PPT-Sparse
Author : olivia-moreira | Published Date : 2016-12-23
Modeling of GraphStructured Data and Images 1 Michael Elad The Computer Science Department The Technion T he research leading to these results
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Sparse" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Sparse: Transcript
Modeling of GraphStructured Data and Images 1 Michael Elad The Computer Science Department The Technion T he research leading to these results . Such matrices has several attractive properties they support algorithms with low computational complexity and make it easy to perform in cremental updates to signals We discuss applications to several areas including compressive sensing data stream Aswin C Sankaranarayanan. Rice University. Richard G. . Baraniuk. Andrew E. Waters. Background subtraction in surveillance videos. s. tatic camera with foreground objects. r. ank 1 . background. s. parse. From Theory to Practice . Dina . Katabi. O. . Abari. , E. . Adalsteinsson. , A. Adam, F. . adib. , . A. . Agarwal. , . O. C. . Andronesi. , . Arvind. , A. . Chandrakasan. , F. Durand, E. . Hamed. , H. . Raja . Giryes. ICASSP 2011. Volkan. Cevher. Agenda. The sparse approximation problem. Algorithms and pre-run guarantees. Online performance guarantees. Performance bound. Parameter selection. 2. Sparse approximation. to Multiple Correspondence . Analysis. G. Saporta. 1. , . A. . . Bernard. 1,2. , . C. . . Guinot. 2,3. 1 . CNAM, Paris, France. 2 . CE.R.I.E.S., Neuilly sur Seine, France. 3 . Université. . François Rabelais. Full storage:. . 2-dimensional array.. (nrows*ncols) memory.. 31. 0. 53. 0. 59. 0. 41. 26. 0. 31. 41. 59. 26. 53. 1. 3. 2. 3. 1. Sparse storage:. . Compressed storage by columns . (CSC).. Three 1-dimensional arrays.. Recovery. . (. Using . Sparse. . Matrices). Piotr. . Indyk. MIT. Heavy Hitters. Also called frequent elements and elephants. Define. HH. p. φ. . (. x. ) = { . i. : |x. i. | ≥ . φ. ||. x||. p. Tianzhu . Zhang. 1,2. , . Adel Bibi. 1. , . Bernard Ghanem. 1. 1. 2. Circulant. Primal . Formulation. 3. Dual Formulation. Fourier Domain. Time . Domain. Here, the inverse Fourier transform is for each . to Multiple Correspondence . Analysis. G. Saporta. 1. , . A. . . Bernard. 1,2. , . C. . . Guinot. 2,3. 1 . CNAM, Paris, France. 2 . CE.R.I.E.S., Neuilly sur Seine, France. 3 . Université. . François Rabelais. Molinaro. Santanu. . Dey. , Andres . Iroume. , . Qianyi. Wang. Georgia Tech. Better . approximation. of the integer hull. CuttinG. -planes. IN THEORY. Can use . any . cutting-plane. Putting all gives . Author: . Vikas. . Sindhwani. and . Amol. . Ghoting. Presenter: . Jinze. Li. Problem Introduction. we are given a collection of N data points or signals in a high-dimensional space R. D. : xi ∈ . Yi Ma. 1,2. . Allen Yang. 3. John . Wright. 1. CVPR Tutorial, June 20, 2009. 1. Microsoft Research Asia. 3. University of California Berkeley. 2. University of Illinois . at Urbana-Champaign. Dina . Katabi. O. . Abari. , E. . Adalsteinsson. , A. Adam, F. . adib. , . A. . Agarwal. , . O. C. . Andronesi. , . Arvind. , A. . Chandrakasan. , F. Durand, E. . Hamed. , H. . Hassanieh. , P. . Indyk. Parallelization of Sparse Coding & Dictionary Learning Univeristy of Colorado Denver Parallel Distributed System Fall 2016 Huynh Manh 11/15/2016 1 Contents Introduction to Sparse Coding Applications of Sparse Representation
Download Document
Here is the link to download the presentation.
"Sparse"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents