/
simplied(;1)-morass.Inthepresentpaper,wewillgeneralizetheapproachtot simplied(;1)-morass.Inthepresentpaper,wewillgeneralizetheapproachtot

simpli ed(;1)-morass.Inthepresentpaper,wewillgeneralizetheapproachtot - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
377 views
Uploaded On 2017-02-22

simpli ed(;1)-morass.Inthepresentpaper,wewillgeneralizetheapproachtot - PPT Presentation

Finallyweshouldalsomentionthatbesideshistoricizedforcingandfunctionsthereisanotherquitedi erentmethodtoproveconsistenciesintwocardinalcombinatoricsThisisthemethodofforcingwithmodelsassideconditi ID: 518548

Finally weshouldalsomentionthatbesideshistoricizedforcingand-functionsthereisanother quitedi erentmethodtoproveconsistenciesintwo-cardinalcombinatorics.Thisisthemethodofforcingwithmodelsassideconditi

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "simpli ed(;1)-morass.Inthepresentpaper,..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

simpli ed(;1)-morass.Inthepresentpaper,wewillgeneralizetheapproachtothree-dimensionalsystems,so-calledFSsystemsalongsimpli ed(;2)-morasses.WewillalsoobservethatunderaveryweakadditionalassumptiontheforcingobtainedfromaFSsystemalongasimpli edgap-1orgap-2morassisforcingequivalenttoasmallsubforcing.Animmediateconsequenceofthisand[11]is:Ifthereisasimpli ed(!1;1)-morass,thenthereexistsacccforcingofsize!1thataddsan!2-Suslintree.Thisimprovestheorem7.5.1.inTodorcevic'sbook[28]:Thereexistsconsistentlyacccforcingwhichaddsan!2-Suslintree.Themainresultis:Ifthereisasimpli ed(!1;2)-morass,thenthereexistsacccforcingofsize!1thataddsa0-dimensionalHausdor topologyon!3whichhasspreads()=!1.ThisforcingisobtainedbyaFSsystemalongasimpli ed(!1;2)-morass.Itsconditionsare nitefunctionsp:xp!2withxp!3!2.ByatheoremofHajnalandJuhasz[7],card(X)22s(X)=exp(exp(s(X))holdsforallHausdor spacesX.In[13],Juhaszexplicitlyraisesthequestionifthesecondexpisreallynecessary.BytheusualargumentusedforCohenforc-ing,acccforcingofsize!1preservesGCH.Henceourresultshowsthatitisconsistentthatthereexistsa0-dimensionalHausdor spaceXwiths(X)=!1suchthatcard(X)=22s(X).Sofar,theconsistencyofcard(X)=22s(X)hasonlybeenknownforthecases(X)=!.Theexampleisthe0-dimensional,hereditarilyseparable,hereditarilynormalspaceconstructedfrom}byFedor-cuk[5].TheauthorwouldliketothankProfessorJuhaszforpointingthisouttohim.WhilethegeneralmethodofFSsystemscanbegeneralizedstraightforwardlytohigherdimensions,wecannotexpectthattheconsistencystatementscannaivelybeextendedbyraisingthecardinalparameters.Inparticular,wecan-notexpecttobeaabletoconstructfroma(!1;3)-morassacccforcingofsize!1whichaddsaT2spaceofsize!4andspread!1.Ifthiswaspossible,wecould ndsuchaforcinginL.However,bytheusualargumentusedforCohenforcingitpreservesGCHwhichcontradictsthetheoremofHajnalandJuhasz.Thereasonwhythisgeneralizationdoesnotworkisthatthegap-3caseyieldsafour-dimensionalconstruction.Therefore,the niteconditionsofourforcinghaveto ttogetherappropriatelyinfourdirectionsinsteadofthreeandthatisimpossible.Soifandhowastatementgeneralizestohigher-gapsdependsheavilyontheconcreteconditions.Theauthorstartedtodevelopthemethodofforcingalongmorasses,becausehewasinterestedinsolvingconsistencyquestionslikethefollowingforhighercardinals:CanthereexistasuperatomicBooleanalgebrawithwidth!andheight!2(BaumgartnerandShelah[2],Martinez[16])?Isitpossiblethatthereisafunctionf:!2!2!!suchthatfisnotconstantonanyrectanglewithin nitesides(Todorcevic[26,28])?However,theexistenceofsuchaBooleanalgebraaswellastheexistenceofsuchafunctioncontradictsGCH.SotogettheconsistencieswehavetodestroyGCH.HenceasimpleapplicationofFSsystemswillnotworkbecauseofthepropertieswedescribedabove.Therefore,wewillintroduceso-calledlocalFSsystemsalongsimpli edmorasses.2 Finally,weshouldalsomentionthatbesideshistoricizedforcingand-functionsthereisanother,quitedi erentmethodtoproveconsistenciesintwo-cardinalcombinatorics.Thisisthemethodofforcingwithmodelsassideconditionsorwithsideconditionsinmorasses.ModelsassideconditionswereintroducedbyTodorcevic[25,27],whichwasfurtherdevelopedbyKoszmider[15]tosideconditionsinmorasses.Unliketheothermethods,itproducesproperforcingswhichareusuallynotccc.Thisissometimesnecessary.Forexample,KoszmiderprovedthatifCHholds,thenthereisnocccforcingthataddsasequenceof!2manyfunctionsf:!1!!1whichisorderedbystrictdominationmod nite.However,heisabletoproduceaproperforcingwhichaddssuchasequence[15].Moreonthemethod,includingadiscussionofitsrelationshipwiththatofusing-functions,canbefoundinMorgan'spaper[19].Inthecontextofourapproach,thisraisesthequestionifitispossibletode nesomethinglikeacountablesupportiterationalongamorass.2Simpli edgap-2morassesInthissection,wewillrecallthede nitionofsimpli edgap-2morassesandsummarizetheirpropertiestotheextentnecessaryforourapplications.Exceptfortheorem2.3(a)andlemma2.6(7),allresultsinthissectionareduetoVelleman[29,31].Nevertheless,wewillusuallyquotetheauthor'spaper[11]onFSsystemsalonggap-1morassesinsteadof[29],becausewehopethatinthiswaytheconnectiontoFSsystemsbecomesclearer.Asimpli ed(;1)-morassisastructureM=hh j i;hF j iisatisfyingthefollowingconditions:(P0)(a)0=1,=+,8 0 .(b)F isasetoforder-preservingfunctionsf: ! .(P1)jF jforall .(P2)If ,thenF =ffgjf2F ;g2F g.(P3)If ,thenF ; +1=fid ;h gwhereh issuchthath =idandh () forsome .(P4)If isalimitordinal, 1; 2 andf12F 1 ,f22F 2 ,thentherearea 1; 2 ,g2F andj12F 1 ,j22F 2 suchthatf1=gj1andf2=gj2.(P5)Forall &#x-349;0, =Sff[ ]j ;f2F g.Oursimpli ed(;1)-morassesarewhatarecalledneatsimpli ed(;1)-morassesin[29].Vellemanshowstherethatifthereisoneofhissimpli ed(;1)-morassesthereisaneatone.Note,moreover,thatitisequivalenttoreplace\h () forsome "in(P3)with\h (+)= +forsome andallsuchthat+ ".Thisiseasilyseenusing(P5)and(P2).4 (6)Ifandb2G,thenfb=f(b)f.Assumeinthefollowingthat0,'0='forandG0=Gfor.Andletforthemomentbeingf=id,f=idforallandf=idforall.Letf2G00.Thenwecande neanembeddingasfollows:Ifandb2G,thenf(b)=fb.Wecallsuchanembeddingfaleft-branchingembedding.Therearemanyleft-branchingembeddings,oneforeverychoiceoff.Anembeddingfisright-branchingifforsome,(1)f=id(2)f(+)=+if+(3)f=idfor(4)f=idfor(5)f2G(6)f[G]=G0f()f()if.Anamalgamationisafamilyofembeddingsthatcontainsallpossibleleft-branchingembeddings,exactlyoneright-branchingembeddingandnothingelse.Theright-branchingembeddingcorrespondstothemapsh from(P3)inthegap-1case.Therefore,wewillusuallydenoteitbyh.Let!beregularandhh'j+i;hGj+iiasimpli ed(+;1)-morasssuchthat'forall.Leth j ibeasequencesuchthat0 and=+.LethF j ibesuchthatF isafamilyofembeddingsfromhh'j i;hGj iitohh'j i;hGj ii.Thisisasimpli ed(;2)-morassifithasthefollowingproperties:(1)jF jforall .(2)If ,thenF =ffgjf2F ;g2F g.Herefgisthecompositionoftheembeddingsfandg,whicharede nedintheobviousway:(fg)=fg()gfor and(fg)=fg()g()gfor .(3)If ,thenF ; +1isanamalgamation.(4)If isalimitordinal, 1; 2 andf12F 1 ,f22F 2 ,thentherearea 1; 2 ,g2F andj12F 1 ,j22F 2 suchthatf1=gj1andf2=gj2.(5)Forall , 2Lim:(a) =Sff[ ]j ;f2F g.(b)Forall ,'=Sff[']j9 (f2F andf()=)g.(c)Forall ,G=Sff[G]j9 (f2F ;f()=andf()=)g.Theorem2.3(a)IfV=L,thenthereisasimpli ed(;2)-morassforallregular&#x-408;!.6 (2)88b2Gf(b)=f#()f(b).Furthermore,thesefunctionshavethefollowingproperties:(3)Iff()andb2Gf(),then99c2G9d2Gf()b=f(c)d:(4)88b2Gfb=f(b)f.(5)If,b2Gandc2G,thenf(bc)=f(b)f(c).(6)If ,f2F ,g2F and ,then( fg)=fg()g(fg)#()=fg()g()(g#())f#(g())and( fg)=fg()g()gforall.Proof:SeeVelleman[31],lemma2.1.2Fromthepreviouslemma,wegetofcoursealsomaps( 0st)fors0tand(t).3FSsystemsalongmorassesInthissection,werecallthede nitionofFSsystemsalonggap-1morassesgivenin[11]andgeneralizeittothegap-2case,whichisstraightforward.LetPandQbepartialorders.Amap:P!Qiscalledacompleteembeddingif(1)8p;p02P(p0p!(p0)(p))(2)8p;p02P(pandp0areincompatible$(p)and(p0)areincompatible)(3)8q2Q9p2P8p02P(p0p!((p0)andqarecompatibleinQ)).In(3),wecallpareductionofqtoPwithrespectto.Ifonly(1)and(2)hold,wesaythatisanembedding.IfPQsuchthattheidentityisanembedding,thenwewriteP?Q.WesaythatPQiscompletelycontainedinQifidP:P!Qisacompleteembedding.Lethh'j+i;hGj+iibeasimpli ed(+;1)-morass.Wewantto"iterate"alongit.Thisleadstothefollowingde nition.WesaythathhPj++i;hstjsti;he j +iiisaFSsystemalonghh'j+i;hGj+iiifthefollowingconditionshold:(FS1)hPj++iisasequenceofpartialorderssuchthatP?PifandP=SfPjgfor2Lim.(FS2)hstjstiisacommutativesystemofinjectiveembeddingsst:P(s)+1!P(t)+1suchthatiftisalimitpointin,thenP(t)+1=[fst[P(s)+1]jstg:8 equalityholdsby(FS5).Itfollowsfromthepreviousobservationthath n(p)jn2!iisdecreasing.Sotherecursivede nitionabovebreaksdownatsomepoint,i.e. n(p)=0forsomen2!.Hencesupp(p)=f n(p)jn2!gis nite.Lemma3.1Ifp( )andq( )arecompatiblefor =max(supp(p)\supp(q)),thenpandqarecompatible.Proof:See[11],lemma4.1.2Theorem3.2Let;�!becardinals,regular.LethhPj+i;hstjsti;he j iibeaFSsystemalonga(;1)-morassM.AssumethatallPwithsatisfythe-cc.ThenP+alsodoes.Proof:See[11],lemma4.2.2Now,letMbeasimpli ed(;2)-morass.WesaythathhPj++i;hstjsti;h0stjs0ti;he j +i;he0 j iiisaFSsystemalongMifthefollowingconditionshold:(FS21)hhPj++i;hstjsti;he j +iiisaFSsystemalonghh'j+i;hGj+ii.LetQ=fpsupp(p)jp2P++g.De neapartialorderonQbysettingpqi dom(q)dom(p)andp( )q( )forall 2dom(q).SetQ :=fp2Qjdom(p) g.(FS22)h0stjs0tiisacommutativesystemofinjectiveembeddings0st:Q(s)+1!Q(t)+1suchthatiftisalimitpointin0,thenQ(t)+1=Sf0st[Q(s)+1]js0tg.(FS23)e0 :Q +1!Q .(FS24)Lets0tand=0st.If(0)=0,s0=h (s);0iandt0=h (t);0i,then0st:Q(s)+1!Q(t)+1extends0s0t0:Q0+1!Q0+1.Henceforf2F ,wemayde nef=Sfstjs=h ;i;t=h ;f()ig.(FS25)If0st(s)+1=id(s)+1,then0st=idQ(s)+1.(FS26)(a)If ,thenQ iscompletelycontainedinQ +1insuchawaythate0 (p)isareductionofp2Q +1.10 withspread!1.Theconstructionhastwoimportantprecursors.Thoseare, rstly,theconstructionofacccforcingthataddsan!2-Suslintreein[11]and,secondly,Velleman'sproof[31]thatthemodeltheoreticgap-3theoremholdsinL.Inthefollowing,wewillreferto[11]and[31]fromtimetotimetopointoutsimilaritiesbetweentheconstructions.Wehopethatthismakesthewholeproofmorecomprehensible.Let:!beanorder-preservingmap.Then:!inducesmaps:!2!!2and:(!2)2!(!2)2intheobviousway::!2!!2;h ;i7!h( );i:(!2)2!(!2)2;hx;i7!h(x);i:Basically,wewillde nethemapsoftheFSsystembysetting(p)=[p].Now,westartourconstructionofP.Inthe rststep,wede nepartialordersP()for!3andQ()for!2.Inthesecondstep,wethinoutP()andQ()tothePandQwhichformtheFSsystemalongthegap-2morass.Assumethatasimpli ed(!1;2)-morassasintheprevioussectionisgiven.Wede neP()byinductiononthelevelsofhh'j!2i;hGj!2iiwhichweenumerateby !2.BaseCase: =0Thenweonlyneedtode neP(1).LetP(1):=fp2Pjxp1!g.SuccessorCase: = +1We rstde neP(' ).Letitbethesetofallp2Psuchthat(1)xp' ! (2)p(' ! ),h�1 [p(' ! )]2P(' )(3)p(' ! )andh�1 [p(' ! )]arecompatibleinPwhereh isasin(P3)inthede nitionofasimpli edgap-1morass.Forall' P()isalreadyde ned.For' ' setP()=fp2P(' )jxp! g:Setst:P((s)+1)!P((t)+1);p7!st[p]:Itremainstode nee .Ifp2rng( ),thensete (p)=�1 (p).Ifp2P(' ),thensete (p)=p.Andifp=2rng( )[P(' ),thensete (p)=p(' ! )[h�1 [p(' ! )]:LimitCase: 2Lim12 Thereasonwhyweusefinsteadoff2F isthatfdoesnotmapthesupportofaconditioncorrectly.Foranexample,considerthecase = +1andletf2F beright-branching.Letbethesplittingpointoff,i.e.f()= .Assumethatp2Q( ),2dom(p)anddom(p())'!.Letf[p]bede nedbydom(f[p])=f[dom(p)]andf[p](f()):=f f[p()]forall2dom(p).Wewillshowthatf[p]=2Q( ).Todoso,notice rstthatf=f#()fbylemma2.6(1).However,f=id',becausefisright-branchingwithsplittingpoint.Sof=f#().Hencef[p]( )=f f[p()]=f#()[p()]becausedom(p())'!andf=id.However,thiscontradictsthefactthatallq2Q( )areoftheformq=rsupp(r)forsomer2P(!3)becauseinthiscaseq( )6=g[q]forallg2G  ,q2P(' )and  bythede nitionofthesupportofacondition.Thisproblemdoesobviouslynotoccur,ifweconsiderf[p].Lemma4.3(a)Iff2F andp2Q( ),thenf[p]2Q( ).(b)Ifs0tandp2Q((s)+1),then 0st[p]2Q((t)+1).Proof:Setq:=f[p].Letdom(p)=f 1::: nganddom(q)=f 1::: ng:=ff( 1):::f( n)g.Bythede nitionofthesupportofacondition,all iaresuccessorordinals.Andf( i�1)=f( i)�1bythede nitionoff.Setq( i�1)=e i�1(q( i)).Thenitsucestoprovethattherearefunctionsgi2G i; i+1�1suchthat(1)q( i+1�1)=gi[q( i)](2)q( i)=2rng( i�1),q( i)=2P(' i�1):Sincepisacondition,therearefunctionsji2G i; i+1�1suchthatp( i+1�1)=ji[p( i)]:Sowecansetgi=f i; i+1�1(ji)f#( i):Weneedtocheck(1).We rstprovethatf i+1�1 f[e i+1�1(p( i+1))]=e i+1�1(q( i+1)):Toseethis,weuselemma2.6(4)whichsays88b2Gfb=f(b)f:Applyingitfor= i+1�1,= i+1andb=id' i+1�1,wegetq( i+1)(' i+1�1!( i+1�1))=f i+1 f[p( i+1)](' i+1�1!( i+1�1))==f i+1�1 f[p( i+1)(' i+1�1!( i+1�1))]wherethe rstequalityholdsbythede nitionofq=f[p].14 InthefollowingwethinoutQ( )toQ toobtainaFSsystemalongourgap-2morass.Wede neQ byinductiononthelevelsofhh j !1i;hF0 j !1ii.BaseCase: =0Thenweonlyneedtode neQ1.LetQ1=Q(1).SuccessorCase: = +1We rstde neQ .Todoso,letP' bethesetofallp2P(' )suchthat(1)(h h)�1[p]2P' (2)g�1[p('  )]and(h h)�1[p]arecompatibleforallg2G  wherehistheuniqueright-branchingembeddingofF .SetQ =fp(supp(p)\ )jp2P' g:Fort2T0 setQ(t)+1=fp2Q jdom(p)(t)+1gandQ=SfQjgfor2Lim.Set0st:Q(s)+1!Q(t)+1;p7! 0st[p]:Itremainstode nee0 .Ifp2rng(0 ),thensete0 (p)=0�1 (p).Ifp2Q ,thensete0 (p)=p.Andifp=2rng(0 )[Q ,thenchoosear2P' withp=rsupp(r)andsetq:=[fg�1[r('  )]jg2G  g[(h h)�1[r]=r( )[(h h)�1[r]:Sete0 (p)=q(supp(q)\ ).LimitCase: 2LimFort2T0 setQ(t)+1=Sf0st[Q(s)+1]js0tgandQ=SfQjgfor2Limwhere0st:Q(s)+1!Q(t)+1;p7! 0st[p].Finally,setP=fp2P()jpsupp(p)2Q!2gandP:=P!3.Wethinkthatsomeexplanationsareappropriate.Letus rstcompareourde nitiontoVelleman'sconstructionin[31].Hisproofofthegap-3theoremistheorem5.3of[31].HehastoconstructastructureA.Assumethathis+=!1.ThenheconstructsAbyconstructingforevery !1astructureA andtakingadirectlimit.However,thesystemofelementaryembeddingsheusestotake16 ThenitwillturnoutthatFisatleastnotyetdeterminedon!3f!+njn2!�D;2!2g:Thiswillbeusedinlemma4.6,whichisthecrucialstepforprovingthatPaddsaHausdor space.Remark3:Assumethat = +1andthathistheright-branchingembeddingofF .Letp1;p22P' becompatibleandg2G  .Thenalsog[p1]andh h[p2]arecompatible,i.e.g[p1]andh h[p2]agreeonthecommonpartoftheirdomains.Toprovethis,leth ;i2dom(g[p1])\dom(h h[p2])g(h 1;1i)=h ;ih h(h 2;2i)=h ;i:Sincehisright-branching,h =h .Letbethecriticalpointoff .Then!andtherefore=1=2.By(6)inthede nitionofright-branching,thereexistsab2G suchthatf (b)=g.Hence,by(6)inthede nitionofembedding,h b=gh:Sothereexistsh ;i2'!suchthath b(h ;i)=gh(h ;i)=h ;ih(h ;i)=h 1;ib(h ;i)=h 2;i:By(5)inthede nitionofright-branchingembedding,h2G .Hencep1( 1;)=p1()( ;).Moreover,p2( 2;)=p2()( ;)becauseb2G .However,p1andp2arecompatible.Therefore,alsop1()andp2()arecom-patible.Sop1()( ;)=p2()( ;).Thisinturnimpliesp1( 1;)=p2( 2;).Henceg[p1]( ;)=h h[p2]( ;).That'swhatwewantedtoshow.Thesameargumentshowsforallp2P' andallg2G  thatg[p]2P' ,h h[p]2P' andg[p][(h h)[p]2P' .Forarbitrary !1andf2F de nef f:' ! !' ! ;h ;!+ni7!hf ( );!f()+niforalln2!andf f:(' ! )2!(' ! )2;hx;i7!hf f(x);i:If = +1,thenF isanamalgamationby(3)inthede nitionofasimpli edgap-2morass.Hencef2F iseitherleft-branchingorright-branching.Letp2P' andassumethatfisright-branching.Thenf f[p]=f f[p]18 andforP()weknow(FS1)already.By(),onehastoprovefor(FS2),(FS3)and(FS6)thatcertainconditionsareelementsofP.Inthecaseof(FS2),forexample,onehastoshowthatst(p)2P(t)+1forallp2P(s)+1.Inallthreecasesthat'snotdicult.2Thenexttwolemmascorrespondtolemma5.2andlemma5.3of[11].Lemma4.6willensurethatthegenerictopologicalspaceisHausdor .Lemma4.7willguaranteethatthespacehasspread!1.Lemma4.6Letp2Pand 6=2!3.ThenthereisqpinPand2!2suchthatq( ;)6=q(;).Proof:Weprovebyinductionoverthelevelsofthegap-2morass,whichweenumerateby !1,thefollowingClaim:Letp2P' and 6=2' .ThenthereisqpinP' and2! suchthatq( ;)6=q(;).BaseCase: =0Trivial.SuccessorCase: = +1Lethbetheright-branchingembeddingofF .Weconsiderfourcases.Case1: ;2rng(h )Letp2P' begiven,h ( )= andh ()=.Setp=(h h)�1[p][p( ).Bytheinductionhypothesis,thereexistsaq2P' anda=!+n2! (n2!)suchthatqpandq( ;)6=q(;).Setq=p[(h h)[q]and=!h()+n.Thenq2P' byremark3,qpandq( ;)=q( ;)6=q(;)=q(;).Case2: ;=2rng(h )Weconsidertwosubcases.Assume rstthat =2Lim.Thenchoosesome2[!( �1);! [suchthat=2f2j91h1;2i2dom(p)g.Setq=p[fhh ;i;0i;hh;i;1ig:Bythechoiceof,q2P(' ).Accordingtothecasewhichwearein,q( )=p( )and(h h)�1[q]=(h h)�1[p].Henceqand(h h)�1[q]arecompatiblebecauseqand(h h)�1[q]arecompatible.Soq2P' anditisobviouslyaswanted.Now,supposethat 2Lim.Assumew.l.o.g.that .Sett=h ;i.20 q(;).Setq:=f f[q].Thenqisaswanted.2Lemma4.7Lethpiji2!2ibeasequenceofconditionspi2Psuchthatpi6=pjifi6=j.Lethiji2!2ibeasequenceofordinalsi2!3suchthati2dom(xpi)foralli2!2.Thenthereexisti6=jandp2Psuchthatppi;pj,hi;i;hj;i2xpandp(i;)=p(j;)forall2rng(xpj).Proof:By rstextendingtheconditions,wemayassumethatxpi=dom(xpi)rng(xpi)foralli2!2.Hencehj;i2xpwillholdforall2rng(xpj)automatically.Moreover,wecanassumebythe-systemlemmathatallxpiareisomorphicrelativetotheorderoftheordinals,thatpi=pjforalli;j2!2,that(i)=jif:dom(xpi)=dom(xpj),thatfrng(xpi)ji2!2gformsa-systemwithroot,andthat=idif:rng(xpi)=rng(xpj).Toprovethelemma,weconsidertwocases.Case1:rng(xpi)=foralli2!2Thenweset=max().Sincethereare!2-manypiwhileP'+1hasonly!1-manyelements,thereexistpiandpjwithi6=jsuchthatpi(+1)=pj(+1).Hencebytheusualargumentspiandpjarecompatible.Setp=pi[pj.Thenpisaswanted,becausepi=pjand(i)=jif:dom(xpi)=dom(xpj).Case2:rng(xpi)6=foralli2!2Thenfmin(rng(xpi)�)ji2!2gisunboundedin!2.Foreveryi2!2choose i!1,fi2F i!1,i2' iandpi2P' isuchthatpi=(fi) i fi[pi]andi=(fi) i(i):Sincethereare!2-manyiandpibutonly!1-manypossibleiandpi,wecanassumethat i= j,i=jandpi=pjforalli;j2!2.Setp=pi, = iand=i.Let2!3besuchthatpi2Pforalli2!2.Lett=h!2;i.Letstsuchthatpi2rng(st)for!1-manyi2!2.Lets2T.Pickpisuchthatmin(rng(xpi)�)&#x-278;!.Leti=min(rng(xpi)�).Thenbythechoiceoffi,i2rng(fi ).Letutbesuchthatu2Ti.Letfi(i)=i.Sincethereare!1-manyj2!2suchthatpj2rng(st),therearealso!1-manyj2!2suchthatpj2rng(ut).Ontheotherhand,rng((fi)i)iscountable.Sowecanpickaj2!2suchthat=2rng((fi)i),ut()=jandpj2rng(ut).Inthefollowingwewillshowthatthereexistsppi;pjsuchthathj;i2xpandp(i;)=p(j;)forall2rng(xpi).For !1,letfi=g ij iwhereg i2F andj i2F !1.Letg i( i)=iand beminimalsuchthat2rng((g i) i).For  !1,let(g i) i( )=,p i=(j i) j i[p],g i[ ]=and i=(j i) ().Weprovebyinductionover  !1thefollowingClaim1:Ifh i; ih ;0i,thenthereexistsp p isuchthath0;i2xp 22 Hencebytheinductionhypothesis,thereexistsppisuchthath0;i2xpandp(i;)=p(0;)forall2rng(xpi)�.Setp =h h[p]:Thenp isaswanted.Subcase2:0=2rng(h)and iExactlylikethebasecaseoftheinduction.Subcase3:0=2rng(h)and i.Thiscaseisacombinationofthebasecaseoftheinductionandofcase1.Leth i; ih;00ih ;0i.Let2G suchthat(00)=0.Thenbytheinductionhypothesis,thereexistsppisuchthath0;i2xpandp(i;)=p(00;)forall2rng(xpi)�.Setp =[p][(h h)[p][fhh0;i;p i( i;)ij2rng(xp i)�g:Byremark3,p 2P.Weclaimthatp isaswanted.For2rng(xp i)�,p ( i;)=p (0;)holdsbyde nition.For2rng(xp i)\=rng(xpi)\,wehavep (0;)=p(00;)=p(i;)=p i( i;):This nishestheproofofthesuccessorstep.Limitcase: 2LimBylemma4.4andby(4)and(5)inthede nitionofasimpli edgap-2morass,wecanpicka andaf2F suchthat02rng(f)andf f[pi]=p i.Letf(0)=0.Thenby(6)inthede nitionofembedding,hi;ih;0i.Hencewecanpickbytheinductionhypothesisappisuchthath0;i2xpandp(i;)=p(0;)forall2rng(xpi)�.Setp =f f[p]:Thenp isobviouslyaswanted.This nishestheproofofclaim1.Finally,wecanprovebyinductionover !124 Lemma4.8(a)i:P!3!Q!2;p7!psupp(p)isadenseembedding.(b)Thereisaccc-forcingPofsize!1suchthatQ!2embeddsdenselyintoP.Proof:(a)Wehavei[P!3]=Q!2.Soitisclear,thati[P!3]isdenseinQ!2.Itremainstocheck(1)and(2)ofthede nitionofembedding.Itfollowsfromlemma4.2,that(1)holds.For(2)assume rstthatp;p02P!3arecompatible.Sothereisrp;p0inP!3.Hencei(r)i(p);i(p0)bylemma4.2.Soi(p);i(p0)2Q!2arecompatible.Converselyassumethati(p);i(p0)2Q!2arecompatible.Thenp;p02P!3arecompatiblebylemma3.1.(b)Note,thathhQj!3i;h0stjs0ti;he0 j !1iiisanFSsystemalonghh j !1i;hF0 j !1ii.Hencewecande nePfromQ!2likewede nedQ!2fromP!3.ThatQ!2embeddsdenselyintoPisprovedlikebefore.2Beforeweprovethemaintheorem,letusrecallthede nitionofthespreadofatopologicalspace.Let(X;)beatopologicalspacewithtopology.AsubsetDXiscalleddiscreteifforeveryx2DthereexistsanU2suchthatU\D=fxg.Thespreads(X)ofXisde nedass(X)=!supfcard(D)jDisadiscretesubsetofXg.Theorem4.9Ifthereisan(!1;2)-morass,thenthereisaccc-forcingPofsize!1thataddsa0-dimensionalT2topologyon!3whichhasspread!1.Proof:Bylemma4.8,P!3embeddsdenselyintoP.HenceP!3andPyieldthesamegenericextensions.SoitsucestoprovethatP:=P!3addsa0-dimensionalT2topologyon!3whichhasspread!1.Bylemma4.5,Pisccc.Therefore,itpreservescardinals.LetGbeP-generic.WesetF=Sfpjp2Gg.ThenF:!3!2!2byasimpledensityargument.Letbethetopologyon!3generatedbythesetsAi:=f 2!3jF( ;)=ig.ThusabaseforisformedbythesetsB":=TfA"()j2dom(")gwhere":dom(")!2is niteanddom(")!2.Henceis0-dimensional.Weclaimthatisaswanted.We rstshowthatitisT2.Wehavetoprovethatfor 6=thereissome2!2suchthatF( ;)6=F(;).ThisisclearbythegenericityofGandlemma4.6.Itremainstoprovethathasspread!1.Assumenot.Let_X,_hand_Bbenamesandp2Paconditionsuchthatp (_X!3,_h:!2!_Xisbijective,_B:!2!V,8i2!2_B(i)isabasicopenset,8i6=j2!2_h(i)2_B(i)^_h(j)=2_B(i)).Foreveryi2!2letpipandi,"ibesuchthatpi _h(i)=i^_B(i)=B"i.Bythepreviouslemma,therearei6=jandr2Psuchthatrpi;pj,hi;i;hj;i2xrandr(i;)=r(j;)forall2rng(xpj).Hencer _h(j)=j2_B(i)whichcontradictsthede nitionofp.226 sequencesp2P+suchthatP=fpjp2P+gandP+1=P_Q(where_QisaP-namesuchthatP (_Qisaforcing)).Thenp:+!V2P+i P p()2_Qforall2+andsupp(p):=f2+jP6 p()=1_Qgis nite.For nite+andp2P+de nep2P+bysettingp()=p()if2p()=_1Qif=2where_1QisaP-namesuchthatP _1Q=1_Q.ForAP+and nite+de neA=fpjp2Ag:If!1isregularandPsatis esthe-ccforall nite+,thenP+alsosatis esthe-cc,asfollowsbythestandard-systemargument.Theideaisnowtoensurethe-ccofeveryPbyconstructingitbyaFSsystemalongamorass.Thismotivatesthefollowingde nition:WesaythataFSiterationhPj+ilikeaboveisalocalFSsystemalonga(simpli ed)(;1)-morassMi forevery nite+thereisaFSsystemhhQj+i;hstjsti;he j iialongMsuchthatP?Q+.Sofar,allthisisofcourseonlytheory.AsasimpleexampleletmeconsidertheforcingtoaddachainhX j !2isuchthatX !1,X �X is niteandX �X hassize!1forall !2.ThenaturalforcingtodothiswouldbeP:=fp:apbp!2japbp!2!1 nitegwherewesetpqi qpand8 1 22aq8 2bp�bqp( 1; )p( 2; ):Obviously,wewillsetX =f 2!1jp( ; )=1forsomep2GgforaP-genericG.ItiseasilyseenthathPj+iwithP=fp2PjapgcanbewrittenasFSiterationsuchthatP=fp2Pjapg.Ontheotherhand,itisnotsimplyaproduct.Unfortunately,italsodoesnotsatisfyccc.Toseethis,considerforevery !1thefunctionp :f0;1gf g!2wherep (0; )=1andp (1; )=0.ThenA=fp j 2!1gisanantichainofsize!1.Therefore,weneedtothinouttheforcinginanappropriateway.Todothis,lethh j !1i;hF j !1iibeasimpli ed(!1;1)-morass.Wewillde neasystemhhPj!2i;hstjstiiwhichsatis esproperties(FS1)-(FS5)inthede nitionofFSsystemalongagap-1morass.Let:!beaorder-preservingmap.Then:!inducesmaps:!1!!1and:(!1)2!(!1)2intheobviousway::!1!!1;h ;i7!h( );i28 Claim:p2P i p2P,ap ,bp andforall andallf2F +1; f�1[p]( +1f g)ismonotone:Basecase: =0Thenthereisnothingtoprove.Successorcase: = +1Assume rstthatp2P .Then,by(2)inthesuccessorstepofthede nitionofP!2,f�1[p];(id )�1[p]2P .Nowassumef2F +1; and .Thenf=f f0orf=f0forsomef02F +1; by(P2)and(P3).Sobytheinductionhypothesisf�1[p]( +1f g)ismonotoneforallf2F +1; andall .Moreover,if = thentheidentityistheonlyf2F +1; .Inthiscasef�1[p]( +1f g)ismonotoneby(3)inthesuccessorcaseofthede nitionofP.Nowsupposethatf�1[p]( +1f g)ismonotoneforall andallf2F +1; .Wehavetoprovethat(2)and(3)inthesuccessorstepofthede nitionofPhold.(3)obviouslyholdsbytheassumptionbecausetheidentityistheonlyfunctioninF =F +1; .For(2),itsucesbytheinductionhypothesistoshowthatf�1[h�1 [p]]( +1f g)ismonotoneandf�1[(id )�1[p]]( +1f g)ismonotoneforallf2F +1; .This,however,holdsby(P2)andtheassumption.Limitcase: 2LimAssume rstthatp2P .Let andf2F +1; .Wehavetoprovethatf�1[p]( +1f g)ismonotone:Bythelimitstepofthede nitionofP,thereare ,g2F andp2P suchthatp=g[p].By(P4)thereare ;  ,g02F ,f02F andj2F suchthatg=jg0andf=jf0.Letp0:=g0[p].Then,bytheinductionhypothesis(f0)�1[p0]( +1f g)ismonotone:However,(f0)�1[p0]=(f0)�1[j�1[p]]=f�1andwearedone.30 technical.InsteadwewilldirectlyshowthefollowingLemma5.2Ifp;q2Pandp( );q( )arecompatibleinP for =max(supp(p)\supp(q)),thenpandqarecompatibleinP.Proof:Theproofisasimpli edversionoftheproofoflemma3.1.Supposepandqareasinthelemma,butincompatible.Let(supp(p)[supp(q))� =f n::: 1g.Weprovebyinductionon1in,thatp( i)andq( i)areincompatibleforall1in.Since n= ,thisyieldsthedesiredcontra-diction.Note rst,thatp( 1)andq( 1)areincompatiblebecauseotherwisep=st[p( 1)]andq=st[q( 1)]wereincompatible(fors2T 1,st).If 1= ,wearedone.Soassumethat 16= .Theneitherp( 1)=ss[p( 1�1)]orq( 1)=ss[q( 1�1)]wheresst,s2T 1�1ands2T 1.Weassumeinthefollowingthatp( 1)=ss[p( 1�1)].Mutatismutandis,theothercaseworksthesame.Claim:p( 1�1)andq( 1�1)areincompatibleinP 1�1Assumenot.Thenthereisrp( 1�1);q( 1�1)inP' 1�1suchthatar=ap( 1�1)[aq( 1�1).Letr0:=ss[r].Thenr0[p( 1�1)]=p( 1)andr0[q( 1�1)]=q( 1)( 1 1).Inthefollowingwewillconstructanrp( 1);q( 1)whichyieldsthecontradictionwewerelookingfor.By(2)inthede nitionofP 1,q(; 1)q(; 1)forall2aqwhereq:=q( 1).Let~=maxf2aqjq(; 1)=0gifthesetisnotempty.Otherwise,set~=0.Setr=r0[fhh; 1i;0ij~;2ar0g[fhh; 1i;1ij~;2ar0g:Thenrisaswanted.Thisprovestheclaim.Itfollowsfromtheclaim,thatp( 2)andq( 2)areincompatible.Hencewecanprovethelemmabyrepeatingthisargumentinductively nitelymanytimes.2Lemma5.3P:=P!2satis esccc.Proof:LetAPbeasetofsize!1.Bythe-lemma,wemayassumethatfbpjp2Agformsa-systemwithrootD.Wemaymoreoverassumethatforall 2D,allf2F +1;!1andallp;q2Af�1[p]( +1f g)f�1[q]( +1f g)orf�1[p]( +1f g)f�1[q]( +1f g):ToseethisassumethatX=fapjp2Ag!2formsa-systemwithroot1.Fix 2D.BythinningoutA,wecanensurethatwhenevera6=b2X,2a�b,2b�a,,t=h!1;i,st,s2T +1,then=2rng(st).This32 =((ap�(ap1[ap2))f g)\f[( +1f g)]:Toprovethatpf[( +1f g)]ismonotone;weconsiderthe rstcase rst.Let 2f[ +1].If ;2ap1,thenp( ; )=p1( ; )p1(; )=p(; )becausep12P.Otherwisep( ; )p(; )bythede nitionofp.Thesecondcaseisprovedinthesamewaywherep1isreplacedbyp2.2Theorem5.4Ifthereisasimpli ed(!1;1)-morass,thenthereisaccc-forcingPwhichaddsachainhX j !2isuchthatX !1,X �X is niteandX �X hassize!1forall !2.Proof:Bylemma5.3,Psatis esccc.Henceitpreservescardinals.Itiseasilyseenbyinductionalongthemorass,thatforevery 2!2andevery 2!1thesetsD =fp2Pj 2apgandD0 =fp2Pj 2bpgaredenseinP.SoifGisP-generic,thenF=Sfpjp2GgisafunctionF:!2!1!2.SetX =f 2!1jF( ; )=1g.Bythede nitionofonP,X �X is niteforall .Finally,againbyaneasyinductionalongthemorasswecanprovethatforall2!1, 2!2thesetD00; ; =fp2Pj9 p( ; )=0;p( ; )=1gisdenseinP.ThisyieldsthatX �X isuncountableforall !2.2References[1]JamesE.Baumgartner.Almost-disjointsets,thedensesetproblemandthepartitioncalculus.Ann.Math.Logic,9(4):401{439,1976.[2]JamesE.BaumgartnerandSaharonShelah.RemarksonsuperatomicBooleanalgebras.Ann.PureAppl.Logic,33(2):109{129,1987.[3]KeithJ.Devlin.Constructibility.PerspectivesinMathematicalLogic.Springer-Verlag,Berlin,1984.[4]Hans-DieterDonder.Anotherlookatgap-1morasses.InRecursiontheory(Ithaca,N.Y.,1982),volume42ofProc.Sympos.PureMath.,pages223{236.Amer.Math.Soc.,Providence,RI,1985.[5]V.V.Fedorcuk.Thecardinalityofhereditarilyseparablebicompacta.Dokl.Akad.NaukSSSR,222(2):302{305,1975.[6]SyD.Friedman.Finestructureandclassforcing,volume3ofdeGruyterSeriesinLogicanditsApplications.WalterdeGruyter&Co.,Berlin,2000.[7]A.HajnalandI.Juhasz.Discretesubspacesoftopologicalspaces.Nederl.Akad.Wetensch.Proc.Ser.A70=Indag.Math.,29:343{356,1967.[8]BernhardIrrgang.Constructing(!1; )-morassesfor!1 .Unpublished.[9]BernhardIrrgang.Proposing(!1; )-morassesfor!1 .Unpublished.34 [27]StevoTodorcevic.Partitionproblemsintopology,volume84ofContempo-raryMathematics.AmericanMathematicalSociety,Providence,RI,1989.[28]StevoTodorcevic.Walksonordinalsandtheircharacteristics,volume263ofProgressinMathematics.BirkhauserVerlag,Basel,2007.[29]DanVelleman.Simpli edmorasses.J.SymbolicLogic,49(1):257{271,1984.[30]DanVelleman.Gap-2morassesofheight!.J.SymbolicLogic,52(4):928{938,1987.[31]DanVelleman.Simpli edgap-2morasses.Ann.PureAppl.Logic,34(2):171{208,1987.36