermoregulationorgestation [107,135]. Potentialapplicationofaccelerometry:position andlocation Accelerationmeasurementscanbeusedtoderiveanimal speed,which,togetherwithcompassanddepth/altitudinal information,couldbeusedto ‘ dead-reckon ’ ananimal ’ s position.Thereareseveralexistingmethodsforlocating animalsinspaceandtimeincludingradiotelemetry[136], satelliteorgeographicpositioningsystems[11,137,138] andacousticarrays[139].Noneofthesemethods worksforallspeciesandhabitatsand,consequently, travelpathsarefrequentlyreconstructedbybridging sporadicpointsandhavelowspatio-temporalresolution [140,141]. Dead-reckoning(alsoknownaspathintegration)uses vectorcalculationsfromvelocityandthechangeinheight ordepthtogetherwithaknownstartposition(usuallythe animalreleasepoint)toderivenewpositionswithrespect tothosepreviouslyknown[24,142].Locationsobtainedby dead-reckoning,therefore,arenotsubjecttothesamecon- straintsofreceiverlocationorsatelliteaccessandrepresent analternativemethodforstudyingmovementpathswhen radio-orsatellite-basedtelemetrymethodsareunsuitable. Dead-reckoningusessensorson-boardthetelemetrytag thatrecordheading/direction(usuallymeasuredwithmag- netometers),altitudeordepth(usuallymeasuredwithpres- suresensors),andspeed.Intheory,speedcanbecalculated bytakingthederivativeofaccelerationoveraknowntime interval[130]orbyusingaknownstridelengthandthe accelerometer-measuredstridefrequency[142].However, speeddeterminedinthiswaycanbesubjecttolargeerrors duetovariationinslopeandsubstrateduringtravel [67,139].Theseerrorsareparticularlyunpredictablein aquaticorvolantspecies,duetodriftcausedbywaterand windcurrentsratherthananimallocomotion[142].In terrestrialsystems,terraininclineandsubstrateimpact stridelength,affectspeedcalculationsandconsequently thedeterminationofdistancemoved.Furthermore,these errorsaccumulateovertime,makinglocationestimates increasinglyworsefurtherfromthelastknownlocation. Becauseoftheseproblems,dead-reckoningfromaccele- rometrydatahasbeenusedinfrequentlyandmost researchersinterestedinmovementspeedhaveadded separatespeedsensors(smallexternalpropellers)tothe telemetrytags[24,137,141-144].AsGPStechnology becomesmorewidelyintegratedintoaccelerometertags, thegreatestpotentialfordead-reckonedanimallocation comesinrecreatingtheexacttravelpathbetween subsequentGPSlocationscollectedatshortintervalse.g., 5min[24,139]. Bestpracticesindataacquisitionanddataanalysis:tag attachmentandtandemsensors Attachingtelemetrytagstoanimalsisacomplicatedand delicateprocessthatrequirescaretoreducetheinflu- enceoftheequipmenttotheanimal.Consultationwith experiencedfieldbiologistsandtagcompanies,notto mentionproperliteraturereview,iscriticalduringthe planningstageofanytaggingstudy.Inadditiontothe standardconcernsofattachment longevity,deviceretrieval andwhethertagattachmentaffectsanimalbehavior[138], tagattachmentforaccelerometersensorsisespeciallysensi- tivebecauseshiftsofthetagrelativetothepositionofthe animalcouldimpacttheinterpretationofthethree-axis data.Extensivepreliminaryresearchonreadilyobservable animalsisoftenneededtofine-tuneanewattachment methodforagivenspecies[145].Commonmethodsof accelerometertagattachmenti ncludeneckcollars[20,55], legbracelets[146],harnesses[109,145],andtape-[118], clamp-[147]orglue-ontags(Figure2)[21,102].Arigidat- tachmentensuresthatoncethetagisdeployed,theaxes,or dimensions,ofmovementbeingmeasureddonotchange overthedeploymentperiodandthataccelerationofthetag Figure7 Overalldynamicbodyaccelerationshownforahoppingandnon-hoppingcanetoad Bufomarinus . Thisstudywasthefirstto useaccelerometrytoestablishabehavioraltimebudgetandassignenergycoststothosebehaviorsforanon-volantterrestrialanimal.Graphic reprintedwithpermissionfrom[109]. Brown etal.AnimalBiotelemetry 2013, 1 :20 Page7of16 http://www.animalbiotelemetry.com/content/1/1/20 independentoftheanimal(byacollarbouncingupanddownontheneck,forexample)iskepttoaminimum[111].Forspeciesthatmustwearcollarsorbracelets,acompletelyrigidattachmentisnotpossibleunlessthecol-larcanbepreventedfromturningaroundtheneck/leg[55],whichmaypresentawelfareconcernforfree-ranginganimals.Forsomequestions,forexamplethetimingofac-tivity/rest,therequirementofrigidattachmentmaybere-laxed.Finally,accelerometertagscanalsobedeployedinsidethebodycavityofsomespecies[61,148],whichmayreduceconcernsabouttagmovementsthatareirrelevanttotheresearchquestion.Internaldeploymentsmaypro-videtheadvantageofrecordingaccelerationsduetophysiologicalprocessessuchasheartbeatandmovementsofsmoothmuscleduringdigestion[148],butcanalsohavethedisadvantageofnecessitatingsurgicalproceduresfortagdeploymentandretrieval/removal,whichcanaffectanimalbehaviorandwell-being.Theorientationofaxesistypicallyplacedsothatthesurgeaxisisalignedwiththelongitudinalbodyaxisandswaywiththehorizontalbodyaxis(Figure2)[20].Ensuringthattagpositionisassimilaraspossiblebetweenindivid-uals,especiallythoseofverydifferentbodysizes,improvesthesignal-to-noiseratiooftheaccelerometeroutputandminimizeserrorsininterpretation[20,63,101,131].Beyonditsorientationonthebody,thespecificanatomicallocationoftheattachedaccelerometertaglargelydetermines,whatbehaviorscanbedistinguishedbytheiraccelerometrypat-terns.Bothspeciesmorphologyandtagplacementwillde-terminethenumberandtypeofbehaviorswithdistinctaccelerationprofiles[44].Forexample,tagsattachedtoansback,asinFigure2[38,109],willnotprovideac-celerationpatternsoffine-scalefeedingbehaviorsthatonlyinvolvemovementofthemouth.Ontheotherhand,accel-erationsofchewingmovementsmaybedetectablewithneckcollars[33,55].Inhumans,ithasbeenwellestablishedthatpreciseaccelerometer-baseddescriptionsoffull-bodymovementrequireatleastfiveaccelerationsensors,onemountedonthetrunkofthebodyandoneoneachex-tremity[26].Studiesoffree-rangingwildanimalaretypic-allylimitedtoonetelemetrytagperindividual;however,multipleaccelerometerinstrumentshavebeenusedondo-mesticatedanimals[149-152]andinahandfulofwildmar-inespecies[53,54,153-157],improvingtheprecisionofbehaviormeasurements.Evenwhencontainedinasingletag,mostmodernac-celerometersarecombinedwithothertypesofsensorstoenhancetheamountofinformationcollectedsimul-taneouslyfromtheenvironment,suchaslight,air/waterpressure,externalair/watertemperature,relativehumidityandmagneticfield[24],aswellasfromtheanimal,suchasbodytemperature,heartrateandmouth/jawmove-ments[79,99,101,133,134,157-160].Inmoderntelemetrytags,eachofthesedatasensors,includingeachaxisoftheaccelerometer,havetheirownseparatechannelsfordatare-cording,sothataccelerometerdataarecollectedindepend-entlyofotherinformationlikeGPS[24,160].Asaresult,evenifonesensormalfunctionsorcannotacquireinforma-tionmomentarily(forexample,theGPSunitspendsseveralminutesattemptingtoaccesssatellitesandobtainaloca-tion),theothersensorscontinuetorecorddataonsched-ule.Insometags,theactivitylevelsoftheanimalasdeterminedbytheaccelerometercanbeusedtosetthere-cordingschedulesofothersensorsdynamically.Forex-ample,theGPSscheduleissettoacquirelocationsmorefrequentlyduringactivebehaviorssuchasforagingandtravelandlessfrequentlyduringrest,improvingtheoverallperformanceandbatterylongevityofthetelemeter[21].Bestpracticesindataacquisitionanddataanalysis:samplingaxes,samplingintervalandsamplingfrequencySamplingofallthreeaxesofacceleration(tri-axial)isthemostaccurateandprecisewayofmeasuringbehav-iorthatoccursinthreedimensionsaswellasestimatingenergyexpenditure[20,161].Forsomeresearchques-tionsorforrelativelyimmobilespecies,oneortwoaxesmaybesufficienttocharacterizethebehavior(s)ofinter-est[23,80].However,theefficiencyofmodernacceler-ometersensorsmeanthatlittleisgained,intermsofbatterylife,byusingfeweraxes.Themajorityofstudiesintheliteraturesampledaccel-erationcontinuously,atfrequenciesabove1Hz[97].Thistypeofsamplingproducesanextremelyhighvol-umeofdata;becauseeachaccelerometeraxisisseparate,threeaxesrecordingat1Hzproducethreemeasure-mentspersecond,whichrapidlyaccumulateintomil-lionsofloggedmeasurementsforatagdeployedoverseveraldays.Inpractice,continuousdataaretypicallysub-sampledoraveragedoverseveralsecondsworthofmea-surementstocreatearunningmean[111]soanalternativetocontinuoussamplingistorecordforafewsecondsatin-tervalsofoneormoreminutes.Byrecordingathighreso-lution(e.g.,60Hz)butshortduration(e.g.,1to3sec)thisstrategyaimstosamplejustonebehaviortypeandavoidbehavioraltransitions(e.g.,restingtowalking)thatcouldcomplicateautomatedclassificationstatistics.Eachdiscretesamplingperiodisthencalledaoranepoch[22,158].Becauseburststudiesrecordfewerdataovertheentirestudyperioditispossibletodownloadthedatare-motelythroughwirelessconnections[21,40],whereascon-tinuousaccelerometerdatatypicallyareloggedoverdaysorweeksandmanuallydownloadedupontagretrieval[143].Ifanimalsareexpectedtoremainwithinthevicinityofafixedreceiver,thencontinuousdatamaybetransmittedwirelesslyatintervals[161].Ifproximitytoareceiverisproblematic,aswithmarineanimalsthatcanrangeoververylongdistances,datacanstillbecollectedathighreso-lution(highsamplingfrequencyandcontinuoussamplingetal.AnimalBiotelemetryPage8of16http://www.animalbiotelemetry.com/content/1/1/20 interval)aslongastheentiresamplingperiodmatchesde-vicestoragecapacity,orthereisperiodicoffloadingofdataviamobilereceiverssuchassatellites.Generally,thesmallerthesubject,thefasterthemove-mentandthehigherthesamplingfrequencynecessarytoaccuratelycharacterizethepatternofacceleration[98,123,137].Fromsignalprocessingtheorywehavetherule-of-thumbthatforadequatereconstructionofacon-tinuouswaveformsuchasacceleration,thesamplingfre-quencyoughttobeatleasttwicethatofthehighestfrequencymovementbeingclassified[162].Satoetal[123]measuredthedominantstrokefrequenciesforsev-eralspeciesofaquaticbirdsandmarinemammalsandtheyrangedfrom0.2Hzforspermwhalesto9.3Hzinguillemots.Meanwhile,thethreemostcommonsamplingfrequenciesintheliteraturewere10,16,and32Hzbuttherewaslittleapriorijustificationforthechoiceofsam-plingfrequency.Halseyetal.foundthataccelerometer-samplingfrequenciesof2to10Hzwereadequateforcharacterizingenergyexpenditureinchickens[19].Thesestudiessuggestthatsamplingfrequencieshigherthan50to60Hzareprobablyunnecessaryformostresearchquestionsandthatinsuchcasestheadditionaldatagener-atediswastefulofdigitalstoragespace.However,authorsrecommendedthattheresearchquestionanddesiredtempo-spatialresolutionofthedatashouldultimatelydic-tatethesamplingfrequency(andsamplinginterval)[19].Bestpracticesinaccelerometerdataanalysis:describingthewaveformsForbothcontinuousandburstsamplingschemes,irre-spectiveofsamplingfrequency,accelerationsensorspro-ducerawdatainawave-likesignalwithunitsinvoltage.Priortoanalysis,researchersmayusecalibrationequationstoconvertthissignalintoactualaccelerationmeasuredinunitswhere1=9.80665m/s[57,127,154,159].Thiscalibrationandconversionmayberequiredformea-suringtheactualbiomechanicalforcesexperiencedbyani-malsduringdifferentmovements,forexample,theairtowatertransitionforadivingseabird,orthestrikeforceonhorseshooveswhenrunning.Thedynamicbodyacceler-ationmetricsalsousethesignalconvertedtoaccelerationastheproxyformetabolicexertion[96].Alternatively,forsimpleaccelerationethogramsordeterminingactivitybudgets,thesignalmaybeusedintherawvoltagestateasdepictedinFigure6.Todescribetheaccelerationwaveformpatterns,re-searchersthencalculateawidevarietyofsummarystatisticsusingeachburstspopulationofvaluesorsubsamplesofthecontinuousmeasurements(Table1).ThestatisticslistedinTable1couldbecalculatedforeachaxisindividuallyorcombinedtorepresentmultipleaxessimultaneously[149].Thereisadichotomyintheliteratureonhowre-searchersprocessanddescribethewave-likepropertiesofaccelerometeroutput.Someresearchershaveuti-lizedsimplewaveformstatistics,suchasthenumberofpeaks(frequencyofthemovement),themeanvalueofthewaveform(bodyangle),andtheirvariances[23,35,121,131,146,160].Othershaveusedspecializedpro-gramstoperformcomplexanalysesonthewaveforms,resultinginalargenumberofadditionaldescriptivesta-tistics[34,46,55,127,130,144,156,161,165].Therearenu-merouscomplextechniquesforanalyzingdatathat,likeacceleration,existinatimeseries[167,168].ThemostcommonlyusedmethodwithaccelerometerdataisthefastFouriertransformation.Fouriertransformationsiden-tifytheindividualfrequenciesthatarepresentintherawaccelerationwaveformanddeterminethepowerspectraldensitiesofthosefrequencies,i.e.,howmuchofthetotalsignalispresentineachfrequency[162].Anothercom-plexapproachiscontinuouswavelettransformation,whichidentifiesnotonlywhichfrequenciesarepresent,butalso Table1StatisticsusedtodescribeaccelerationSummarystatisticRepresentativeMean[Runningmeanforcontinuousdata[Minimum,Maximum,Range[Variance[StandarddeviationInversecoefficientofvariation[Overalldynamicbodyacceleration[Vectordynamicbodyacceleration[Subsequent-measurementautocorrelation[Trend(linearregressioncoefficientthroughaxisdata)Pair-wisecorrelationsbetweenaxesdataInclination,azimuthofresultantandtheircircularvariancesFrequencypowerFastFouriertransformation[129Continuouswavelettransformationon164]acceleration[frequencyWaveformfrequency[Waveformperiodandamplitude[Areaunderthewaveformcurve[Skewnessandkurtosisofthewaveform[Signalmagnitudearea[WaveformlengthWaveforminheritanceetal.AnimalBiotelemetryPage9of16http://www.animalbiotelemetry.com/content/1/1/20 whenduringthesignaltheyarepresent[164].Shepardetal.[20]andLaichetal.[23]suggestthatthesecomplexanalysesarenotessentialandthatsimplerstatisticsarebothintuitivelyandpracticallymoreaccessibleforthebroadestrangeofpotentialusers.However,theyacknowl-edgedthatwhenbehaviorsaretransitoryand/orhighlyvariablep.36[23],oraremeasuredusingonlyoneaxisofacceleration,themorecomplicatedtechniquesandtheadditionalstatisticstheyprovidemayprovehelpfulforidentifyingordistinguishingdifferentbehaviors.DatafiltersforseparatinggravitationalaccelerationfrominertialaccelerationRecallthattheaccelerometerwaveformoutputduringmovementisacombinationofaccelerationduetograv-ityandinertialaccelerationduetoanimalmovement(dynamicacceleration).Whenisolated,gravitationalac-celerationcanbeusedtodeterminetheorientationofthebodyinspace(postureorbodyangle)[23,55,57].Thegravitationalcomponentcanbeisolatedby:i)applyingalow-passfiltersuchas0.1Hzthatremoveshighfrequencyacceleration[41,78,79,121,164];orii)bysmoothing(i.e.,calculatingarunningmean)overalargesetofmeasure-ments[57].Foraccelerationsampledoverafewsecondsinaburst,takingthemeanvalueofasingleburstsmeasure-mentscansufficeforisolatingmomentarygravitationalac-celeration,orbodyangle[21].OnecanseehowthisworksinFigure5;notetherelativelyflatslopeofvoltageoutputforallthreeaxeswhentheanimalismoreorlessmotion-less(leftsidedesignatedresting).Betweenminutes2and4,themeanvalueoftheheaveaxisshiftsdramaticallyastheanimalchangedpositionduringrestfromafeet-upposturetoafeet-downposture.Thechangeinthemeanvalueoftheheaveaxisrepresentsachangeinvoltageout-putstimulatedbygravitationalaccelerationafterthetag(theanimal)changedorientation.Determiningexactbodyanglerequirescalibrationofaccelerometervoltageoutputasthetagispassedthrough360degreesalongeachaxis.Usingthismethod,researcherscalculatedbodypitchanglefromtheheaveorsurgeaxesandbodyrollanglefromtheswayaxis,alsocorrectingforthepositionofthetagontheanimal[41,163].Conversely,researchersusedhigh-passfilterstoexamineaccelerationsduetomovementinisolationfromthegravi-tationalcomponentofacceleration[63,159].Thisdynamiccomponentwasusedtocalculatethemeasuresofdynamicbodyaccelerationinthemajorityofthestudiesonenerget-ics[19,20,24,77,97,107,109,111,142,159].Frequencyfilterswerealsousedtoreducethenoiseintheaccelerationsignalcreatedbynon-rigidattachmentsofaccelerometercollars[31]andtoisolatethepatternofoneparticulartypeofdy-namicbehaviorthatoccurredsimultaneouslywithothermovements,namelypreycaptureeventsduringswimming[155,156].Spectralandotherwaveformanalysesdiscussedintheprevioussectionareoftenconductedondynamicac-celerationafteritsisolationbyhigh-passfrequencyfiltering.Bestpracticesinaccelerometerdataanalysis:validationandassigningcharacteristicwaveformstobehaviorTheadvantageofaccelerometersisthattheyprovidearemotelycollectedrecordofbehavior:largesetsofaccel-erationwaveformsthatweremostlynotobservedbythehumaneye.Tounderstandhowtheaccelerationrecordandthestatisticalpropertiesofthewaveformsrelatetoobservablebehavior,researchersusingthistoolmusthaveawayofassigningthewaveformstospecificbehaviorsorbehavioralcategorieswithahighdegreeofaccuracy(valid-ation).Thistaskrequiressomepriorknowledgeofthebe-haviorsanimalsperformandstudies,todate,havegenerallyobtainedthisinformationfromdeploymentsonsimilardo-mesticatedanimals,captiveindividualsandbriefperiodsofobservationonfree-rangingwildanimals,someviavideo[36].Carefullysynchronizedobservationsandaccelerom-eterrecordingsvalidatewhatbehaviorscorrespondtowhataccelerometermeasurements,forexample,therelativelyflatwaveformsthatoccurduringrestcomparedtothevari-ablewaveformsthatoccurduringactivity(Figure5).Thisprocessalsomustquantifytowhatextentaccelerometerwaveformsforthesamebehaviorvarywithinanindividual,orbetweenindividualsorspecies[19,109].Thisvalidationprocessisacriticallyimportantpartofusingaccelerome-ters.Theaccuracyoftheconclusionsdrawnfromassigningbehaviorsorenergyexpenditurestoaccelerometerwave-formsdependenormouslyontheaccuracyoftheassign-ments(seediscussionbelowonmethodsreporting).Thisfactnotwithstanding,wildanimals,particularlyaquaticspecies,maynotbeobservedatallbetweenre-leaseandtagrecovery[42].Evenwhenanimalsarebeingobserveddirectly,itishardtobecertainthatallpossiblerelevantbehaviorshavebeenwitnessed[169],especiallywhenextrapolatingbehaviorincaptivitytobehaviorinthewild.Asaccelerometryhasmatured,researchershavedevelopedspecialsoftwaretoolstoaddressthisobstacleandreducethetimeandlabornecessaryfordirectob-servation[164,170].Withknowledgeofi)generalbodyshape,ii)formoflocomotion(bipedal,quadrupedal,etc.),andiii)howthetagisattachedtothebody,thesesoftwareprogramscanhelpresearchersvisualizethemovementoftheirstudyanimalsaccordingtotheaccelerometersignalsrecordedduringtagdeployment[170].Manualexaminationofaccelerometerdataisessentialinthepilotphasesofastudy,butanautomaticsystemtocategorizewaveformpatternsandassignthemtodif-ferentbehaviorsquicklybecomesnecessaryduetothelargesizeoftheaccelerationdatasets.AftercalculatingwaveformcharacteristicssuchasthoselistedinTable1,therearetwomajorapproachestoautomaticwaveformclassificationintheliterature.Thefirstistousestatisticaletal.AnimalBiotelemetryPage10of16http://www.animalbiotelemetry.com/content/1/1/20 algorithmstoclusteraccelerometerwaveformswithsimi-larcharacteristicsandthenassigneachclustertoageneralbehavioralgroup[163].Forexample,Sakamotoetal[164]usedanunsupervisedk-meansclusteringalgorithmtoassignaccelerometerwaveformsfromadivingseabirdto20differentgroups,whichtheymatchedtosimultan-eouslyrecordeddepthprofilesandthenlabeledwithdif-ferentbehaviorgroupsincludinginflightunderwaterdivingandonland.Thesecond,morecommonap-proachistousetheaccelerometerwaveformsgeneratedfromknown(observed)behaviorsofsimilardomesticatedorcaptiveindividualstotrainanalgorithmthatwillassigntheremainingwaveformsinthedatasettothosespecificbehavioralcategories.Forexample,Nathanetal.[56]ob-servedwildandcaptivevulturesexhibitavarietyofbe-haviorswhilewearingaccelerometertagsandthenusedvarioussupervisedstatisticalalgorithmstocategorizetheaccelerometerwaveformsaseitheractiveflight,pas-siveflight(soaring-gliding),eating,lyingdown,preening,standingorrunning.Bothmethodslessentheburdensofextendeddirectobservationsandmanualanalysisofaccel-erometerdata,however,theformerhasthepotentialtodetectpreviouslyunknownorunobservedbehaviorsandbehavioralsequenceswhilethelatterhastheadvantagethatbehavioralcategoriescorresponddirectlytoobserva-tions.Bothrelyonthevalidationprocessforaccuratecon-clusions.Table2summarizestheassignmentmethodsandalgorithmsrepresentedintheliterature;Nathanetal[56]reviewsandcomparesseveralofthesupervisedalgo-rithmsindetail.Regardlessofthemethodusedtoassignaccelerometerwaveformstobehaviors,eachgroupofresearchersde-velopsitsownsetofwaveformstatisticstofeedtowhatarelargelycustom-designedautomaticclassificationsys-tems.Algorithmsthatdealwithoneparticulardomainofactivities(e.g.,divinginaquaticanimals)maynotbeeasilyadaptedforadifferentenvironmentordifferentsetofmovements[32].Furthermore,58%ofscientistsworkingwithdomesticspeciesand47.6%ofthosework-ingwithcaptivewildspeciesreportedtheperformanceandreliabilityoftheirchosenautomatedclassificationsystems[55,72],whileonly9.1%ofthosestudyingwildspeciesdidso[23,44,57,83].Lackofmethodsreporting,fromtheaccelerometer-recordingscheduletowhetherandhowaccelerometerdataisvalidated,stymiesdirectcomparisonsbetweenstudiesandbetweenanalyticalap-proaches.Aspreviouslydiscussed,validationisanessen-tialpartofusingaccelerometerasastand-infordirectobservation.Ifaccelerometersaretoachievewidespreaduseinstudiesoffree-rangingwildspecies,therewillhavetobemorecompletereportingofmethods,particu-larlyfortheclassificationphaseofanalysis.Bestpracticesinaccelerometerdataanalysis:datavisualizationandstorageWenotedearlierthatthehighresolutionofaccelerometryresultsinalargevolumeofdataaccumulatingoverashortperiod.Forexample,asingle-axisaccelerometertagre-cordingcontinuouslyat8Hzfor8hoursand40minutesresultedin249,988measurements[170].Whencombinedwiththedatafromsensorsdeployedintandemwithtri-axialaccelerometry,suchasGPS,depth,ortemperaturetelemeters,thedatasetinitsentiretycaneasilyover-whelmbasicspreadsheetandstatisticalprogramsanditbecomesdifficulttovisualizemorethanonedatastreamatatime.IgorPro(WaveMetrics,LakeOswego,OR,USA),(RFoundationforStatisticalComputing,Vienna,Austria)andMatlab(MathWorks,Natick,MA,USA)arecommonlyusedforaccelerationdataanalysisandcanhan-dlelargedatasets[83,164,165],althoughallthreeprogramshaveaconsiderablelearningcurve.Weareawareoftwoweb-basedoptionsgearedtowardsanimal-bornetelemeterdatavisualization,storageandanalysis.MOVEBANK(availableathttps://www.movebank.org/)isafree,onlinedatabaseofanimaltrackingdatathathelpsresearcherstomanage,selectivelyshare,protect,analyzeandarchivetheirdata.WithMOVEBANK,researcherscanlinkanimalbehaviorfromaccelerometerdatawithanimallocationdatafromGPSandinformationfromglobalenvironmen-taldatasets,suchasweathermodelsandsatelliteimagery,makingiteasiertoexplorehowanimalsmovementsrelatetotheirenvironment.Gaoetal.presentedanotheronlineaccelerometerdatastorageandanalysissystem,theSemanticAnnotationandActivityRecognitionsystem[166].Theirinteractivewebinterfaceenablesecologiststovisualizeandcorrelatetri-axialaccelerometerdatastreamswhilealsofacilitatingaccelerometerdataanalysiswithasupportvectormachineclassificationalgorithm.Amajorbenefittousingtheseweb-basedrepositoriesisthatthe Table2MethodsforassigningaccelerometerwaveformstobehavioralcategoriesbasedonwaveformstatisticsMethodRepresentativesource(s)Referencepatterning[Fixed-threshold[UnsupervisedmachinelearningalgorithmsClusteranalysis[SupervisedmachinelearningalgorithmsClassificationandregressiontrees[Randomforests[Linearorquadraticdiscriminantanalysisanalysis55,132,149]Logisticregression[Supportvectormachines[Artificialneuralnetworks[etal.AnimalBiotelemetryPage11of16http://www.animalbiotelemetry.com/content/1/1/20 averagebiologisttrackingahandfulofanimalsgetsaccesstocollaborationswithotherbiologists,statisticians,engi-neersandcomputerprogrammerswhocancollectivelycontinuetodevelopthistoolandthehardwareandsoft-warethatmakethemostofaccelerometryspotential.ConclusionsandfuturedirectionsAccelerometryisatoolforfine-scaleobservationsofbe-havior,unlimitedbyanimalvisibility,terrain,climate,observerbiasorthescaleofspaceuse.Todate,acceler-ometertagshavebeenappliedtomorethan120speciesindiversetaxainordertodeducebodypostures,behav-iorsandenergeticsinthefield.Accelerometryalsoshowspotentialasamethodtodeadreckonananimalsexacttravelpathwhenappliedintandemwithsatellite-basedlo-cationsystems.Inalloftheresearchdescribed,accelero-metryprovidedfine-scalebehavioralmeasurementsthat,priortoitsdevelopment,wererarelyattainableoutsideofthelaboratorysettingandwithouttheinfluenceofthere-searcherspresence.Theliteratureshowsseveraltaxonomicbiasesinwhatresearchquestionshavebeenexaminedandhowthere-sultshavebeenreported.Studiesofwildaquaticspeciesoutnumberstudiesofwildterrestrialspecies.Researchonaquaticanimals(whethercaptiveorwild)hasfocusedondescribingthebiomechanicsandenergeticconsequencesofbehavior,whileinterrestrialsystemsthefocuswasondeterminingactivitybudgets.Bothatseaandonland,feeding,locomotion,andactivity/restwerethebehaviorcategoriesmostfrequentlyanalyzed;socialbehaviors(par-entalcare,territorial,matingandcourtshipbehaviors,andantagonisticexchanges)arenearlyabsentfrombothetho-gramsandenergybudgets.Researchersofdomesticandcaptivespeciestendedtoreportanalysismethodsmorethoroughlythanthosestudyingspeciesinthewild.Therearesubstantialchallengestogettingthemostoutofaccelerometerdata,includingdeviceretrievalanddatacalibration,validation,managementandanalysis.Nu-meroustechniquesforaddressingthesechallengeshavealreadybeenpublishedinbothhumanandanimalstudiesandnewmethodscontinuetodevelopandareawaitingbroadapplicationtothefield.Withmorethoroughre-portingofmethodologyandhabitualuseofweb-baseddatarepositories,universalpracticesareboundtoemergeashardwareandsoftwarecontinuestomatureandbe-comemorebroadlyavailableacrossresearchgroups.FuturedirectionsTherapiddevelopmentofthistoolinthefield,thusfar,leadsustoanticipatetwopromisingbreakthroughapplica-tionsthatwillopenevenmoredoorsinbehavioralresearch.Thefirstistheincorporationofinter-individualtelemetersinthestudyofsocialbehavior.Device-to-devicedatashar-ingandproximitysensorsexistintheconsumerelectronicsindustryandhavealreadybeenincorporatedintoacoustictelemeters[86].Mostmoderntelemetrytagshavemultipledatachannelsandcouldbemodifiedtoincludethesefea-tures.Accelerometertagsthathavetheabilitytorecordproximity,identityandevenbehavioroftaggedindividualsincontactwiththeanimalthatbearstheprimarytag,wouldreducetheburdenofextensivedirectobservation,yetpermitscientiststodirectlyquestionhowindividualsinteractandhowthoseinteractionsshapebehavioracrossalargenumberofsocialandterritorialspecies.Secondly,werecommendthatresearchersenteringthefieldofwildlifetelemetrylooktoexplicitlylinkenergeticexpenditureinwildanimalswithbehavioralresponsestohuman-alteredhabitats[163].Whetherconsideringclimatechange,re-sourcecompetitionoranti-predatordefenses,thepotentialtollonfitnessshouldmanifestinenergeticexpenditureandallowawindowontothelonger-termconsequencesofourimpactsonotherlong-livedspecies.Accelerometryof-fersalevelofdetailinbehavioralstudiesoffree-rangingwildanimalsthathaspreviouslybeenimpossibletoachieveandithasprovenitselfinfurtheringourunderstandingoftheroleofbehavioralmechanismsinecologicalandevolu-tionaryprocesses.AdditionalfileAdditionalfile1:SpreadsheetofallstudiesanalyzedforthisColumnheadingsindicatetheinformationtakenfromthestudy,studiesarelistedinrowsbyfirstauthor.CompetinginterestsAPK,MW,andRWareontheeditorialboardofAnimalBiotelemetry.Theauthorsdeclarethattheyhavenoothercompetinginterests.scontributionsDBcollectedthearticlesusedinthisreview,carriedoutthedataanalysis,anddraftedthemanuscriptandFigures1to5.RKinitiallyconceivedoftheideatowriteareviewofthesubjectandheavilyinfluencedtheorganizationoftheinformation.MW,RW,andAPKmadecriticalrevisionstodraftsforcomprehensivenessandpresentationoftheinformation.Allauthorsreadandapprovedthefinalmanuscript.AcknowledgementsThisreviewwassupportedbytheNewYorkStateMuseum;theMaxPlanckInstituteforOrnithology;SwanseaUniversity;anNSFpredoctoralfellowship(DDBrown)andtheBiotelemetryLaboratoryattheUniversityofCalifornia,Davis.WethankSebastiánCruzforcontributingFigure6andLewisHalseyforpermissiontoreusehisfigure(Figure7)aswellashelpfulcommentsonanearlierdraft.AuthordetailsDepartmentofBiology,WesternKentuckyUniversity,1906CollegeHeightsBlvd.#11080,BowlingGreen,KY42101-1080,USA.NorthCarolinaMuseumofNaturalSciences,11W.JonesStreet,Raleigh,NC27601,USA.Wildlife&Conservation,NorthCarolinaStateUniversity,Raleigh,NC,USA.SmithsonianTropicalResearchInstitute,Apartado0843-03092,Balboa,Ancón,Panamá,RepúblicadePanamá.MaxPlanckInstituteforOrnithology,VogelwarteRadolfzell,Schlossallee2,Radolfzell78315,Germany.ChairofOrnithology,KonstanzUniversity,ConstanceD-78457,Germany.Biosciences,CollegeofScience,SwanseaUniversity,Swansea,SA28PP,UK.ofWildlife,Fish,&ConservationBiology,1334AcademicSurge,UniversityofCalifornia,Davis,CA95616,USA.etal.AnimalBiotelemetryPage12of16http://www.animalbiotelemetry.com/content/1/1/20 Received:23July2013Accepted:7October2013Published:10December20131.SchneirlaTC:Therelationshipbetweenobservationandexperimentationinthefieldstudyofbehavior.AnnalsNYAcadSci2.CarpenterCR:Afieldstudyofthebehavioralandsocialrelationsofhowlingmonkeys(AlouattapalliataCompPsycholMonographs1934,10:168.3.CaroTM:DemographyandbehaviourofAfricanmammalssubjecttoBiolConserv4.MaffeiL,NossAJ,CuéllarE,RumizDI:Ocelot(Felispardalis)populationdensities,activity,andrangingbehaviourinthedryforestsofeasternBolivia:datafromcameratrapping.JTropEcol5.ChapmanFM:Whotreadsourtrails.NatGeogrMag6.JackKM,LenzBB,HealanE,RudmanS,SchoofVAM,FediganL:TheeffectsofobserverpresenceonthebehaviorofCebuscapucinusinCostaRica.AmJPrimatol7.CrofootMC,LambertTD,KaysR,WikelskiMC:Doeswatchingamonkeychangeitsbehaviour?Quantifyingobservereffectsinhabitutatedwildprimatesusingautomatedradiotelemetry.AnimBehav8.IsbellLA,YoungTP:Humanpresencereducespredationinafree-rangingvervetmonkeypopulationinKenya.AnimBehav9.CaineNG:Unrecognizedanti-predatorbehaviorcanbiasobservationalAnimBehav10.MartinP,BatesonPPG:MeasuringBehaviour.3rdedition.Cambridge:CambridgeUniversityPress;2007.11.CagnacciF,BoitaniL,PowellRA,BoyceMS:AnimalecologymeetsGPS-basedradiotelemetry:aperfectstormofopportunitiesandchallenges.PhilTransacRoyalSocB-BiolSci12.KooymanGL:Genesisandevolutionofbio-loggingdevices:1963MemoirsNatInstPolarResSpecialIssue13.CookeSJ,HinchSG,WikelskiM,AndrewsRD,KuchelLJ,WolcottTG,ButlerPJ:Biotelemetry:amechanisticapproachtoecology.TrendsEcolEvol2004,19:334343.14.AltmannJ:Observationalstudyofbehavior:samplingmethods.15.HartKM,HyrenbachKD:Satellitetelemetryofmarinemegavertebrates:thecomingofageofanexperimentalscience.EndangeredSpecRes16.TomkiewiczSM,FullerMR,KieJG,BatesKK:Globalpositioningsystemandassociatedtechnologiesinanimalbehaviourandecologicalresearch.PhilosophicalTransacRoyalSocB-BiolSci17.FryxellJM,HazellM,BorgerL,DalzielBD,HaydonDT,MoralesJM,McIntoshT,RosatteRC:Multiplemovementmodesbylargeherbivoresatmultiplespatiotemporalscales.ProcNatlAcadSciUSA2008,105:1911419119.18.AguiarLM,Moro-RiosRF:ThedirectobservationalmethodandpossibilitiesforNeotropicalCarnivores:aninvitationfortherescueofaclassicalmethodspreadoverthePrimatology.Zoologia2009,26:587593.19.HalseyLG,GreenJA,WilsonRP,FrappellPB:Accelerometrytoestimateenergyexpenditureduringactivity:bestpracticewithdataloggers.PhysiolBiochemZool20.ShepardELC,WilsonRP,QuintanaF,GomezLaichA,LiebschN,AlbaredaDA,HalseyLG,GleissA,MorganDT,MyersAE,NewmanC,MacdonaldDW:Identificationofanimalmovementpatternsusingtri-axialaccelerometry.EndangeredSpecRes21.BrownDD,LaPointS,KaysR,HeidrichW,KümmethF,WikelskiM:Accelerometer-informedGPStelemetry:reducingthetrade-Offbetweenresolutionandlongevity.WildlifeSocBull22.DowC,MichelKE,LoveM,BrownDC:Evaluationofoptimalsamplingintervalforactivitymonitoringincompaniondogs.AmJVetRes23.LaichAG,WilsonRP,QuintanaF,ShepardELC:IdentificationofimperialcormorantPhalacrocoraxatricepsbehaviourusingaccelerometers.EndangeredSpecRes24.WilsonRP,ShepardELC,LiebschN:Pryingintotheintimatedetailsofanimallives:useofadailydiaryonanimals.EndangeredSpecRes25.MorrisJRW:Atechniqueforthemeasurementofhumanbodymovements.JBiomech26.ChenKY,BassettDR:Thetechnologyofaccelerometry-basedactivitymonitors:currentandfuture.MedSciSportsExer27.ServaisSB,WebsterJG,MontoyeHJ:Estimatinghumanenergyexpenditureusinganaccelerometerdevice.JClinEng28.MeijerGA,WesterterpKR,KoperH,HoorFT:Assessmentofenergyexpenditurebyrecordingheartrateandbodyacceleration.MedSciSportsExerc29.CavagnaG,SaibeneF,MargariaR:Athree-directionalaccelerometerforanalyzingbodymovements.JApplPhysiol30.DuboisAB,CavagnaGA,FoxRS:Locomotionofbluefish.JExpZool31.SellersWI,CromptonRH:Automaticmonitoringofprimatelocomotorbehaviourusingaccelerometers.FoliaPrimatologia32.MathieMJ,CellerBG,LovellNH,CosterACF:Classificationofbasicdailymovementsusingatriaxialaccelerometer.MedBiolEngineerComp33.ScheibeKM,SchleusnerT,BergerA,EichhornK,LangbeinJ,ZottoLD,StreichWJ:ETHOSYS(R)newsystemforrecordingandanalysisofbehaviouroffree-rangingdomesticanimalsandwildlife.ApplAnimBehavSci34.SellersWI,VarleyJS,WatersSS:Remotemonitoringoflocomotionusingaccelerometers:apilotstudy.FoliaPrimatol35.YodaK,SatoK,NiizumaY,KuritaM,BostCA,MahoYL,NaitoY:monitoringofporpoisingbehaviourofAdéliepenguinsdeterminedusingaccelerationdataloggers.JExpBiol36.DavisRW,FuimanLA,WilliamsTM,CollierSO,HageyWP,KanatousSB,KohinS,HorningM:HuntingbehaviorofamarinemammalbeneaththeAntarcticfastice.Science37.KempB,JanssenAJMW,VanDerKampB:Bodypositioncanbemonitoredin3Dusingminiatureaccelerometersandearth-magneticfieldsensors.ElectroencephalogrClinNeurophysiol38.HollandRA,WikelskiM,KümmethF,BosqueC:Thesecretlifeofoilbirds:Newinsightsintothemovementecologyofauniqueavianfrugivore.PLoSONE39.JohnsonMP,TyackPL:Adigitalacousticrecordingtagformeasuringtheresponseofwildmarinemammalstosound.IEEEJOceanicEngineer40.MurchieKJ,CookeSJ,DanylchukAJ,SuskiCD:Estimatesoffieldactivityandmetabolicratesofbonefish(Albulavulpes)incoastalmarinehabitatsusingacoustictri-axialaccelerometertransmittersandintermittent-flowrespirometry.JExperimentMarineBiolEcol41.SatoK,MitaniY,CameronMF,SiniffDB,NaitoY:FactorsaffectingstrokingpatternsandbodyangleindivingWeddellsealsundernaturalJExpBiol42.MitaniY,AndrewsRD,SatoK,KatoA,NaitoY,CostaDP:restingbehaviourofnorthernelephantseals:driftinglikeafallingleaf.BiolLett43.vanOortBEH,TylerNJC,StoreheierPV,StokkanK-A:Theperformanceandvalidationofadataloggerforlong-termdeterminationofactivityinfree-rangingreindeer,RangifertarandusL.AppAnimBehavSci2004,89:299308.44.GervasiV,BrunbergS,SwensonJE:Anindividual-basedmethodtomeasureanimalactivitylevels:atestonBrownBears.WildlifeSocBull45.SakamotoY,KunisakiT,SawaguchiI,AoiT,HarashinaK,DeguchiY:AnoteondailymovementpatternsofafemaleAsiaticblackbear(ursusthibetanus)inasuburbanareaofIwateprefecture,northeasternJapan.MammalStudy46.WhitneyNM,PapastamatiouYP,HollandKN,LoweCG:Useofanaccelerationdataloggertomeasuredielactivitypatternsincaptivewhitetipreefsharks,Triaenodonobesus.AquaticLivingRes2007,20:299305.47.WeimerskirchH,ShafferSA,TremblayY,CostaDP,GadenneH,KatoA,Ropert-CoudertY,SatoK,AuriolesD:Species-andsex-specificdifferencesinforagingbehaviourandforagingzonesinblue-footedandbrownboobiesintheGulfofCalifornia.MarineEcolProgSer48.LaichAG,QuintanaF,ShepardELC,WilsonRP:Intersexualdifferencesinthedivingbehaviourofimperialcormorants.JOrnithol49.ZimmerI,Ropert-CoudertY,KatoA,AncelA,ChiaradiaA:DoesforagingperformancechangewithAgeinfemalelittlepenguins(eudyptulaPLoSONE50.ByrnesG,LimNTL,YeongC,SpenceAJ:Sexdifferencesinthelocomotorecologyofaglidingmammal,theMalayancolugo(GaleopterusJMammaletal.AnimalBiotelemetryPage13of16http://www.animalbiotelemetry.com/content/1/1/20 51.LeVaillantM,WilsonRP,KatoA,SarauxC,HanuiseN,PrudHommeO,LeMahoY,LeBohecC,Ropert-CoudertY:Kingpenguinsadjusttheirdivingbehaviourwithage.JExperimentBiol52.FossetteS,SchofieldG,LilleyMKS,GleissAC,HaysGC:AccelerationdatarevealtheenergymanagementstrategyofamarineectothermduringFunctionalEcol53.KokubunN,KimJH,ShinHC,NaitoY,TakahashiA:Penguinheadmovementdetectedusingsmallaccelerometers:aproxyofpreyencounterrate.JExperimentBiol54.ViviantM,TritesAW,RosenDAS,MonestiezP,GuinetC:PreycaptureattemptscanbedetectedinStellersealionsandothermarinepredatorsusingaccelerometers.PolarBiol55.WatanabeS,IzawaM,KatoA,Ropert-CoudertY,NaitoY:Anewtechniqueformonitoringthedetailedbehaviourofterrestrialanimals:acasestudywiththedomesticcat.AppAnimBehavSci56.NathanR,SpiegelO,Fortmann-RoeS,HarelR,WikelskiM,GetzWM:tri-axialaccelerationdatatoidentifybehavioralmodesoffree-ranginganimals:generalconceptsandtoolsillustratedforgriffonvultures.JExperimentBiol57.YodaK,NaitoY,SatoK,TakahashiA,NishikawaJ,Ropert-CoudertY,KuritaM,MahoYL:Anewtechniqueformonitoringthebehavioroffree-rangingAdéliepenguins.JExperimentBiol2001,204:685690.58.KappelerPM,ErkertHG:Onthemovearoundtheclock:correlatesanddeterminantsofcathemeralactivityinwildredfrontedlemurs(fulvusrufusBehavioralEcolSociobiol59.ErkertHG,KappelerPM:Arrivedinthelight:dielandseasonalactivitypatternsinwildVerreauxssifakas(Propithecusv.verreaux;Primates:BehavioralEcolSociobiol60.GillyWF,ZeidbergLD,BoothJAT,StewartJS,MarshallG,AbernathyK,BellLE:LocomotionandbehaviorofHumboldtsquid,dosidicusgigas,inrelationtonaturalhypoxiainthegulfofCalifornia,Mexico.JExperimentBiol2012,215:31753190.61.BarasE,TogolaB,SicardB,BenechV:BehaviouroftigerfishHydrocynusbrevisintheRiverNiger,Mali,asrevealedbysimultaneoustelemetryofactivityandswimmingdepth.62.MoreauM,SiebertS,BuerkertA,SchlechtE:Useofatri-axialaccelerometerforautomatedrecordingandclassificationofgoatsgrazingbehaviour.AppAnimBehavSci2009,119:158170.63.OTooleAC,MurchieKJ,PullenC,HansonKC,SuskiCD,DanylchukAJ,CookeSJ:Locomotoryactivityanddepthdistributionofadultgreatbarracuda(Sphyraenabarracuda)inBahamiancoastalhabitatsdeterminedusingaccelerationandpressurebiotelemetrytransmitters.MarineFreshwaterRes64.WilsonRP,QuintanaF,HobsonVJ:Constructionofenergylandscapescanclarifythemovementanddistributionofforaginganimals.ProcRoySocB-BiolSci65.KaysR,JansenPA,KnechtEMH,VohwinkelR,WikelskiM:TheeffectoffeedingtimeondispersalofVirolaseedsbytoucansdeterminedfromGPStrackingandaccelerometers.ActaOecologica-IntJEcol66.Ropert-CoudertY,GremilletD,KatoA,RyanPG,NaitoY,MahoYL:Afine-scaletimebudgetofCapegannetsprovidesinsightsintotheforagingstrategiesofcoastalseabirds.AnimBehav67.RothwellES,BercovitchFB,AndrewsJRM,AndersonMJ:EstimatingdailywalkingdistanceofcaptiveAfricanelephantsusinganaccelerometer.ZooBiol68.TakahashiM,TobeyJR,PisacaneCB,AndrusCH:EvaluatingtheutilityofanaccelerometerandurinaryhormoneanalysisasindicatorsofestrusinaZoo-housedkoala(phascolarctoscinereusZooBiol69.ThiermanJL,CroweTG,StookeyJM,ValentineB:Quantificationoftheresponseofelkduringvelvetantlerremoval.CanAgriEngineer70.BergerA,ScheibeK-M,MichaelisS,StreichWJ:Evaluationoflivingcondi-tionsoffree-ranginganimalsbyautomatedchronobiologicalanalysisofBehavReseMethodsInstrComp71.SchaerBLD,RyanCT,BostonRC,NunamakerDM:Thehorse-racetrackinterface:apreliminarystudyontheeffectofshoeingonimpacttraumausinganovelwirelessdataacquisitionsystem.EquineVetJ72.CornouC,Lundbye-ChristensenS:Classifyingsowsactivitytypesfromaccelerationpatternsanapplicationofthemulti-processkalmanfilter.AppAnimBehavSci73.WhiteBJ,CoetzeeJF,RenterDG,BabcockAH,ThomsonDU,AndresenD:Evaluationoftwo-dimensionalaccelerometerstomonitorbehaviorofbeefcalvesaftercastration.AmJVetRes74.SullivanEL,CameronJL:Arapidlyoccurringcompensatorydecreaseinphysicalactivitycounteractsdiet-inducedweightlossinfemaleAmJPhysiolRegIntegComparPhysiol75.CookeSJ:Biotelemetryandbiologginginendangeredspeciesresearchandanimalconservation:relevancetoregional,national,andIUCNRedListthreatassessments.EndangeredSpecRes76.KroneO,BergerA,SchulteR:Recordingmovementandactivitypatternofawhite-tailedSeaeagle(haliaeetusalbicilla)byaGPSdatalogger.JOrnithol77.WilsonRP,WhiteCR,QuintanaF,HalseyLG,LiebschN,MartinGR,ButlerPJ:Movingtowardsaccelerationforestimatesofactivity-specificmetabolicrateinfree-livinganimals:thecaseofthecormorant.JAnimEcol78.TsudaY,KawabeR,TanakaH,MitsunagaY,HiraishiT,YamamotoK,NashimotoK:Monitoringthespawningbehaviourofchumsalmonwithanaccelerationdatalogger.EcolFreshwaterFish79.YasudaT,AraiN:Changesinflipperbeatfrequency,bodyangleandswimmingspeedoffemalegreenturtlesCheloniamydasMarineEcolProgressSer80.ZimmerI,Ropert-CoudertY,PoulinN,KatoA,ChiaradiaA:Evaluatingtherelativeimportanceofintrinsicandextrinsicfactorsontheforagingactivityoftoppredators:acasestudyonfemalelittlepenguins.MarineBiol81.JensenMB:Behaviouraroundthetimeofcalvingindairycows.AppAnimBehavSci82.WhitneyNM,HaroldLPJr,PrattTC,CarrierJC:Identifyingsharkmatingbehaviourusingthree-dimensionalaccelerationloggers.EndangeredSpecRes83.LagardeF,GuillonM,DubrocaL,BonnetX,BenKaddourK,SlimaniT,ElMoudenEH:Slownessandacceleration:anewmethodtoquantifytheactivitybudgetofchelonians.AnimBehav84.IsmailA,RahmanF,MiyazakiN,NaitoY:Initialapplicationofbio-loggingtechniquesoncaptiveMilkyStork(Mycteriacinerea)inMalaysia.TropEcol85.RushenJ,dePassilleAM:Automatedmeasurementofaccelerationcandetecteffectsofage,dehorningandweaningonlocomotorplayofAppAnimBehavSci86.HollandKN,MeyerCG,DagornLC:Inter-animaltelemetry:resultsfromfirstdeploymentofacousticbusinesscardEndangeredSpecRes87.DeRouffignacC,MorelF:Acomparativestudyofwaterturnoverin4rodentspeciesofwhich2arefromthedesertMeriones-Shawiratmousegerbil.JdePhysiologie(Paris)88.ArnouldJPY,BoydIL,SpeakmanJR:TherelationshipbetweenforagingbehaviourandenergyexpenditureinAntarcticfurseals.JZool(London)89.BrownJH,GilloolyJF,AllenAP,SavageVM,WestGB:Towardametabolictheoryofecology.90.AltmannS,AltmannJ:Thetransformationofbehaviourfieldstudies.AnimBehav91.SpeakmanJR:DoublyLabelledWater:TheoryandPractice.CambridgeUniversityPress;1997.92.ButlerPJ,GreenJA,BoydIL,SpeakmanJR:Measuringmetabolicrateinthefield:theprosandconsofthedoublylabelledwaterandheartrateFunctionalEcol93.Ropert-CoudertY,WilsonRP:Trendsandperspectivesinanimal-attachedremotesensing.FrontEcolEnviron94.HindleAG,RosenDAS,TritesAW:SwimmingdepthandoceancurrentsaffecttransitcostsinStellersealionsEumetopiasjubatus.AquaBiol95.FahlmanA,WilsonR,SvardC,RosenDAS,TritesAW:ActivityanddivingmetabolismcorrelateinStellersealionEumetopiasjubatus.AquaBiol96.HalseyLG,WhiteCR,EnstippMR,WilsonRP,ButlerPJ,MartinGR,GremilletD,JonesDR:Assessingthevalidityoftheaccelerometrytechniqueforestimatingtheenergyexpenditureofdivingdouble-crestedcormorantsphalacrocoraxauritus.PhysiolBiochemZool2011,84:230237.etal.AnimalBiotelemetryPage14of16http://www.animalbiotelemetry.com/content/1/1/20 97.WilsonRP,ShepardELC,LaichAG,FrereE,QuintanaF:Pedallingdownhillandfreewheelingup;apenguinperspectiveonforaging.AquaBiol98.ShepardELC,WilsonRP,QuintanaF,LaichAGM,FormanDW:fortimeorsavingonfuel:fine-scaleenergybudgetsshedlightoncurrenciesinadivingbird.ProcRSocSerBBiolSci99.ShepardELC,WilsonRP,LaichAG,QuintanaF:Buoyedupandsloweddown:speedlimitsfordivingbirdsinshallowwater.AquaBiol100.GleissAC,NormanB,WilsonRP:Movedbythatsinkingfeeling:variabledivinggeometryunderliesmovementstrategiesinwhalesharks.FunctionalEcol101.GleissAC,DaleJJ,HollandKN,WilsonRP:Acceleratingestimatesofactivity-specificmetabolicrateinfishes:testingtheapplicabilityofaccelerationdata-loggers.JExperimentMarineBiolEcol102.FossetteS,GleissAC,MyersAE,GarnerS,LiebschN,WhitneyNM,HaysGC,WilsonRP,LutcavageME:Behaviourandbuoyancyregulationinthedeepest-divingreptile:theleatherbackturtle.JExperimentBiol103.EnstippMR,CiccioneS,GinesteB,MilbergueM,BallorainK,Ropert-CoudertY,KatoA,PlotV,GeorgesJY:Energyexpenditureoffreelyswimmingadultgreenturtles(Cheloniamydas)anditslinkwithbodyacceleration.JExperimentBiol2011,214:40104020.104.HalseyLG,JonesTT,JonesDR,LiebschN,BoothDT:MeasuringenergyexpenditureinSub-adultandhatchlingSeaturtlesviaaccelerometry.PLoSONE105.RobsonAA,ChauvaudL,WilsonRP,HalseyLG:Smallactions,bigcosts:thebehaviouralenergeticsofacommerciallyimportantinvertebrate.JRSocInterface106.HalseyLG,ShepardELC,QuintanaF,GomezLaichA,GreenJA,WilsonRP:Therelationshipbetweenoxygenconsumptionandbodyaccelerationinarangeofspecies.ComparBiochemiPhysiolPartAMoleIntegrPhysiol107.GreenJA,HalseyLG,WilsonRP,FrappellPB:Estimatingenergyexpenditureofanimalsusingtheaccelerometrytechnique:activity,inactivityandcomparisonwiththeheart-ratetechnique.JExpBiol108.HalseyLG,PortugalSJ,SmithJA,MurnCP,WilsonRP:Recordingraptorbehavioronthewingviaaccelerometry.JFieldOrnithol109.HalseyLG,WhiteCR:Measuringenergeticsandbehaviourusingaccelerometryincanetoadsbufomarinus.PLoSONE110.HalseyLG,ShepardELC,WilsonRP:AssessingthedevelopmentandapplicationoftheaccelerometrytechniqueforestimatingenergyComparBiochemPhysiolMoleIntegrPhysiol111.ShepardELC,WilsonRP,HalseyLG,QuintanaF,GomezLaichA,GleissAC,LiebschN,MyersAE,NormanB:Derivationofbodymotionviaappropriatesmoothingofaccelerationdata.AquaBiol112.QasemL,CardewA,WilsonA,GriffithsI,HalseyLG,ShepardELC,GleissAC,WilsonR:Tri-axialdynamicaccelerationasaproxyforanimalenergyexpenditure;shouldwebesummingvaluesorcalculatingthevector?PLoSONE113.LeleuC,BarillerF,CotrelC,BarreyE:Reproducibilityofalocomotortestfortrotterhorses.VetJ114.LeleuC,CotrelC,BarreyE:RelationshipsbetweenbiomechanicalvariablesandraceperformanceinFrenchStandardbredtrotters.LivestockProdSci115.WitteTH,KnillK,WilsonAM:Determinationofpeakverticalgroundreactionforcefromdutyfactorinthehorse(Equuscaballus).JExperimentBiol116.RatzlaffMH,WilsonPD,HuttonDV,SlinkerBK:Relationshipsbetweenhoof-accelerationpatternsofgallopinghorsesanddynamicpropertiesoftheAmJVetRes117.CottinF,MetayerN,GoachetAG,JulliandV,SlawinskiJ,BillatV,BarreyE:OxygenconsumptionandgaitvariablesofArabianendurancehorsesmeasuredduringafieldexercisetest.EquineVetJ118.BrischouxF,KatoA,Ropert-CoudertY,ShineR:Swimmingspeedvariationinamphibiousseasnakes(laticaudinae):asearchforunderlyingmecha-JExperimentMarineBiolEcol119.SatoK,SakamotoKQ,WatanukiY,TakahashiA,KatsumataN,BostC-A,WeimerskirchH:Scalingofsoaringseabirdsandimplicationsforflightabilitiesofgiantpterosaurs.PLoSONE120.HoytDF,WicklerSJ,CoggerEA,GoehringME:Areexaminationofthetrot-galloptransition:insightsfromthestudyoflocomotiononanincline.AmZool121.TanakaH,TakagiY,NaitoY:SwimmingspeedsandbuoyancycompensationofmigratingadultchumsalmonOncorhynchusketarevealedbyspeed/depth/accelerationdatalogger.JExperimentBiol122.Ropert-CoudertY,KatoA,WilsonRP,CannellB:Foragingstrategiesandpreyencounterrateoffree-rangingLittlePenguins.MarineBiol(Berlin)123.SatoK,WatanukiY,TakahashiA,MillerPJO,TanakaH,KawabeR,PonganisPJ,HandrichY,AkamatsuT,WatanabeY,MitaniY,CostaDP,BostCA,AokiK,AmanoM,TrathanP,ShapiroA,NaitoY:Strokefrequency,butnotswimmingspeed,isrelatedtobodysizeinfree-rangingseabirds,pinnipedsandcetaceans.ProcRSocSeriesBBiolSci2007,274:471477.124.HindleAG,YoungBL,RosenDAS,HaulenaM,TritesAW:Diveresponsediffersbetweenshallow-anddeep-divingStellersealions(EumetopiasJExperimentMarineBiolEcol125.KatoA,Ropert-CoudertY,GremilletD,CannellB:Locomotionandforagingstrategyinfoot-propelledandwing-propelledshallow-divingseabirds.MarineEcolProgSeries126.WatanukiY,WanlessS,HarrisM,LovvornJR,MiyazakiM,TanakaH,SatoK:Swimspeedsandstrokepatternsinwing-propelleddivers:acomparisonamongalcidsandapenguin.JExperimentBiol127.KawabeR,NashimotoK,HiraishiT,NaitoY,SatoK:Anewdeviceformonitoringtheactivityoffreelyswimmingflatfish,JapaneseflounderParalichthysolivaceusFisheriesSci128.WilliamsTM,DavisRW,FuimanLA,FrancisJ,LeBoeufBL,HorningM,CalambokidisJ,CrollDA:Sinkorswim:strategiesforcost-efficientdivingbymarinemammals.Science129.GoldbogenJA,CalambokidisJ,ShadwickRE,OlesonEM,McDonaldMA,HildebrandJA:Kinematicsofforagingdivesandlunge-feedinginfinJExperimentBiol130.AraiN,KurokiM,SakamotoW,NaitoY:AnalysisofdivingbehaviorofAdéliepenguinsusingaccelerationdatalogger.PolarBiosci2000,13:100.131.WatanukiY,TakahashiA,DauntF,WanlessS,HarrisM,SatoK,NaitoY:Regulationofstrokeandglideinafoot-propelledaviandiver.JExperimentBiol132.SoltisJ,WilsonRP,Douglas-HamiltonI,VollrathF,KingLE,SavageA:AccelerometersincollarsidentifybehavioralstatesincaptiveAfricanLoxodontaafricanaEndangeredSpeciesRes133.GreenJA,WhiteCR,BunceA,FrappellPB,ButlerPJ:consequencesofplungedivingingannets.EndangeredSpeciesRes134.FossetteS,GasparP,HandrichY,LeMahoY,GeorgesJ-Y:DiveandbeakmovementpatternsinleatherbackturtlesDermochelyscoriaceaduringinternestingintervalsinFrenchGuiana.JAnimEcol2008,236246.135.GleissAC,WilsonRP,ShepardELC:Makingoveralldynamicbodyaccelerationwork:onthetheoryofaccelerationasaproxyforenergyMethodsEcolEvol136.KaysR,TilakS,CrofootMC,FountainT,ObandoD,OrtegaA,KuemmethF,MandelJ,SwensonG,LambertT,HirschB,WikelskiM:Trackinganimallocationandactivitywithanautomatedradiotelemetrysysteminatropicalrainforest.CompJ137.ShiomiK,SatoK,PonganisPJ:Pointofnoreturnindivingemperorpenguins:isthetimingofthedecisiontoreturnlimitedbythenumberofstrokes?JExperimentBiol138.Ropert-CoudertY,WilsonRP:Subjectivityinbio-loggingscience:dologgeddatamislead?MemoirsNatInstPolarRes139.BidderOR,SoresinaM,ShepardEL,HalseyLG,QuintanaF,GomezLaichA,WilsonRP:Theneedforspeed:testingaccelerationforestimatinganimaltravelratesinterrestrialdead-reckoningsystems.140.ToblerMW:NewGPStechnologyimprovesfixsuccessforlargemammalcollarsindensetropicalforests.JTropEcol141.NarazakiT,SatoK,AbernathyKJ,MarshallGJ,MiyazakiN:SeaturtlescompensatedeflectionofheadingattheseasurfaceduringdirectionalJExperimentBioletal.AnimalBiotelemetryPage15of16http://www.animalbiotelemetry.com/content/1/1/20 142.WilsonRP,LiebschN,DaviesIM,QuintanaF,WeimerskirchH,StorchS, LuckeK,SiebertU,ZanklS,MüllerG,ZimmerI,ScolaroA,CampagnaC, PlötzJ,BornemannH,TeilmannJ,McMahonCR: Allatseawithanimal tracks;methodologicalandanalyticalsolutionsfortheresolutionof movement. DeepSeaResPartIITopicStudOceanogr 2007, 54: 193 – 210. 143.ShiomiK,SatoK,MitamuraH,AraiN,NaitoY,PonganisPJ: Effectofocean currentonthedead-reckoningestimationof3-Ddivepathsofemperor penguins. AquaBiol 2008, 3: 265 – 270. 144.ShiomiK,NarazakiT,SatoK,ShimataniK,AraiN,PonganisPJ,MiyazakiN: Data-processingartefactsinthree-dimensionaldivepathreconstruction fromgeomagneticandaccelerationdata. AquaBiol 2010, 8: 299 – 304. 145.HoughtonJDR,LiebschN,DoyleTK,GleissAC,LilleyMKS,WilsonRP,Hays GC: Harnessingthesun:testinganovelattachmentmethodtorecord finescalemovementsinoceansunfish(molamola). In Taggingand TrackingofMarineAnimalswithElectronicDevices. NewYork:Springer: NielsenJL,ArrizabalagaH,FragosoN,HobdayA,LutcavageM,SibertJ (Eds.);2009:229 – 242. 146.dePassilléAM,JensenMB,ChapinalN,RushenJ: Useofaccelerometersto describegaitpatternsindairycalves. JDairySci 2010, 93: 3287 – 3293. 147.GleissAC,NormanB,LiebschN,FrancisC,WilsonRP: Anewprospectfor tagginglargefree-swimmingsharkswithmotion-sensitivedata-loggers. FisheriesRes(Amsterdam) 2009, 97: 11 – 16. 148.SignerC,RufT,SchoberF,FluchG,PaumannT,ArnoldW: Aversatile telemetrysystemforcontinuousmeasurementofheartrate,body temperatureandlocomotoractivityinfree-rangingruminants. MethodsEcolEvol 2010, 1: 75 – 85. 149.WatanabeN,SakanoueS,KawamuraK,KozakaiT: Developmentofan automaticclassificationsystemforeating,ruminatingandresting behaviorofcattleusinganaccelerometer. GrasslandSci 2008, 54: 231 – 237. 150.LedgerwoodDN,WincklerC,TuckerCB: Evaluationofdataloggers, samplingintervals,andeditingtechniquesformeasuringthelying behaviorofdairycattle. JDairySci 2010, 93: 5129 – 5139. 151.KeeganKG,KramerJ,YonezawaY,MakiH,PaiPF,DentEV,KellermanTE, WilsonDA,ReedSK: Assessmentofrepeatabilityofawireless,inertial sensor-basedlamenessevaluationsystemforhorses. AmJVetRes 2011, 72: 1156 – 1163. 152.PrestonT,BaltzerW,TrostS: Accelerometervalidityandplacementfor detectionofchangesinphysicalactivityindogsundercontrolled conditionsonatreadmill. ResVetSci 2012, 93: 412 – 416. 153.OkuyamaJ,KawabataY,NaitoY,AraiN,KobayashiM: Monitoringbeak movementswithanaccelerationdatalogger:ausefultechniquefor assessingthefeedingandbreathingbehaviorsofseaturtles. EndangeredSpeciesRes 2009, 10: 39 – 45. 154.SuzukiI,NaitoY,FolkowLP,MiyazakiN,BlixAS: Validationofadevicefor accuratetimingoffeedingeventsinmarineanimals. PolarBiol 2009, 32: 667 – 671. 155.SkinnerJP,NorbergSE,AndrewsRD: Headstrikingduringfishcapture attemptsbyStellersealionsandthepotentialforusingheadsurge accelerationtopredictfeedingbehavior. EndangeredSpeciesRes 2010, 10: 61 – 69. 156.IwataT,SakamotoKQ,TakahashiA,EdwardsEWJ,StanilandIJ,TrathanPN, NaitoY: Usingamandibleaccelerometertostudyfine-scaleforaging behavioroffree-rangingAntarcticfurseals. MarineMammalSci 2012, 28: 345 – 357. 157.SatoK,DauntF,WatanukiY,TakahashiA,WanlessS: Anewmethodto quantifypreyacquisitionindivingseabirdsusingwingstrokefrequency. JExperimentBiol 2008, 211: 58 – 65. 158.RobertB,WhiteBJ,RenterDG,LarsonRL: Evaluationofthree-dimensional accelerometerstomonitorandclassifybehaviorpatternsincattle. CompElectronAgri 2009, 67: 80 – 84. 159.HalseyLG,ShepardELC,HulstonCJ,VenablesMC,WhiteCR,JeukendrupAE, WilsonRP: Accelerationversusheartrateforestimatingenergy expenditureandspeedduringlocomotioninanimals:testswithaneasy modelspecies,Homosapiens. Zoology 2008, 111: 231 – 241. 160.GleissAC,GruberSH,WilsonRP: Multi-channeldata-logging:towards determinationofbehaviourandmetabolicrateinfree-swimmingsharks. In TaggingandTrackingofMarineAnimalswithElectronicDevices. NewYork: Springer:NielsenJL,ArrizabalagaH,FragosoN,HobdayA,LutcavageM, SibertJ;2009:211 – 228. 161.ScheibeKM,GromannC: Applicationtestingofanewthree-dimensional accelerationmeasuringsystemwithwirelessdatatransfer(WAS)for behavioranalysis. BehavResMethods 2006, 38: 427 – 433. 162.YostM,CooperRA,BremnerFJ: Fourieranalyses:amathematicaland geometricexplanation. BehavResMethodsInst 1983, 15: 258 – 261. 163.WatanabeS,SatoK,PonganisPJ: Activitytimebudgetduringforaging tripsofemperorpenguins. PLoSONE 2012, 7 (11):e50357. 164.SakamotoKQ,SatoK,IshizukaM,WatanukiY,TakahashiA,DauntF,Wanless S: Canethogramsbeautomaticallygeneratedusingbodyacceleration datafromfree-rangingbirds? PLoSONE 2009, 4 (4):e5379. 165.MartiskainenP,JärvinenM,SkönJ-P,TiirikainenJ,KolehmainenM,MononenJ: Cowbehaviourpatternrecognitionusingathree-dimensionalaccelerom- eterandsupportvectormachines. AppAnimBehavSci 2009, 119: 32 – 38. 166.GaoL,CAmpbellHA,BidderOR,HunterJ: AWeb-basedsemantictagging andactivityrecognitionsystemforspecies ’ accelerometrydata. EcologicalInfo 2012, 13: 47 – 56. 167.KaplanHL: Correlations,contrasts,andcomponents:Fourieranalysisina morefamiliarterminology. BehavResMethodsInst 1983, 15: 228 – 241. 168.HartT,MannR,CoulsonT,PettorelliN,TrathanP: Behaviouralswitchingin acentralplaceforager:patternsofdivingbehaviourinthemacaroni penguin(Eudypteschrysolophus). MarineBiol 2010, 157: 1543 – 1553. 169.JuleKR,LeaSEG,LeaverL: Usingabehaviourdiscoverycurvetopredict optimalobservationtime. Behaviour 2009, 146: 1531 – 1542. 170.GrundyE,JonesMW,LarameeRS,WilsonRP,ShepardELC: Visualisationof sensordatafromanimalmovement. IEEE-VGTCSymposiumVisual 2009, 28: 815 – 822. 171.Ropert-CoudertY,GremilletD,RyanP,KatoA,NaitoY,LeMahoY: Between airandwater:theplungediveofthecapegannetmoruscapensis. Ibis 2004, 146: 281 – 290. 172.NadimiES,SogaardHT,BakT: ZigBee-basedwirelesssensornetworksfor classifyingthebehaviourofaherdofanimalsusingclassificationtrees. BiosystemsEngineer 2008, 100: 167 – 176. doi:10.1186/2050-3385-1-20 Citethisarticleas: Brown etal. : Observingtheunwatchablethrough accelerationloggingofanimalbehavior. AnimalBiotelemetry 2013 1 :20. Submit your next manuscript to BioMed Central and take full advantage of: € Convenient online submission € Thorough peer review € No space constraints or color “gure charges € Immediate publication on acceptance € Inclusion in PubMed, CAS, Scopus and Google Scholar € Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit Brown etal.AnimalBiotelemetry 2013, 1 :20 Page16of16 http://www.animalbiotelemetry.com/content/1/1/20

Related Contents


Next Show more