/
Subdivision Surfaces Subdivision Surfaces

Subdivision Surfaces - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
408 views
Uploaded On 2016-08-08

Subdivision Surfaces - PPT Presentation

1 GeometricModeling Geometric Modeling ID: 438681

1 GeometricModeling Geometric Modeling

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Subdivision Surfaces" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Subdivision Surfaces 1 GeometricModeling Geometric Modeling • Sometimesneedmorethanpolygonmeshes • –Smooth surfaces •Traditional geometric modeling used NURBS NiftilB Sli – N on un if orm ra ti ona B - S p –Demo ProblemswithNURBS Problems • AsingleNURBSpatchiseitheratopological • A either a disk, a tube or a torus •Must use many NURBS patches to model • WhendeformingasurfacemadeofNURBS • When a patches, cracks arise at the seams 3 Subdivision Subdivision “ Subdivisiondefinesasmoothcurveorsurfaceas defines a or as the limit of a sequence of successive refinements ” refinements 4 Example:Geri ’ sGame(Pixar) • Subdivisionusedfor Geris • Subdivision used –Geri’s hands and head –Clothing Tie and shoes 7 Example:Geri ’ sGame(Pixar) Geris Woody’s hand (NURBS)Geri’s hand (subdivision) 8 Example:Geri ’ sGame(Pixar) Geris Sharpandsemi sharpfeatures and - 9 Example:Games Example: SupportedinhardwareinDirectX 11 11 SubdivisionCurveTypes Subdivision •Approximating •Corner Cuttin g g 12 Approximating Approximating Splitting step: split each edge in two 14 Approximating Approximating Startover... Start over Approximating Approximating ...averaging... ...averaging... 18 Approximating Approximating Iftheruleisdesignedcarefully... If carefully... ... the control polygons will converge to a smoothlimitcurve! smooth CornerCutting • Subdivisionrule: Corner • Subdivision –Insert –the old vertices – Connect the new vertices 22 B - SplineCurves B Curves • Piecewisepolynomialofdegree n • Piecewise of n controlpoints B splinecurve B - parametervalue basis functions parameter B - SplineCurves B Curves • Distinguishbetweenoddandevenpoints • odd and even • LinearB • B - –Odd coefficients (1/2, 1/2) –Even coefficient (1) 24 CubicB - B CubicB - B CubicB - B CubicB - B CubicB - B CubicB - B CubicB - B Interpolating Interpolating 42 Interpolating Interpolating 44 Interpolating Interpolating demo SubdivisionZoo Subdivision • Classificationofsubdivisionschemes • Classification of (face Til i ar es M Approximating)Catmull Interpolating Butterfly 1 ) Kobbelt 1 ) Interpolating Butterfly 1 ) Kobbelt 1 ) (vertexMidedge(C 2 ) •Many more... Biquartic (C ) 50 Catmull - ClarkSubdivision • Generalizationof bi cubicB • of bi - B - •Primal, approximation subdivision scheme •Applied to liitf G G 2 con nuous m sur f for the set of finite extraordinary points •Vertices with valence – C 2 co n t e v e r y e e l se C cotuouseeyeeese Catmull - ClarkSubdivision LoopSubdivision Loop • Generalizationof boxsplines • of box •Primal, approximating subdivision scheme •Applied to liitf G G 2 con nuous m sur f for the set of finite extraordinary points •Vertices with valence – C 2 co n t e v e r y e e l se C cotuouseeyeeese Doo - SabinSubdivision • Generalizationof bi quadraticB • of bi - B - •Dual, approximating subdivision scheme •Applied to liitf G G 1 con nuous m sur f aces:for the set of finite extraordinary points •Center of irregular polygons after 1 subdivision step – C 1 co n t e v e r y e e l se C cotuouseeyeeese Doo - SabinSubdivision ButterflySubdivision Butterfly • Primalinterpolatingscheme • •Applied to •Generates C o forthesetoffiniteextraordinarypoints – C o for finite •Vertices of valence = 3 �or 7 – C1continuous everywhere else 64 Comparison Comparison Doo - - Butterfly Butterfly Comparison Comparison • Subdividingatetrahedron • Subdividing a –Same insights –Severe shrinking for approximating schemes 70 SoWhoWins? So Ctll Clkbthitltiitid • L oop an d C a t b t s no t requ i re •Loop best for triangular meshes •Catmull-Clark best for quad meshes–Don’t triangulate and then use Catmull-Clark 72 AnalysisofSubdivision Analysis • Invariantneighborhoods Invariant –How many control-points affect a small neighborhoodaroundapoint? neighborhood a ? •Subdivision scheme can be analyzed by looking at a localsubdivision matrix 73 AnalysisofSubdivision Analysis • Invarianceunderaffinetransformations • Invariance under transformations –transform(subdivide(P)) = subdivide(transform(P)) 76 AnalysisofSubdivision Analysis Conclusion: 1has to be eigenvector of S i genva l ue 0= 1 LimitBehavior - Position Limit Behavior Position • Anyvectorislinearcombinationofeigenvectors: • of eigenvectors: rows of •Apply subdivision matrix: 80 LimitBehavior - Limit Behavior • Setoriginat a : • at a 0 : •Divide b y 1 j y • Limittangentgivenby: • by: LimitBehavior - Limit Behavior • • –All eigenvalues of than 1to ensure existence of a tangent, i.e. •Surfaces: Tangentsdeterminedby and 1 2 Example:CubicSplines • Subdivisionmatrix&rules Example: • Subdivision & Eigenales • v al u Example:CubicSplines • Eigenvectors Example: • Eigenvectors •Limit position and tangent 85 PropertiesofSubdivision Properties • Flexiblemodeling • Flexible –Handle surfaces of arbitrary topology Provablysmoothlimitsurfaces – Provably –Intuitive control point interaction Slbilit • S ca l a –Level-of-detail rendering – A •Usability –Compact representation–Simple and efficient code 86 BeyondSubdivisionSurfaces Beyond • T [ Sdb tl2003] • T - [ S e d erge –Allows control points to be –Can use less control points – Can model different to p olo ies with sin g le surface pgg NURBST-Splines T-Splines BeyondSubdivisionSurfaces Beyond • Howdoyousubdivideateapot? • do you a