/
SLLS612E SLLS612E

SLLS612E - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
403 views
Uploaded On 2016-08-15

SLLS612E - PPT Presentation

SN65HVD485E SN65HVD485EHalfDuplexRS485Transceiver 1Features 3Description TheSN65HVD485Edeviceisahalfduplex 1 ID: 447240

SN65HVD485E SN65HVD485EHalf-DuplexRS-485Transceiver 1Features 3Description TheSN65HVD485Edeviceisahalf-duplex 1

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SLLS612E" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015 SN65HVD485EHalf-DuplexRS-485Transceiver 1Features 3Description TheSN65HVD485Edeviceisahalf-duplex 1•Bus-PinESDProtectionupto15kV transceiverdesignedforRS-485databusnetworks. •1/2UnitLoad:upto64NodesonaBus Poweredbya5-Vsupply,itisfullycompliantwiththe •Bus-Open-FailsafeReceiver TIA/EIA-485Astandard.Thisdeviceissuitablefor datatransmissionupto10Mbpsoverlongtwisted- •Glitch-FreePower-UpandPower-DownBus paircablesandisdesignedtooperatewithverylow InputsandOutputs supplycurrent,typicallylessthan2mA,exclusiveof •AvailableinSmallVSSOP-8Package theload.Whenthedeviceisintheinactiveshutdown •MeetsorExceedstheRequirementsofthe mode,thesupplycurrentdropsbelow1mA. TIA/EIA-485AStandard Thewidecommon-moderangeandhighESD •Industry-StandardSN75176Footprint protectionlevelsofthisdevicemakeitsuitablefor demandingapplicationssuchas:electricalinverters, 2Applications status/commandsignalsacrosstelecomracks, cabledchassisinterconnects,andindustrial •MotorControl automationnetworkswherenoisetoleranceis •PowerInverters essential.TheSN65HVD485Edevicematchesthe •IndustrialAutomation industry-standardfootprintoftheSN75176device. Power-onresetcircuitskeeptheoutputsinahigh- •BuildingAutomationNetworks impedancestateuntilthesupplyvoltagehas •IndustrialProcessControl stabilized.Athermal-shutdownfunctionprotectsthe •Battery-PoweredApplications devicefromdamageduetosystem-faultconditions. TheSN65HVD485Edeviceischaracterizedfor •TelecommunicationsEquipment operationfrom–40°Cto85°Cairtemperature. DeviceInformation(1) PARTNUMBER PACKAGE BODYSIZE(NOM) SOIC(8) 4.91mm×3.90mm SN65HVD485E VSSOP(8) 3.00mm×3.00mm PDIP(8) 9.81mm×6.35mm (1)Forallavailablepackages,seetheorderableaddendumat theendofthedatasheet. TypicalApplicationSchematic 1 AnIMPORTANTNOTICEattheendofthisdatasheetaddressesavailability,warranty,changes,useinsafety-criticalapplications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA. SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com TableofContents 1Features..................................................................1 9DetailedDescription............................................12 9.1Overview.................................................................12 2Applications...........................................................1 9.2FunctionalBlockDiagram.......................................12 3Description.............................................................1 9.3FeatureDescription.................................................12 4RevisionHistory.....................................................2 9.4DeviceFunctionalModes........................................12 5DeviceComparisonTable.....................................3 10ApplicationandImplementation........................14 6PinConfigurationandFunctions.........................3 10.1ApplicationInformation..........................................14 7Specifications.........................................................4 10.2TypicalApplication...............................................14 7.1AbsoluteMaximumRatings......................................4 11PowerSupplyRecommendations.....................18 7.2ESDRatings..............................................................4 12Layout...................................................................18 7.3RecommendedOperatingConditions......................4 12.1LayoutGuidelines.................................................18 7.4ThermalInformation..................................................5 12.2LayoutExample....................................................18 7.5ElectricalCharacteristics:Driver...............................5 13DeviceandDocumentationSupport.................19 7.6ElectricalCharacteristics:Receiver..........................5 13.1DeviceSupport......................................................19 7.7PowerDissipationCharacteristics............................6 13.2DocumentationSupport........................................20 7.8SupplyCurrent..........................................................6 13.3CommunityResources..........................................20 7.9SwitchingCharacteristics:Driver..............................6 13.4Trademarks...........................................................20 7.10SwitchingCharacteristics:Receiver........................6 13.5ElectrostaticDischargeCaution............................20 7.11DissipationRatings.................................................7 13.6Glossary................................................................20 7.12TypicalCharacteristics............................................7 14Mechanical,Packaging,andOrderable 8ParameterMeasurementInformation..................8 Information...........................................................20 4RevisionHistory NOTE:Pagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentversion. ChangesfromRevisionD(July2015)toRevisionEPage •Changed3.3VTo:5VatpinVCCinFigure20...................................................................................................................16 ChangesfromRevisionC(March2007)toRevisionDPage •AddedPinConfigurationandFunctionssection,FeatureDescriptionsection,DeviceFunctionalModes,Application andImplementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection...............................................................1 •DeletedOrderingInformationtable.......................................................................................................................................1 •ChangedThermalInformationtable......................................................................................................................................5 •AddedPowerDissipationCharacteristicstable......................................................................................................................6 2 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 5DeviceComparisonTable ImprovedReplacementforDevices PARTNUMBER REPLACEWITH BENEFITS BetterESDprotection(±15kVversusunspecified) ADM485 SN65HVD485E Fastersignalingrate(10Mbpsversus5Mbps) Morenodesonabus(64versus32)Widerpowersupplytolerance(10%vs5%) Morenodesonabus(64versus32) SP485E SN65HVD485E Widerpowersupplytolerance(10%versus5%) Highersignalingrate(10Mbpsversus2.5Mbps) LMS485E SN65HVD485E Morenodesonabus(64versus32) Widerpowersupplytolerance(10%versus5%) Highersignalingrate(10Mbpsversus2.5Mbps) BetterESD(±15kVversus±2kV) DS485 SN65HVD485E Morenodesonabus(64versus32) Widerpowersupplytolerance(10%versus5%) BetterESD(±15kVversus±2kV) LTC485 SN65HVD485E Widerpowersupplytolerance(10%versus5%) Highersignalingrate(10Mbpsversus2.5Mbps) MAX485E SN65HVD485E Morenodesonabus(64versus32) Widerpowersupplytolerance(10%versus5%) Highersignalingrate(10Mbpsversus5Mbps) ST485E SN65HVD485E Widerpowersupplytolerance(10%versus5%) Morenodesonabus(64versus32) ISL8485E SN65HVD485E Fastersignalingrate(10Mbpsversus5Mbps) 6PinConfigurationandFunctions D,DGK,PPackages 8-PinSOIC,VSSOP,PDIP TopView PinFunctions PIN TYPE DESCRIPTION NAME NO. A 6 Businput/output Driveroutputorreceiverinput(complementarytoB) B 7 Businput/output Driveroutputorreceiverinput(complementarytoA) D 4 Digitalinput Driverdatainput DE 3 Digitalinput Driverenable,activehigh GND 5 Referencepotential Localdeviceground R 1 Digitalinput Receivedataoutput RE 2 Digitalinput Receiverenable,activelow VCC 8 Supply 4.5-Vto5.5-Vsupply Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 7Specifications 7.1AbsoluteMaximumRatings overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1)(2) MIN MAX UNIT VCC Supplyvoltage –0.5 7 V VoltagerangeatAorB –9 14 V Voltagerangeatanylogicpin –0.3 VCC+0.3 V Receiveroutputcurrent –24 24 mA Voltageinputrange,transientpulse,AandB,through100Ÿ(seeFigure15) –50 50 V TJ Junctiontemperature 170 170 °C Continuoustotalpowerdissipation RefertoDissipationRatings Tstg Storagetemperature –65 130 °C (1)StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperating Conditionsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2)Allvoltagevalues,exceptdifferentialI/Obusvoltages,arewithrespecttonetworkgroundterminal. 7.2ESDRatings VALUE UNIT BuspinsandGND ±15000 Humanbodymodel(HBM),perANSI/ESDA/JEDECJS- Electrostatic 001(1) V(ESD) Allpins ±4000 V discharge Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±1000 (1)JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2)JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 7.3RecommendedOperatingConditions overoperatingfree-airtemperaturerange(unlessotherwisenoted)(1) MIN NOM MAX UNIT VCC Supplyvoltage 4.5 5.5 V VI Inputvoltageatanybusterminal(separatelyorcommonmode) –7 12 V VIH High-levelinputvoltage(D,DE,orREinputs) 2 VCC V VIL Low-levelinputvoltage(D,DE,orREinputs) 0 0.8 V VID Differentialinputvoltage –12 12 V Driver –60 60 IO Outputcurrent mA Receiver –8 8 RL Differentialloadresistance 54 60 Ÿ 1/tUI Signalingrate 0 10 Mbps TA Operatingfree-airtemperature –40 85 °C TJ Junctiontemperature(2) –40 130 °C (1)Thealgebraicconvention,inwhichtheleastpositive(mostnegative)limitisdesignatedasminimum,isusedinthisdatasheet. (2)SeeThermalInformationforinformationonmaintenanceofthisspecificationfortheDGKpackage. 4 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 7.4ThermalInformation SN65HVD485E D DGK P THERMALMETRIC(1) UNIT (SOIC) (VSSOP) (PDIP) 8PINS 8PINS 8PINS RJA Junction-to-ambientthermalresistance(2) 127 180 153 °C/W RJC(top) Junction-to-case(top)thermalresistance 51.4 66 40.5 °C/W RJB Junction-to-boardthermalresistance 47.6 108 28.5 °C/W %JT Junction-to-topcharacterizationparameter 7.9 4.6 17.6 °C/W %JB Junction-to-boardcharacterizationparameter 47 73.1 28.3 °C/W (1)Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report(SPRA953). (2)SeethePackageThermalCharacterizationMethodologiesapplicationnote(SZZA003)foranexplanationofthisparameter. 7.5ElectricalCharacteristics:Driver overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT IO=0,Noload 3 4.3 |VOD| Differentialoutputvoltage RL=54W(seeFigure3) 1.5 2.3 V VTEST=–7Vto12V(seeFigure4) 1.5 Changeinmagnitudeofdifferentialoutput û|VOD| SeeFigure3andFigure4 –0.2 0 0.2 V voltage VOC(SS) Steady-statecommon-modeoutputvoltage SeeFigure5 1 2.6 3 V Changeinsteady-statecommon-modeoutput ûVOC(SS) –0.1 0 0.1 V voltage VOC(PP) Common-modeoutputvoltage SeeFigure5 500 mV IOZ High-impedanceoutputcurrent Seereceiverinputcurrents A II Inputcurrent D,DE –100 100 A IOS Short-circuitoutputcurrent –7V”VO”12V(seeFigure9) –250 250 mA (1)Alltypicalvaluesareat25°Candwitha5-Vsupply. 7.6ElectricalCharacteristics:Receiver overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT VIT+ Positive-goinginputthresholdvoltage IO=–8mA –85 –10 mV VIT– Negative-goinginputthresholdvoltage IO=8mA –200 –115 mV Vhys Hysteresisvoltage(VIT+–VIT–) 30 mV VOH High-leveloutputvoltage VID=200mV,IOH=–8mA(seeFigure10) 4 4.6 V VOL Low-leveloutputvoltage VID=–200mV,IOH=8mA(seeFigure10) 0.15 0.4 V IOZ High-impedance-stateoutputcurrent VO=0toVCC,RE=VCC –1 1 A VIH=12V,VCC=5V 0.5 VIH=12V,VCC=0 0.5 II Businputcurrent mA VIH=–7V,VCC=5V –0.4 VIH=–7V,VCC=0 –0.4 IIH High-levelinputcurrent(RE) VIH=2V –60 –30 A IIL Low-levelinputcurrent(RE) VIL=0.8V –60 –30 A Cdiff Differentialinputcapacitance VI=0.4sin(4E6Œt)+0.5V,DEat0V 7 pF (1)Alltypicalvaluesareat25°Candwitha5-Vsupply. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 7.7PowerDissipationCharacteristics PARAMETER TESTCONDITIONS MIN TYP MAX UNIT RL=54Ÿ,InputtoDisa10Mbps50%dutycyclesquare P(AVG) Averagepowerdissipation 219 mW waveVCCat5.5V,TJ=130°C Thermalshut-downjunction TSD 165 °C temperature 7.8SupplyCurrent overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP(1) MAX UNIT Driverandreceiverenabled DatVCCoropenor0V, DEatVCC,REat0V,Noload 2 mA ICC Driverandreceiver DatVCCoropen, DEat0V,REatVCC 1 mA disabled (1)Alltypicalvaluesareat25°Candwitha5-Vsupply. 7.9SwitchingCharacteristics:Driver overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT tPLH Propagationdelaytime,low-to-high-leveloutput 30 ns tPHL Propagationdelaytime,high-to-low-leveloutput 30 ns tr Differentialoutputsignalrisetime RL=54Ÿ,CL=50pF(seeFigure6) 25 ns tf Differentialoutputsignalfalltime 25 ns tsk(p) Pulseskew(|tPHL–tPLH|) 5 ns Propagationdelaytime,high-impedance-to-high-level tPZH 150 ns output RL=110Ÿ,REat0V(seeFigure7) Propagationdelaytime,high-level-to-high-impedance tPHZ 100 ns output Propagationdelaytime,high-impedance-to-low-level tPZL 150 ns output RL=110Ÿ,REat0V(seeFigure8) Propagationdelaytime,low-level-to-high-impedance tPLZ 100 ns output Propagationdelaytime,shutdown-to-high-level tPZH(SHN) RL=110Ÿ,REatVCC(seeFigure7) 2600 ns output tPZL(SHDN) Propagationdelaytime,shutdown-to-low-leveloutput RL=110Ÿ,REatVCC(seeFigure8) 2600 ns 7.10SwitchingCharacteristics:Receiver overrecommendedoperatingconditions(unlessotherwisenoted) PARAMETER TESTCONDITIONS MIN TYP MAX UNIT tPLH Propagationdelaytime,low-to-high-leveloutput 200 ns tPHL Propagationdelaytime,high-to-low-leveloutput 200 ns VID=-1.5Vto1.5V,CL=15pF tsk(p) Pulseskew(|tPHL–tPLH|) 6 ns (seeFigure11) tr Outputsignalrisetime 3 ns tf Outputsignalfalltime 3 ns tPZH Outputenabletimetohighlevel 50 ns tPZL Outputenabletimetolowlevel 50 ns CL=15pF,DEat3V, (seeFigure12andFigure13) tPHZ Outputenabletimefromhighlevel 50 ns tPLZ Outputenabletimefromlowlevel 50 ns Propagationdelaytime,shutdown-to-high-level tPZH(SHDN) 3500 ns output CL=15pF,DEat0V, (seeFigure14) Propagationdelaytime,shutdown-to-low-level tPZL(SHDN) 3500 ns output 6 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 7.11DissipationRatings JEDECBOARD TA25°C DERATINGFACTOR(2) TA=70°C TA=85°C PACKAGE(1) MODEL POWERRATING ABOVETA=25°C POWERRATING POWERRATING Lowk(3) 507mW 4.82mW/°C 289mW 217mW D (SIOC) Highk(3) 824mW 7.85mW/°C 471mW 353mW P Lowk(3) 686mW 6.53mW/°C 392mW 294mW (PDIP) Lowk(3) 394mW 3.76mW/°C 255mW 169mW DGK (VSSOP) Highk(4) 583mW 5.55mW/°C 333mW 250mW (1)Forthemostcurrentpackageandorderinginformation,seethePackageOptionAddendumattheendofthisdocument,orseetheTI websiteatwww.ti.com. (2)Thisistheinverseofthejunction-to-ambientthermalresistancewhenboard-mountedandwithnoairflow. (3)Inaccordancewiththelow-kthermalmetricdefinitionsofEIA/JESD51-3. (4)Inaccordancewiththehigh-kthermalmetricdefinitionsofEIA/JESDS1-7. 7.12TypicalCharacteristics Figure1.BusInputCurrentvsBusInputVoltage Figure2.DriverDifferentialOutputVoltage vsDifferentialOutputCurrent Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 8ParameterMeasurementInformation Testloadcapacitanceincludesprobeandjigcapacitance(unlessotherwisespecified).Signalgenerator characteristics:risetimeandfalltime6ns,pulserate100kHz,50%dutycycle.ZO=50Ÿ(unless otherwisespecified). Figure3.DriverTestCircuit,VODandVOCWithoutCommon-ModeLoading Figure4.DriverTestCircuit,VODWithCommon-ModeLoading Figure5.DriverVOCTestCircuitandWaveforms Figure6.DriverSwitchingTestCircuitandWaveforms 8 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 ParameterMeasurementInformation(continued) Testloadcapacitanceincludesprobeandjigcapacitance(unlessotherwisespecified).Signalgeneratorcharacteristics:rise timeandfalltime6ns,pulserate100kHz,50%dutycycle.ZO=50Ÿ(unlessotherwisespecified). Figure7.DriverEnable/DisableTestCircuitandWaveforms,HighOutput Figure8.DriverEnable/DisableTestCircuitandWaveforms,LowOutput Figure9.DriverShort-CircuitTest Figure10.ReceiverParameterDefinitions Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com ParameterMeasurementInformation(continued) Testloadcapacitanceincludesprobeandjigcapacitance(unlessotherwisespecified).Signalgeneratorcharacteristics:rise timeandfalltime6ns,pulserate100kHz,50%dutycycle.ZO=50Ÿ(unlessotherwisespecified). Figure11.ReceiverSwitchingTestCircuitandWaveforms Figure12.ReceiverEnable/DisableTestCircuitandWaveforms,DataOutputHigh Figure13.ReceiverEnable/DisableTestCircuitandWaveforms,DataOutputLow 10 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 ParameterMeasurementInformation(continued) Testloadcapacitanceincludesprobeandjigcapacitance(unlessotherwisespecified).Signalgeneratorcharacteristics:rise timeandfalltime6ns,pulserate100kHz,50%dutycycle.ZO=50Ÿ(unlessotherwisespecified). Figure14.ReceiverEnableFromShutdownTestCircuitandWaveforms Figure15.TestCircuitandWaveforms,TransientOver-VoltageTest Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 9DetailedDescription 9.1Overview TheSN65HVD485Edeviceisahalf-duplexRS-485transceiversuitablefordatatransmissionatratesupto10 Mbpsovercontrolled-impedancetransmissionmedia(suchastwisted-paircabling).Upto64unitsofthe SN65HVD485EdevicecanshareacommonRS-485busduetothelowbus-inputcurrentsofthedevice.The devicealsofeaturesahighdegreeofESDprotectionandlowstandbycurrentconsumptionof1mA(maximum). 9.2FunctionalBlockDiagram 9.3FeatureDescription TheSN65HVD485Edeviceprovidesinternalbiasingofthereceiverinputthresholdsforopen-circuit,bus-idle,or short-circuitfailsafeconditions.Itfeaturesatypicalhysteresisof30mVtoimprovenoiseimmunity.InternalESD protectioncircuitsprotectthetransceiverbusterminalsagainst±15-kVHumanBodyModel(HBM)electrostatic discharges. 9.4DeviceFunctionalModes Whenthedriverenablepin(DE)islogichigh,thedifferentialoutputsAandBfollowthelogicstatesatdatainput D.AlogichighatDcausesAtoturnhighandBtoturnlow.Inthiscase,thedifferentialoutputvoltagedefined asVOD=VA–VBispositive.WhenDislow,theoutputstatesreverse,Bturnshigh,Aislow,andVODis negative. WhenDEislow,bothoutputsturnhighimpedance.Inthiscondition,thelogicstateatDisirrelevant.TheDEpin hasaninternalpulldownresistortoground;thuswhenleftopen,thedriverisdisabled(highimpedance)by default.TheDpinhasaninternalpullupresistortoVCC;thuswhenleftopenwhilethedriverisenabled,output AturnshighandBturnslow. Table1.DriverFunctionTable OUTPUTS INPUT ENABLE FUNCTION D DE A B H H H L ActivelydrivebusHigh L H L H ActivelydrivebusLow X L Z Z Driverdisabled X OPEN Z Z Driverdisabledbydefault OPEN H H L Activelydrivebushighbydefault Whenthereceiverenablepin(RE)islogiclow,thereceiverisenabled.Whenthedifferentialinputvoltage definedasVID=VA–VBispositiveandhigherthanthepositiveinputthreshold(VIT+)thereceiveroutput(R) turnshigh.WhenVIDisnegativeandlowerthanthenegativeinputthreshold(VIT–),thereceiveroutput(R)turns low.IfVIDisbetweenVIT+andVIT–,theoutputisindeterminate. WhenREislogichighorleftopen,thereceiveroutputishighimpedanceandthemagnitudeandpolarityofVID areirrelevant.Internalbiasingofthereceiverinputscausestheoutputtogofailsafehighwhenthetransceiveris disconnectedfromthebus(open-circuit),thebuslinesareshorted(short-circuit),orthebusisnotactivelydriven (idlebus). 12 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 Table2.ReceiverFunctionTable DIFFERENTIALINPUT ENABLE OUTPUT FUNCTION VID=VA–VB RE R VIT+VID L H ReceivevalidbusHigh VIT–VIDVIT+ L ? Indeterminatebusstate VIDVIT– L L ReceivevalidbusLow X H Z Receiverdisabled X OPEN Z Receiverdisabledbydefault Open-circuitbus L H Fail-safehighoutput Short-circuitbus L H Fail-safehighoutput Idle(terminated)bus L H Fail-safehighoutput Figure16.EquivalentInputandOutputSchematicDiagrams Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 10ApplicationandImplementation NOTE InformationinthefollowingapplicationssectionsisnotpartoftheTIcomponent specification,andTIdoesnotwarrantitsaccuracyorcompleteness.TI’scustomersare responsiblefordeterminingsuitabilityofcomponentsfortheirpurposes.Customersshould validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 10.1ApplicationInformation TheSN65HVD485Edeviceisahalf-duplexRS-485transceivercommonlyusedforasynchronousdata transmissions.Thedriverandreceiverenablepinsallowforconfigurationofdifferentoperatingmodes. Figure17.Half-DuplexTransceiverConfigurations Usingindependentenablelinesprovidesthemostflexiblecontrolasitallowsforthedriverandthereceivertobe turnedonandoffindividually.Whilethisconfigurationrequirestwocontrollines,itallowsforselectivelistening intothebustrafficwhetherthedriveristransmittingdataornot. Combiningtheenablesignalssimplifiestheinterfacetothecontrollerbyformingasingledirection-controlsignal. Inthisconfiguration,thetransceiveroperatesasadriverwhenthedirection-controllineishighandasareceiver whenthedirection-controllineislow. Additionally,onlyonelineisrequiredwhenconnectingthereceiver-enableinputtogroundandcontrollingonly thedriver-enableinput.Inthisconfiguration,anodereceivesthedatafromthebus,receivesthedataitsends, andcanverifythatthecorrectdatahasbeentransmitted. 10.2TypicalApplication AnRS-485busconsistsofmultipletransceiversconnectinginparalleltoabuscable.Toeliminateline reflections,eachcableendisterminatedwithaterminationresistor(RT)whosevaluematchesthecharacteristic impedance(Z0)ofthecable.Thismethod,knownasparalleltermination,allowsforhigherdataratesoverlonger cablelength. Figure18.TypicalRS-485NetworkWithHalf-DuplexTransceivers 14 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 TypicalApplication(continued) 10.2.1DesignRequirements RS-485isarobustelectricalstandardsuitableforlong-distancenetworkingthatcanbeusedinawiderangeof applicationswithvaryingrequirementssuchasdistance,datarate,andnumberofnodes. 10.2.1.1DataRateandBusLength Thereisaninverserelationshipbetweendatarateandbuslength:thehigherthedatarate,theshorterthecable length,andconverselythelowerthedatarate,thelongerthecablecanbewithoutintroducingdataerrors.While mostRS-485systemsusedataratesbetween10kbpsand100kbps,someapplicationsrequiredataratesupto 250kbpsatdistancesof4000feetandlonger.Longerdistancesarepossiblebyallowingforsmallsignaljitterof upto5or10%. Figure19.CableLengthvsDataRateCharacteristic 10.2.1.2StubLength Whenconnectinganodetothebus,thedistancebetweenthetransceiverinputsandthecabletrunk,knownas thestub,mustbeasshortaspossible.Stubspresentanonterminatedpieceofbuslinethatcanintroduce reflectionsasthelengthofthestubincreases.Asageneralguideline,theelectricallength,orround-tripdelay,of astubmustbelessthanone-tenthoftherisetimeofthedriver;thusgivingamaximumphysicalstublengthas showninEquation1. Lstub”0.1×tr×v×c where •tristhe10/90risetimeofthedriver •cisthespeedoflight(3×108m/s) •visthesignalvelocityofthecableortraceasafactorofc(1) 10.2.1.3BusLoading TheRS-485standardspecifiesthatacompliantdrivermustbeabletodrive32-unitloads(UL),where1-unitload representsaloadimpedanceofapproximately12kŸ.BecausetheSN65HVD485Edeviceisa½ULtransceiver, itispossibletoconnectupto64receiverstothebus. 10.2.1.4ReceiverFailsafe ThedifferentialreceiveroftheSN65HVD485Edeviceisfailsafetoinvalidbusstatescausedbythefollowing: •Openbusconditionssuchasadisconnectedconnector •Shortedbusconditionssuchascabledamageshortingthetwistedpairtogether •Idlebusconditionsthatoccurwhennodriveronthebusisactivelydriving Inanyofthesecases,thedifferentialreceiveroutputsafailsafelogic-highstatesothattheoutputofthereceiver isnotindeterminate. Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com TypicalApplication(continued) Receiverfailsafeisaccomplishedbyoffsettingthereceiverthresholdssuchthattheinputindeterminaterange doesnotincludezerovoltsdifferential.TocomplywiththeRS-422andRS-485standards,thereceiveroutput mustoutputahighwhenthedifferentialinputVIDismorepositivethan200mV,anditmustoutputaLowwhen VIDismorenegativethan–200mV.ThereceiverparametersthatdeterminethefailsafeperformanceareVIT+, VIT–,andVhys(theseparationbetweenVIT+andVIT–).AsshownintheElectricalCharacteristics:Receivertable, differentialsignalsmorenegativethan–200mVcausealowreceiveroutput,anddifferentialsignalsmore positivethan200mVcauseahighreceiveroutput. Whenthedifferentialinputsignalisclosetozero,itisstillabovetheVIT+threshold,andthereceiveroutputis High.OnlywhenthedifferentialinputismorethanVhysbelowVIT+doesthereceiveroutputtransitiontoaLow state.Therefore,thenoiseimmunityofthereceiverinputsduringbusfaultconditionsincludesthereceiver hysteresisvalue(Vhys)aswellasthevalueofVIT+. 10.2.2DetailedDesignProcedure Toprotectbusnodesagainsthigh-energytransients,theimplementationofexternaltransientprotectiondevices isnecessary. Figure20.TransientProtectionAgainstESD,EFT,andSurgeTransients Figure20suggestsaprotectioncircuitagainst10-kVESD(IEC61000-4-2),4-kVEFT(IEC61000-4-4),and1-kV surge(IEC61000-4-5)transients.Table3showstheassociatedbillofmaterials. Table3.BillofMaterials DEVICE FUNCTION ORDERNUMBER MANUFACTURER 5-V,10-MbpsRS-485 XCVR SN65HVD485E TI transceiver 10-\r,pulse-proofthick-film R1,R2 CRCW0603010RJNEAHP Vishay resistor Bidirectional400-W TVS CDSOT23-SM712 Bourns transientsuppressor 10.2.2.1PowerUsageinanRS-485Transceiver Powerconsumptionisaconcerninmanyapplications.Powersupplycurrentisdeliveredtothebusloadandto thetransceivercircuitry.ForatypicalRS-485busconfiguration,theloadthatanactivedrivermustdriveconsists ofallofthereceivingnodesplustheterminationresistorsateachendofthebus. Theloadpresentedbythereceivingnodesdependsontheinputimpedanceofthereceiver.TheTIA/EIA-485-A standarddefinesaunitloadasallowingupto1mA.Withupto32unitloadsallowedonthebus,thetotalcurrent suppliedtoallreceiverscanbeashighas32mA.TheSN65HVD485Edeviceisratedasa½unitloaddevice, soupto64canbeconnectedononebus. 16 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 Thecurrentintheterminationresistorsdependsonthedifferentialbusvoltage.Thestandardrequiresactive driverstoproduceatleast1.5Vofdifferentialsignal.Forabusterminatedwithonestandard120-Ÿresistorat eachend,thissumsto25-mAdifferentialoutputcurrentwheneverthebusisactive.Typically,the SN65HVD485Edevicecandrivemorethan25mAtoa60-Ÿload,whichresultsinadifferentialoutputvoltage higherthantheminimumrequiredbythestandard(seeFigure2). Supplycurrentincreaseswithsignalingrateprimarilybecauseofthetotempoleoutputsofthedriver.When theseoutputschangestate,thereisamomentwhenboththehigh-sideandlow-sideoutputtransistorsare conducting,whichcreatesashortspikeinthesupplycurrent.Asthefrequencyofstatechangesincreases,more powerisused. 10.2.3ApplicationCurve Figure21.SN65HVD485ESingle-EndedInput(Top),DifferentialOutput(Middle),andSingle-EndedOutput (Bottom)at10MHz Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com 11PowerSupplyRecommendations Toensurereliableoperationatalldataratesandsupplyvoltages,eachsupplymustbedecoupledwitha100-nF ceramiccapacitorlocatedascloseaspossibletothesupplypins.Thishelpstoreducesupplyvoltageripple presentontheoutputsofswitched-modepowersuppliesandalsohelpstocompensatefortheresistanceand inductanceofthePCBpowerplanes. 12Layout 12.1LayoutGuidelines Robustandreliablebus-nodedesignoftenrequirestheuseofexternaltransient-protectiondevicestoprotect againstEFTandsurgetransientsthatmayoccurinindustrialenvironments.Becausethesetransientshavea widefrequencybandwidth(fromapproximately3MHzto3GHz),high-frequencylayouttechniquesmustbe appliedduringPCBdesign. 1.Placetheprotectioncircuitryclosetothebusconnectortopreventnoisetransientsfromenteringtheboard. 2.UseVCCandgroundplanestoprovidelow-inductancepowerdistribution.High-frequencycurrentstendto followthepathofleastinductanceandnotthepathofleastresistance. 3.Designtheprotectioncomponentsintothedirectionofthesignalpath.Donotforcethetransientcurrentsto divertfromthesignalpathtoreachtheprotectiondevice. 4.Apply100-nFto220-nFbypasscapacitorsascloseaspossibletotheVCCpinsoftransceiver,UART,or controllerICsontheboard. 5.UseatleasttwoviasforVCCandgroundconnectionsofbypasscapacitorsandprotectiondevicesto minimizeeffectiveviainductance. 6.Use1-kŸto10-kŸpulluporpulldownresistorsforenablelinestolimitnoisecurrentsintheselinesduring transientevents. 7.Insertseriespulse-proofresistorsintotheAandBbuslinesiftheTVSclampingvoltageishigherthanthe specifiedmaximumvoltageofthetransceiverbusterminals.Theseresistorslimittheresidualclamping currentintothetransceiverandpreventitfromlatchingup. 8.WhilepureTVSprotectionissufficientforsurgetransientsupto1kV,highertransientsrequiremetal-oxide varistors(MOVs),whichreducesthetransientstoafewhundredvoltsofclampingvoltageandtransient blockingunits(TBUs)thatlimittransientcurrenttolessthan1mA. 12.2LayoutExample Figure22.LayoutExample 18 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E SN65HVD485E www.ti.comSLLS612E–JUNE2004–REVISEDDECEMBER2015 13DeviceandDocumentationSupport 13.1DeviceSupport 13.1.1Third-PartyProductsDisclaimer TI'SPUBLICATIONOFINFORMATIONREGARDINGTHIRD-PARTYPRODUCTSORSERVICESDOESNOT CONSTITUTEANENDORSEMENTREGARDINGTHESUITABILITYOFSUCHPRODUCTSORSERVICES ORAWARRANTY,REPRESENTATIONORENDORSEMENTOFSUCHPRODUCTSORSERVICES,EITHER ALONEORINCOMBINATIONWITHANYTIPRODUCTORSERVICE. 13.1.2DeviceNomenclature 13.1.2.1ThermalCharacteristicsofICPackages JA(Junction-to-AmbientThermalResistance)isdefinedasthedifferenceinjunctiontemperaturetoambient temperaturedividedbytheoperatingpower JAisNOTaconstantandisastrongfunctionof •thePCBdesign(50%variation) •altitude(20%variation) •devicepower(5%variation) JAcanbeusedtocomparethethermalperformanceofpackagesifthespecifictestconditionsaredefinedand used.StandardizedtestingincludesspecificationofPCBconstruction,testchambervolume,sensorlocations, andthethermalcharacteristicsofholdingfixtures.JAisoftenmisusedwhenitisusedtocalculatejunction temperaturesforotherinstallations. TIusestwotestPCBsasdefinedbyJEDECspecifications.Thelow-kboardgivesaveragein-usecondition thermalperformanceandconsistsofasingletracelayer25mmlongand2-ozthickcopper.Thehigh-kboard givesbestcasein-useconditionandconsistsoftwo1-ozburiedpowerplaneswithasingletracelayer25mm longwith2-ozthickcopper.A4%to50%differenceinJAcanbemeasuredbetweenthesetwotestcards JC(Junction-to-CaseThermalResistance)isdefinedasdifferenceinjunctiontemperaturetocasedividedbythe operatingpower.Itismeasuredbyputtingthemountedpackageupagainstacopperblockcoldplatetoforce heattoflowfromdie,throughthemoldcompoundintothecopperblock. JCisausefulthermalcharacteristicwhenaheatsinkisappliedtopackage.ItisNOTausefulcharacteristicto predictjunctiontemperatureasitprovidespessimisticnumbersifthecasetemperatureismeasuredinanon- standardsystemandjunctiontemperaturesarebackedout.ItcanbeusedwithJBin1-dimensionalthermal simulationofapackagesystem. JB(Junction-to-BoardThermalResistance)isdefinedtobethedifferenceinthejunctiontemperatureandthe PCBtemperatureatthecenterofthepackage(closesttothedie)whenthePCBisclampedinacold-plate structure.JBisonlydefinedforthehigh-ktestcard. JBprovidesanoverallthermalresistancebetweenthedieandthePCB.ItincludesabitofthePCBthermal resistance(especiallyforBGA'swiththermalballs)andcanbeusedforsimple1-dimensionalnetworkanalysisof packagesystem(seeFigure23). Copyright©2004–2015,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:SN65HVD485E SN65HVD485E SLLS612E–JUNE2004–REVISEDDECEMBER2015www.ti.com DeviceSupport(continued) Figure23.ThermalResistance 13.2DocumentationSupport 13.2.1RelatedDocumentation Forrelateddocumentationseethefollowing: SZZA003,PackageThermalCharacterizationMethodologies 13.3CommunityResources ThefollowinglinksconnecttoTIcommunityresources.Linkedcontentsareprovided"ASIS"bytherespective contributors.TheydonotconstituteTIspecificationsanddonotnecessarilyreflectTI'sviews;seeTI'sTermsof Use. TIE2E™OnlineCommunityTI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupportTI'sDesignSupportQuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 13.4Trademarks E2EisatrademarkofTexasInstruments. Allothertrademarksarethepropertyoftheirrespectiveowners. 13.5ElectrostaticDischargeCaution Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoam duringstorageorhandlingtopreventelectrostaticdamagetotheMOSgates. 13.6Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 14Mechanical,Packaging,andOrderableInformation Thefollowingpagesincludemechanical,packaging,andorderableinformation.Thisinformationisthemost currentdataavailableforthedesignateddevices.Thisdataissubjecttochangewithoutnoticeandrevisionof thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 20 SubmitDocumentationFeedback Copyright©2004–2015,TexasInstrumentsIncorporated ProductFolderLinks:SN65HVD485E PACKAGE OPTION ADDENDUM www.ti.com 27-Mar-2020 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status(1) Package Type PackageDrawing Pins PackageQty Eco Plan(2) Lead/Ball Finish(6) MSL Peak Temp(3) Op Temp (°C) Device Marking(4/5) Samples HPA01057EDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 VP485 SN65HVD485ED ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 VP485 SN65HVD485EDG4 ACTIVE SOIC D 8 75 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 VP485 SN65HVD485EDGK ACTIVE VSSOP DGK 8 80 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 (NWH, NWJ) SN65HVD485EDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS& no Sb/Br) NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 (NWH, NWJ) SN65HVD485EDR ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 VP485 SN65HVD485EDRG4 ACTIVE SOIC D 8 2500 Green (RoHS& no Sb/Br) NIPDAU Level-1-260C-UNLIM -40 to 85 VP485 SN65HVD485EP ACTIVE PDIP P 8 50 Green (RoHS& no Sb/Br) NIPDAU N / A for Pkg Type -40 to 85 65HVD485 SN65HVD485EPE4 ACTIVE PDIP P 8 50 Green (RoHS& no Sb/Br) NIPDAU N / A for Pkg Type -40 to 85 65HVD485 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substancedo not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI mayreference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of threshold. Antimony trioxide basedflame retardants must also meet the threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. PACKAGE OPTION ADDENDUM www.ti.com 27-Mar-2020 Addendum-Page 2 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. TAPEANDREELINFORMATION *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ ReelDiameter(mm) ReelWidthW1(mm) A0(mm) B0(mm) K0(mm) P1(mm) W(mm) Pin1Quadrant SN65HVD485EDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 SN65HVD485EDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 SN65HVD485EDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PACKAGEMATERIALSINFORMATIONwww.ti.com17-Jul-2020 PackMaterials-Page1 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) SN65HVD485EDGKR VSSOP DGK 8 2500 364.0 364.0 27.0 SN65HVD485EDGKR VSSOP DGK 8 2500 350.0 350.0 43.0 SN65HVD485EDR SOIC D 8 2500 340.5 338.1 20.6 PACKAGEMATERIALSINFORMATIONwww.ti.com17-Jul-2020 PackMaterials-Page2 IMPORTANTNOTICEANDDISCLAIMER “ASIS”

Related Contents


Next Show more